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2a. State-of-the-art and objectives

With the discovery of the Higgs boson in 2012, the Large Hadron Collider (LHC) at CERN has
revealed the mechanism underlying electroweak symmetry breaking, a key feature of the Standard
Model (SM) of elementary-particle physics. At the same time, the LHC should guide us to resolve
some of the pressing questions left unanswered by the SM. The existence of dark matter and the
abundance of matter over antimatter in the universe are among the phenomena that can only be
explained postulating the existence of “new physics” in the form of new particles and interactions.
In April 2022, the LHC has continued its high-luminosity run, 12 years after the first protons were
collided. In the absence of any direct discoveries of new physics, and in light of some intriguing indirect
hints for the existence of heavy new particles from precision measurements of the anomalous magnetic
moment of the muon [1] and some rare decay processes of B mesons [2], the question poses itself:
Which strategy should one take to fully exploit the discovery potential of the high-luminosity LHC?
I argue in this proposal that precision is the key! Indirect signals of new physics might be hiding
“right under our noses”, but we are limited in our ability to discover them due to present theoretical
uncertainties. In searches for new phenomena, the SM background processes must be controlled with
highest possible accuracy. Thus, we need to significantly improve our ability to calculate the cross
sections for important LHC processes, both in the SM and in extensions featuring new particles.

Scattering processes in which jets – highly collimated sets of energetic particles – are produced
are the most important class of observables studied in high-energy processes, because they closely
mirror the underlying hard-scattering event. They are thus well suited to study short-distance
physics and play an important role in the search for new phenomena. However, the rates for jet
production at hadron colliders are also among the most complicated observables to calculate the-
oretically. Traditionally, cross sections for hadron-collider processes are calculated using pertur-
bative expansions in powers of the strong coupling ↵s along with QCD factorization theorems ,
which relate the hadronic cross sections to partonic cross sections convoluted with parton distri-
bution functions. There has been impressive recent progress on the front of fixed-order perturbative
calculations, where an increasing number of inclusive observables have been computed at next-to-
next-to-next-to-leading order (NNNLO) of perturbation theory [3–16]. For exclusive (or non-global)
observables such as jet cross sections, in which a veto is imposed on radiation in a region away
from the jets, the state-of-the-art is NNLO, see e.g. [17]. Despite these advances, for non-global
observables we are still lacking an understanding of even the leading logarithmically enhanced cor-
rections in higher orders of perturbation theory. Starting from four-loop order, double-logarithmic
corrections arise – the super-leading logarithms (SLLs) [18] – whose structure is still largely unknown.
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Figure 1: Diagrammatic representation of
two Glauber-gluon exchanges (red) between the
initial-state partons in a proton-proton collision.
Collinear gluons moving along the beam directions
are drawn in blue, soft gluons emitted into the gap
are shown in green.

One might think that these e↵ects are numerically
very small, because they only arise in higher orders,
but I argue that they can naturally be of the same or-
der as a one-loop correction. It is then imperative to
study these e↵ects in detail and add the corresponding
corrections to existing fixed-order calculations. The
SLLs are caused by a subtle quantum e↵ect: the ex-
change of two Coulomb gluons (or Glauber gluons) be-
tween the two initial-state partons in the scattering
process, see Figure 1. This leads to a breakdown of
color coherence, the fact the sum of soft-gluon emis-
sion o↵ two collinear partons has the same e↵ect as
a single soft emission o↵ the parent parton. Color
coherence, however, is the basis for proofs of QCD
factorization theorems, which underly the theoretical
calculation of all LHC cross sections. The physics that
gives rise to the SLLs therefore leads to a breaking of
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red: Coulomb gluons
blue: gluons emitted along beams 
green: soft gluons between jets

Loss of color coherence from initial-
state Coulomb interactions

[Forshaw, Kyrieleis, Seymour 2006]
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▸ Breakdown of naive factorization 
▸ Phenomenological consequences?
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<latexit sha1_base64="8bgb6+ql9ferqbe29gfSmg83Q88=">AAACdXicbZFda9swFIZl76vzPpptN4MyUJptpGBSOxtsFwsUerPLDpa2EAVzJMuJqGSrkjwWjP9Bf13v9jd2s9spiRlbuwMSL895j450RLUU1iXJjyC8c/fe/Qc7D6NHj5883e09e35qq9owPmWVrMw5BculKPnUCSf5uTYcFJX8jF4cr/Nn37ixoiq/upXmcwWLUhSCgfMo613lxIqFgqzRmrgKF+3QHkQT0sfE1iprIKaTy5hQMPgyXrRElI708+9Ziv02JnFUeM+hbocexUTVByT2hG7JuCPRnyZAuyZkCQ7byfog78N248x6g2SUbALfFmknBqiLk6x3TfKK1YqXjkmwdpYm2s0bME4wyduI1JZrYBew4DMvS1DczpvN1Fr8xpMcF5Xxq3R4Q/+uaEBZu1LUOxW4pb2ZW8P/5Wa1Kz7OG1Hq2vGSbRsVtcT+5esvwLkwnDm58gKYEf6umC3BAHP+oyI/hPTmk2+L0/EofTcaf3k/OPrUjWMH7aF9NEQp+oCO0Gd0gqaIoZ/By6Af7Ae/wlfh6/Dt1hoGXc0L9E+Eh78B+I66hg==</latexit>



Bormio Winter Meeting 2023Matthias Neubert  — 

SLLs

THEORY OF JET PROCESSES AT LHC

3

Neubert Part B2 EFT4jets

ERC Advanced Grant 2022 – Part B2

2a. State-of-the-art and objectives

With the discovery of the Higgs boson in 2012, the Large Hadron Collider (LHC) at CERN has
revealed the mechanism underlying electroweak symmetry breaking, a key feature of the Standard
Model (SM) of elementary-particle physics. At the same time, the LHC should guide us to resolve
some of the pressing questions left unanswered by the SM. The existence of dark matter and the
abundance of matter over antimatter in the universe are among the phenomena that can only be
explained postulating the existence of “new physics” in the form of new particles and interactions.
In April 2022, the LHC has continued its high-luminosity run, 12 years after the first protons were
collided. In the absence of any direct discoveries of new physics, and in light of some intriguing indirect
hints for the existence of heavy new particles from precision measurements of the anomalous magnetic
moment of the muon [1] and some rare decay processes of B mesons [2], the question poses itself:
Which strategy should one take to fully exploit the discovery potential of the high-luminosity LHC?
I argue in this proposal that precision is the key! Indirect signals of new physics might be hiding
“right under our noses”, but we are limited in our ability to discover them due to present theoretical
uncertainties. In searches for new phenomena, the SM background processes must be controlled with
highest possible accuracy. Thus, we need to significantly improve our ability to calculate the cross
sections for important LHC processes, both in the SM and in extensions featuring new particles.

Scattering processes in which jets – highly collimated sets of energetic particles – are produced
are the most important class of observables studied in high-energy processes, because they closely
mirror the underlying hard-scattering event. They are thus well suited to study short-distance
physics and play an important role in the search for new phenomena. However, the rates for jet
production at hadron colliders are also among the most complicated observables to calculate the-
oretically. Traditionally, cross sections for hadron-collider processes are calculated using pertur-
bative expansions in powers of the strong coupling ↵s along with QCD factorization theorems ,
which relate the hadronic cross sections to partonic cross sections convoluted with parton distri-
bution functions. There has been impressive recent progress on the front of fixed-order perturbative
calculations, where an increasing number of inclusive observables have been computed at next-to-
next-to-next-to-leading order (NNNLO) of perturbation theory [3–16]. For exclusive (or non-global)
observables such as jet cross sections, in which a veto is imposed on radiation in a region away
from the jets, the state-of-the-art is NNLO, see e.g. [17]. Despite these advances, for non-global
observables we are still lacking an understanding of even the leading logarithmically enhanced cor-
rections in higher orders of perturbation theory. Starting from four-loop order, double-logarithmic
corrections arise – the super-leading logarithms (SLLs) [18] – whose structure is still largely unknown.

p

p

Figure 1: Diagrammatic representation of
two Glauber-gluon exchanges (red) between the
initial-state partons in a proton-proton collision.
Collinear gluons moving along the beam directions
are drawn in blue, soft gluons emitted into the gap
are shown in green.

One might think that these e↵ects are numerically
very small, because they only arise in higher orders,
but I argue that they can naturally be of the same or-
der as a one-loop correction. It is then imperative to
study these e↵ects in detail and add the corresponding
corrections to existing fixed-order calculations. The
SLLs are caused by a subtle quantum e↵ect: the ex-
change of two Coulomb gluons (or Glauber gluons) be-
tween the two initial-state partons in the scattering
process, see Figure 1. This leads to a breakdown of
color coherence, the fact the sum of soft-gluon emis-
sion o↵ two collinear partons has the same e↵ect as
a single soft emission o↵ the parent parton. Color
coherence, however, is the basis for proofs of QCD
factorization theorems, which underly the theoretical
calculation of all LHC cross sections. The physics that
gives rise to the SLLs therefore leads to a breaking of

1

red: Coulomb gluons
blue: gluons emitted along beams 
green: soft gluons between jets

Loss of color coherence from initial-
state Coulomb interactions

▸ Weird “superleading logarithms” 
▸ Breakdown of naive factorization 
▸ Phenomenological consequences?

[Forshaw, Kyrieleis, Seymour 2006]

TOWARD AN EFFECTIVE FIELD THEORY FOR LHC JETS

d�pp!f (s) 6=
X

a,b=q,q̄,g

Z
dx1dx2 fa/p(x1, µ) fb/p(x2, µ) d�ab!f (ŝ = x1x2s, µ)
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Perturbative expansion:

gap:

 2Eout < Q0

unrestricted Ein ~ Q

L = ln(Q/Q0) � 1
<latexit sha1_base64="mCFvKi7nXG+0n5mYmNXobLSf+Q0=">AAAB+nicdVDLSgMxFM34rPU11aWbYBHqpmbagu1CKLpx4aIF+4BOKZk0Mw3NZIYko5TaT3HjQhG3fok7/8b0BSp64MLhnHu59x4v5kxphD6tldW19Y3N1FZ6e2d3b9/OHDRVlEhCGyTikWx7WFHOBG1opjltx5Li0OO05Q2vpn7rjkrFInGrRzHthjgQzGcEayP17MzNhctFrn5W76FTNwig07OzKI8qZVSswDkpFZYEQSePZsiCBWo9+8PtRyQJqdCEY6U6Dop1d4ylZoTTSdpNFI0xGeKAdgwVOKSqO56dPoEnRulDP5KmhIYz9fvEGIdKjULPdIZYD9Rvbyr+5XUS7Ze7YybiRFNB5ov8hEMdwWkOsM8kJZqPDMFEMnMrJAMsMdEmrbQJYfkp/J80C3mnmC/US9nq5SKOFDgCxyAHHHAOquAa1EADEHAPHsEzeLEerCfr1Xqbt65Yi5lD8APW+xcAu5KN</latexit>

� ⇠ �Born ⇥
�
1 + ↵sL+ ↵2

sL
2
 

<latexit sha1_base64="m/wpluxAkfW0YtxObaRr6URkCFU="></latexit>

4

state-of-the-art: 2-loop order

TOWARD AN EFFECTIVE FIELD THEORY FOR LHC JETS



Bormio Winter Meeting 2023Matthias Neubert  — 

THEORY OF JET PROCESSES AT LHC

Perturbative expansion including “superleading” logarithms:
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state-of-the-art: 2-loop order [Forshaw, Kyrieleis, Seymour 2006]
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Resummation of Super-Leading Logarithms

Thomas Bechera,⇤ Matthias Neubertb,c,† and Ding Yu Shaod ‡
aInstitut für Theoretische Physik & AEC, Universität Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
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cDepartment of Physics, LEPP, Cornell University, Ithaca, NY 14853, U.S.A.

dDepartment of Physics, Center for Field Theory and Particle Physics & Key Laboratory of
Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai, 200433, China

Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced

higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation

emitted o↵ energetic partons inside jets. While this is a single-logarithmic e↵ect at lepton colliders,

at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting

at four-loop order. This e↵ect was discovered a long time ago, but not much is known about the

higher-order behavior of these terms and their process dependence. We derive, for the first time,

the all-order structure of these “super-leading logarithms” for generic 2 ! l scattering processes at

hadron colliders and resum them in closed form.

If the radiation in a high-energy scattering process is
restricted by experimental cuts, higher-order terms in the
perturbative series are enhanced by large logarithms as-
sociated with soft and collinear emissions. The simple
structure of these emissions often makes it possible to
resum the logarithmic terms to all orders, either analyt-
ically or using parton-shower methods. For non-global
observables, such as exclusive jet cross sections in which
a veto on radiation is imposed only in certain angular
regions, even the leading logarithms have a complicated
structure due to the fact that they are generated by sec-
ondary emissions o↵ the original hard partons [1].

The prototypical non-global observable is the interjet
energy flow, where a veto associated with a low scale Q0

is imposed on radiation in a region away from the hard
jets with energy of the order of the collision energy Q.
Being sensitive only to large-angle soft radiation, one ex-
pects the leading logarithms to this observable to scale as
↵n
s Ln, where L = ln(Q/Q0). This is indeed the case for

e+e� colliders, but Forshaw, Kyrieleis and Seymour [2]
argued that at hadron colliders double logarithms arise
at four-loop order, so that the leading logarithm at this
order is ↵4

sL
5. These so-called super-leading logarithms

(SLLs) are a subtle e↵ect generated by complex phases in
the amplitudes, which spoil the real-virtual cancellation
for collinear emissions o↵ the initial states [3–5]. The
e↵ect is absent in the large-Nc limit and not captured
by any of the existing parton showers, which therefore
do not account for the leading-logarithmic corrections to
non-global observables at hadron colliders.

Even 15 years after this e↵ect was discovered, remark-
ably little is known about it. While the first SLL is known
for arbitrary 2 ! 2 hard processes [6], the second SLL
(⇠ ↵5

sL7) is known for some selected partonic channels
only [7]. The all-order structure of SLLs, their contribu-
tion to other hard processes and their large-order behav-
ior are completely unknown. One reason for this lack of
understanding lies in the fact that one needs to perform
calculations in the full color space, whose dimension is

rapidly growing with the number of emitted partons.
In [8, 9] we have derived factorization theorems for

non-global observables in Soft-Collinear E↵ective The-
ory (SCET) [10–12] and found that non-global logarithms
are governed by a renormalization-group (RG) equation.
Here we apply this method to non-global logarithms at
hadron colliders and derive the all-order structure of the
SLLs ↵3

sL
3 ⇥ ↵n

s L2n for arbitrary 2 ! l processes. We
further show that the e↵ect already arises for l = 0, rel-
evant e.g. to Higgs production with a central jet veto.

As a concrete example, we consider the pp ! 2 jet
cross section with a veto on hard radiation in a rapidity
region �Y in between the two leading jets. This can be
imposed by requiring that any additional jet in the veto
region has a transverse momentum smaller than Q0. At
leading logarithmic accuracy, there is no sensitivity to
how the radiation is vetoed but only to the scale hier-
archy between Q0 and the transverse momentum of the
hard jets, which is of order the partonic center-of-mass
energy, Q =

p
ŝ =

p
x1x2s. For this “gap between jets”

observable, the following factorization formula holds [13]:

�(Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

⇥
1X

m=4

⌦
Hm({n}, Q, µ) ⌦ Wm({n}, Q0, x1, x2, µ)

↵
.

(1)

The hard functions Hm describe all possible m-parton
processes a1 + a2 ! a3 + · · · + am and are obtained after
imposing appropriate kinematic constraints, such as cuts
on the transverse momenta and rapidities of the leading
jets. One then integrates over the phase space but for
fixed directions {n} = {n1, . . . , nm} of the m partons,
i.e.

Hm =
1

2ŝ

mY

i=3

Z
dEi E

d�3
i

(2⇡)d�2
|Mm({p})ihMm({p})|

⇥ (2⇡)d �(
p

ŝ � Etot) �(d�1)(~ptot) ⇥hard

��
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,
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low scale

operator in color space and in the 
infinite space of parton multiplicities

1 Introduction

µ
d

dµ
H

ab

l
({n}, Q, µ) = �

X

ml

H
ab

m
({n}, Q, µ)�H

ml
({n}, Q, µ) (1)

H
ab

m
({n}, Q, µ = Q)⌦

1X

l=m

Uml({n}, Q,Q0)⌦W
ab

l
({n}, Q0, x1, x2, µ = Q0) (2)

H
ab

m
({n}, Q)⌦

1X

l=m

Uml({n}, Q,Q0)⌦W
ab

l
({n}, Q0, x1, x2) (3)

U ({n}, Q,Q0) = P exp

Z
Q

Q0

dµ

µ
�H({n}, Q, µ)

�
(4)

Thomas has shown that the fundamental color structures we need to analyze are

K2!M

m,n
=

⌦
H2!M ⌦̂�C . . . ⌦̂�C

| {z }
(n�m) times

�I
⌦̂�C . . . ⌦̂�C

| {z }
m times

�I
⌦̂�

↵
, (5)

where M � 0 is the number of final-state partons at Born level. We consider a generic

2 ! M hard-scattering process described by the hard function H2!M . The insertions of color

operators should be read from left to right. The relevant anomalous dimensions are given by

�C
=

X

i=1,2

⇥
4Ci 1� 4Ti,L � Ti,R �(nk � ni)

⇤
,

�I
= �8i⇡ (T1,L · T2,L � T1,R · T2,R) ,

� = 2

X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k

ij
� 4

X

(ij)

Ti,L · Tj,R W
k0

ij
✓in(nk0) .

(6)

The labels i = 1, 2 refer to the initial-state partons, while the label k0 refers to the parton

emitted in the last step of the iteration. The additional p  n collinear gluons, which can

be emitted from the n insertions of �C
, are labeled by indices k1, . . . , kp. The symbol (ij) on

the sums in the expression for � runs over all (unordered) pairs of parton indices with i 6= j.
This sum includes both the initial-state and all final-state partons. We use the color-space

formalism, where Ti denotes a color generator acting on particle i. The superscripts L and R
are defined such that

⌦
HTi,L · Tj,R W

↵
⌘

⌦
T

a

i
HT

a

j
W

↵
=

⌦
HT

a

j
W T

a

i

↵
. (7)

The first n symbols ⌦̂ in (35) imply integrations over the directions nki of these collinear

partons, which simply has the e↵ect of replacing �(nk � ni) ! 1 in the expression for �C
.

The last ⌦̂ means an integration over the direction nM+1, which has the e↵ect of adding an

integral
R

d⌦(nM+1)
4⇡ in front of the second term in �. The trivial consequences of these angular

integrations is a result of the important fact that the relevant soft function in this process,

1

high scale

5

[Becher, MN, Shao 2021]
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define � = Vm + Rm. The collinear singularities in the soft anomalous dimension are encoded in the
quantity

�c =
X

i=1,2

4
⇥
Ci 1� Ti,L � Ti,R �(nm+1 � ni)

⇤
, (12)

which enters the anomalous dimension multiplied by ln(µ2
/ŝ), where

p
ŝ = Q is the partonic center-

of-mass energy. When inserted into (8) this gives rise to double logarithms, which are the source of the
SLLs. All final-state collinear singularities cancel between real and virtual contributions, and for this
reason only the initial-state pieces (with i = 1, 2) must be kept. The cancellation for the initial-state
terms is spoiled by the complex Coulomb phases in (3), which are contained in [17]

V G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) . (13)

Color conservation implies that these phases are only relevant for processes involving (at least) two
colored partons in the initial state. The color generators Ti,L act on the amplitude and hence multiply
the hard functions Hm from the left, while the generators Tj,R act on the conjugate amplitude and
stand on the right of Hm. The color matrices in the virtual part act on the color indices of the m

partons, Ti · Tj =
P

a
T a

i
T a

j
, and Ti · Ti = Ci 1 is the quadratic Casimir operator of parton i. The

color matrices in the real-emission terms Rm and in the second term in (12) are di↵erent. They take
an amplitude with m partons and map it to an amplitude with (m + 1) partons. Explicitly, we have
Hm Ti,L � Tj,R = T a

i
Hm T ã

j
, where the color indices a and ã refer to the emitted gluon. We use the

symbol � to indicate the presence of the additional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act on these indices.

Collinear safely, the fact that the singularities associated with real and virtual collinear emissions
cancel against each other, ensures that under the color trace in (8) the operator �c vanishes whenever
it stands left to the 1. Combined with the fact that the commutator [�c

,�] vanishes under the trace
in (8), this implies that Sudakov double logarithms arise only in the presence of the Coulomb phases
V G. It follows that for a given 2 ! 2 scattering process the SLL at (3 + n)th order in perturbation
theory is associated with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G �⌦ 1

↵
, (14)

where 0  r  n. Each insertion of �c gives rise to a double logarithm. This explains why the SLLs
first appear at four-loop order. However, the three-loop term (n = 0) originates from the same color
structures and is numerically significant, even though it only involves the imaginary part ⇡ = | ln(�1)|
of the large logarithm. Neglecting the running of the coupling ↵s, setting µh = Q =

p
ŝ and µs = Q0,

and evaluating the integrals over µ arising in the Taylor expansion of the matrix exponential in (8),
we find for the contribution of SLLs to the cross section

�SLL = �Born

1X

n=0

⇣
↵s

4⇡

⌘
n+3

L
2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn , (15)

where L = ln(Q/Q0). Starting from four-loop order two large logarithms per loop arise.
For the simplest case of quark-initiated 2 ! 2 scattering, we have succeeded to evaluate the color

traces Crn in closed form in terms of only three non-trivial color structures [50]. The result reads

Crn = 28�r
⇡
2 (4Nc)

n

⇢ X

j=3,4

Jj

⌦
H4

⇥
(T2 � T1) · Tj + 2r�1

Nc (�1 � �2) dabc T
a

1 T b

2 T
c

j

⇤↵

+ 2 (1 � �r0) J2
⌦
H4

⇥
CF + (2r � 1)T1 · T2

⇤↵�
,

(16)

where �i = 1 for an initial-state antiquark and �i = �1 for an initial-state quark. The sum in the
first term runs over the final-state partons. The structure H4 is normalized such that hH4i = 1. All
information about the phase-space restrictions is contained in the angular integrals

Jj =

Z
d⌦(nk)

4⇡

⇣
W

k

1j � W
k

2j

⌘
⇥veto(nk) ; with W

k

ij =
ni · nj

ni · nk nj · nk

, (17)

8

d�SLL = d�Born
<latexit sha1_base64="qyso2ZIDxZHAZ8Jin9Ax/d1Z88g=">AAACD3icbVC7SgNBFJ2Nrxhfq5Y2g0GxCrtR0EIhaGORIqJ5QBKW2dlJMmRmdpmZFcKyf2Djr9hYKGJra+ffOEm2MIkHLhzOuZd77/EjRpV2nB8rt7S8srqWXy9sbG5t79i7ew0VxhKTOg5ZKFs+UoRRQeqaakZakSSI+4w0/eHN2G8+EqloKB70KCJdjvqC9ihG2kiefRx0FO1z5CUdyeF9tZoWruCMdh1KkXp20Sk5E8BF4makCDLUPPu7E4Q45kRozJBSbdeJdDdBUlPMSFroxIpECA9Rn7QNFYgT1U0m/6TwyCgB7IXSlNBwov6dSBBXasR908mRHqh5byz+57Vj3bvoJlREsSYCTxf1YgZ1CMfhwIBKgjUbGYKwpOZWiAdIIqxNhAUTgjv/8iJplEvuaal8d1asXGZx5MEBOAQnwAXnoAJuQQ3UAQZP4AW8gXfr2Xq1PqzPaWvOymb2wQysr18bhpwO</latexit>

linearly independent color structures must be generalized to

S1 = fabefcde {T b
1 ,T

c
1 } {T a

2 ,T
d
2 } ,

S2 = dadedbce {T b
1 ,T

c
1 } {T a

2 ,T
d
2 } ,

S3 = dadedbce
h
T

a
2

�
T

b
1 T

c
1 T

d
1

�
+
+ (1 $ 2)

i
,

S4 = {T a
1 ,T

b
1 } {T a

2 ,T
b
2 } ,

S5 = T1 · T2 ,

S6 = 1 .

(49)

In other words, the linear combinations of the di↵erent structures in each line of (45) are
broken up in their substructures. With this generalization, we obtain the mappings

S1 ! 8Nc S1 + 2Nc S2 + 8S4 + 32C1C2 S6 ,

S2 ! 4Nc S2 ,

S3 ! 4Nc S3 ,

S4 ! 8S1 + 8Nc S4 ,

S5 ! 4Nc S5 ,

S6 ! 0 .

(50)

Therefore, the basis {Si} closes under repeated application of �c.
At this point, we obtain the final result

Crn = �256⇡2 (4Nc)
n�r

"
M+2X

j=3

Jj

4X

i=1

c(r)i

⌦
H2!M O

(j)
i

↵
� J12

6X

i=1

d(r)i

⌦
H2!M Si

↵
#
, (51)

where the basis operators have been defined in (40) and (49). It follows from (21) that the

coe�cients d(r)i vanish for r = 0. We find that these coe�cients obey the recurrence relations

d(s+1)
1 = 2Nc c

(s)
1 + 4c(s)3 + 8Nc d

(s)
1 + 8d(s)4 ,

d(s+1)
2 = Nc c

(s)
1 + 2Nc d

(s)
1 + 4Nc d

(s)
2 ,

d(s+1)
3 = 2Nc c

(s)
1 + 4Nc d

(s)
3 ,

d(s+1)
4 = 4c(s)1 + 2Nc c

(s)
3 + 8d(s)1 + 8Nc d

(s)
4 ,

d(s+1)
5 = 4 (C1 + C2)

h
4c(s)1 +Nc c

(s)
3 �Nc c

(s)
4

i
� 2Nc (N2

c + 8)

3
c(s)1 � 4N2

c c
(s)
3 + 4Nc d

(s)
5 ,

d(s+1)
6 = 8C1C2

h
2c(s)1 �Nc c

(s)
4 + 4d(s)1

i
.

(52)
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Basis of color structures:

where
F (6)
abcd = �fBbefCce F

(4)
aBCd . (32)

This would seem to generate increasingly complicated tensor structures, but using the explicit
form of F (4)

abcd in (27) we find that this is, in fact, not the case. Instead, we obtain

F (6)
abcd = F (2)

abcd �Nc �ad �bc �
N2

c

8
dadedbce . (33)

To arrive at this result, we have defined the matrices

(Da)bc = dabc (34)

and used the trace relation [7]

Tr
�
F aF bDc

�
=

Nc

2
dabc . (35)

Generalizing relation (33) to higher orders leads to

F (4+2n)
abcd = F (2n)

abcd + (�Nc)
n �ad �bc �

1

2

✓
Nc

2

◆n+1

dadedbce (36)

for all n 2 N. It follows that any symbol F (2n)
abcd for n � 3 can be reduced to the two symbols

in (27) plus terms proportional to �ad �bc and dadedbce. In other words, only four color tensors
are generated by successive applications of �c, namely

fabefcde , dadedbce , �ab �cd , �ad �bc . (37)

There is no need to symmetrize the first and the third structure in the index pair (b, c), because
the color trace ⌦

H
�
T

a
2 {T b

1 ,T
c
1 }T d

j � (1 $ 2)
�↵

(38)

with which these structures are contracted already has this symmetry.
At this point, we arrive at the result

Crn = �256⇡2 (4Nc)
n�r

"
M+2X

j=3

Jj

4X

i=1

c(r)i

⌦
H2!M O

(j)
i

↵
+ terms proportional to J12

#
, (39)

where the basis operators are defined as

O
(j)
1 = fabefcde T

a
2 {T b

1 ,T
c
1 }T d

j � (1 $ 2) ,

O
(j)
2 = dadedbce T

a
2 {T b

1 ,T
c
1 }T d

j � (1 $ 2) ,

O
(j)
3 = T

a
2 {T a

1 ,T
b
1 }T b

j � (1 $ 2) ,

O
(j)
4 = 2C1 T2 · Tj � 2C2 T1 · Tj .

(40)
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S1 ! 8Nc S1 + 2Nc S2 + 8S4 + 32C1C2 S6 ,

S2 ! 4Nc S2 ,

S3 ! 4Nc S3 ,

S4 ! 8S1 + 8Nc S4 ,

S5 ! 4Nc S5 ,

S6 ! 0 .

(50)

Therefore, the basis {Si} closes under repeated application of �c.
At this point, we obtain the final result

Crn = �256⇡2 (4Nc)
n�r

"
M+2X

j=3

Jj

4X

i=1

c(r)i

⌦
H2!M O

(j)
i

↵
� J12

6X

i=1

d(r)i

⌦
H2!M Si

↵
#
, (51)

where the basis operators have been defined in (40) and (49). It follows from (21) that the

coe�cients d(r)i vanish for r = 0. We find that these coe�cients obey the recurrence relations

d(s+1)
1 = 2Nc c

(s)
1 + 4c(s)3 + 8Nc d

(s)
1 + 8d(s)4 ,

d(s+1)
2 = Nc c

(s)
1 + 2Nc d

(s)
1 + 4Nc d

(s)
2 ,

d(s+1)
3 = 2Nc c

(s)
1 + 4Nc d

(s)
3 ,

d(s+1)
4 = 4c(s)1 + 2Nc c

(s)
3 + 8d(s)1 + 8Nc d

(s)
4 ,

d(s+1)
5 = 4 (C1 + C2)

h
4c(s)1 +Nc c

(s)
3 �Nc c

(s)
4

i
� 2Nc (N2

c + 8)

3
c(s)1 � 4N2

c c
(s)
3 + 4Nc d

(s)
5 ,

d(s+1)
6 = 8C1C2

h
2c(s)1 �Nc c

(s)
4 + 4d(s)1

i
.

(52)
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linearly independent color structures must be generalized to

S1 = fabefcde {T b
1 ,T

c
1 } {T a

2 ,T
d
2 } ,

S2 = dadedbce {T b
1 ,T

c
1 } {T a

2 ,T
d
2 } ,

S3 = dadedbce
h
T

a
2

�
T

b
1 T

c
1 T

d
1

�
+
+ (1 $ 2)

i
,

S4 = {T a
1 ,T

b
1 } {T a

2 ,T
b
2 } ,

S5 = T1 · T2 ,

S6 = 1 .

(49)

In other words, the linear combinations of the di↵erent structures in each line of (45) are
broken up in their substructures. With this generalization, we obtain the mappings

S1 ! 8Nc S1 + 2Nc S2 + 8S4 + 32C1C2 S6 ,

S2 ! 4Nc S2 ,

S3 ! 4Nc S3 ,

S4 ! 8S1 + 8Nc S4 ,

S5 ! 4Nc S5 ,

S6 ! 0 .

(50)

Therefore, the basis {Si} closes under repeated application of �c.
At this point, we obtain the final result

Crn = �256⇡2 (4Nc)
n�r

"
M+2X

j=3

Jj

4X

i=1

c(r)i

⌦
H2!M O

(j)
i

↵
� J12

6X

i=1

d(r)i

⌦
H2!M Si

↵
#
, (51)

where the basis operators have been defined in (40) and (49). It follows from (21) that the

coe�cients d(r)i vanish for r = 0. We find that these coe�cients obey the recurrence relations

d(s+1)
1 = 2Nc c

(s)
1 + 4c(s)3 + 8Nc d

(s)
1 + 8d(s)4 ,

d(s+1)
2 = Nc c

(s)
1 + 2Nc d

(s)
1 + 4Nc d

(s)
2 ,

d(s+1)
3 = 2Nc c

(s)
1 + 4Nc d

(s)
3 ,

d(s+1)
4 = 4c(s)1 + 2Nc c

(s)
3 + 8d(s)1 + 8Nc d

(s)
4 ,

d(s+1)
5 = 4 (C1 + C2)

h
4c(s)1 +Nc c

(s)
3 �Nc c

(s)
4

i
� 2Nc (N2

c + 8)

3
c(s)1 � 4N2

c c
(s)
3 + 4Nc d

(s)
5 ,

d(s+1)
6 = 8C1C2

h
2c(s)1 �Nc c

(s)
4 + 4d(s)1

i
.

(52)
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Coefficient functions:

From our result (21), it follows that for the special case where r = 0 we have

c(0)i = �i1 . (41)

Applying some number s insertions of �c we generate the right-hand side of (39) with co-

e�cients c(s)i . (We also generate terms proportional to J12, which will be discussed below.)
Applying �c one more time, the four structures change to

O
(j)
1 ! 6Nc O

(j)
1 +Nc O

(j)
2 + 4O(j)

3 + 4O(j)
4 ,

O
(j)
2 ! 4Nc O

(j)
2 ,

O
(j)
3 ! 4O(j)

1 + 6Nc O
(j)
3 ,

O
(j)
4 ! 2Nc O

(j)
4 .

(42)

The first relation follows from (30), and the remaining relations are readily derived by repeating
the derivation of (23) from (21) after replacing the overall color tensor fabefcde with dadedbce,
�ab �cd, and �ad �bc, respectively, making use of the trace relations in (26) and (35). The above
replacement rules lead to the recurrence relations

c(s+1)
1 = 6Nc c

(s)
1 + 4c(s)3 ,

c(s+1)
2 = Nc c

(s)
1 + 4Nc c

(s)
2 ,

c(s+1)
3 = 4c(s)1 + 6Nc c

(s)
3 ,

c(s+1)
4 = 4c(s)1 + 2Nc c

(s)
4 .

(43)

Solving this set of equations with the initial conditions in (41), we find

c(r)1 = 2r�1
⇥
(3Nc + 2)r + (3Nc � 2)r

⇤
,

c(r)2 = 2r�2Nc

"
(3Nc + 2)r

Nc + 2
+

(3Nc � 2)r

Nc � 2
� (2Nc)

r+1

N2
c � 4

#
,

c(r)3 = 2r�1
⇥
(3Nc + 2)r � (3Nc � 2)r

⇤
,

c(r)4 = 2r�1


(3Nc + 2)r

Nc + 1
+

(3Nc � 2)r

Nc � 1
� 2N r+1

c

N2
c � 1

�
.

(44)
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Taking into account the expressions for the coe�cients c(s)i obtained in (44), we find that the
solutions to these relations are

d(r)1 = 23r�1
⇥
(Nc + 1)r + (Nc � 1)r

⇤
� 2r�1

⇥
(3Nc + 2)r + (3Nc � 2)r

⇤
,

d(r)2 = 23r�2Nc


(Nc + 1)r

Nc + 2
+

(Nc � 1)r

Nc � 2

�
� 2r�2Nc


(3Nc + 2)r

Nc + 2
+

(3Nc � 2)r

Nc � 2

�
,

d(r)3 = 2r�1Nc

"
(3Nc + 2)r

Nc + 2
+

(3Nc � 2)r

Nc � 2
� (2Nc)

r+1

N2
c � 4

#
,

d(r)4 = 23r�1
⇥
(Nc + 1)r � (Nc � 1)r

⇤
� 2r�1

⇥
(3Nc + 2)r � (3Nc � 2)r

⇤
,

d(r)5 = 2r (C1 + C2)


Nc + 2

Nc + 1
(3Nc + 2)r � Nc � 2

Nc � 1
(3Nc � 2)r � 2N r+1

c

N2
c � 1

�

� 2r�1Nc

3

⇥
(Nc + 4) (3Nc + 2)r + (Nc � 4) (3Nc � 2)r � (2Nc)

r+1 ⇤ ,

d(r)6 = 23r+1C1C2

⇥
(Nc + 1)r�1 + (Nc � 1)r�1 ⇤ (1� �r0)

� 2r+1C1C2


(3Nc + 2)r

Nc + 1
+

(3Nc � 2)r

Nc � 1
� 2N r+1

c

N2
c � 1

�
.

(53)

Relations (51), (44) and (53) represent our final solution for the color structures Crn.

2.4 Initial-state partons in the fundamental representation

The general result (51) simplifies drastically if particles 1 and 2 both transform in the (anti-
)fundamental representation of SU(Nc), because we can then use the relation (for i = 1, 2)

{T a
i ,T

b
i } =

1

Nc
�ab + �i dabc T

c
i , (54)

where �i = 1 for an initial-state anti-quark and �i = �1 for an initial-state quark. [Shouldn’t
this be the other way around?] In this case, the basis operators involving symmetric products
of two or three color generators can be simplified. We obtain

O
(j)
1 = (T1 � T2) · Tj �

Nc

2
(�1 � �2) dabc T

a
1 T

b
2 T

c
j ,

O
(j)
2 =

N2
c � 4

Nc
(�1 � �2) dabc T

a
1 T

b
2 T

c
j ,

O
(j)
3 = � 1

Nc
(T1 � T2) · Tj + (�1 � �2) dabc T

a
1 T

b
2 T

c
j ,

O
(j)
4 = �N2

c � 1

Nc
(T1 � T2) · Tj ,

(55)
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All-order summation of large logarithmic corrections, including the 
superleading logarithms!  

 Example: Summation of superleading logarithms for   
scattering in color-singlet channel:
⇒ qq → qq

8

RESUMMATION OF SUPERLEADING LOGARITHMS
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TOWARD AN EFFECTIVE FIELD THEORY FOR LHC JETS
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Phenomenological impact in forward gluon-gluon scattering:

 necessary to include eight terms (  10 loops) to obtain reliable results;  
rriiresummation formalism is essential!
⇒ ≤

9

RESUMMATION OF SUPERLEADING LOGARITHMS
Neubert Part B2 EFT4jets
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n = 0
<latexit sha1_base64="m3J1QgIkB+fZXkDtzj3V4KL2K/4=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgaZlNVmMOQsCLx4jmAUkIs5NJMmR2dpmZFcKST/DiQRGvfpE3/8bJQ1DRgoaiqpvuriAWXBuMP5zMyura+kZ2M7e1vbO7l98/aOgoUZTVaSQi1QqIZoJLVjfcCNaKFSNhIFgzGF/N/OY9U5pH8s5MYtYNyVDyAafEWOlWXuJevoDdkn9WqWCEXd/DfrloyTmu+H4JeS6eowBL1Hr5904/oknIpKGCaN32cGy6KVGGU8GmuU6iWUzomAxZ21JJQqa76fzUKTqxSh8NImVLGjRXv0+kJNR6Ega2MyRmpH97M/Evr52YwUU35TJODJN0sWiQCGQiNPsb9bli1IiJJYQqbm9FdEQUocamk7MhfH2K/ieNouuV3OKNX6j6yziycATHcAoelKEK11CDOlAYwgM8wbMjnEfnxXldtGac5cwh/IDz9gkvl42z</latexit>

n = 2
<latexit sha1_base64="HnrXa+rV/7rk6tqyBMsECbkWJSE=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgadlNNsl6EAJePEY0D0iWMDuZJENmZ5eZWSGEfIIXD4p49Yu8+TdOHoKKFjQUVd10d4UJZ0o7zoeVWVvf2NzKbud2dvf2D/KHR00Vp5LQBol5LNshVpQzQRuaaU7biaQ4CjltheOrud+6p1KxWNzpSUKDCA8FGzCCtZFuxWWxly84tuf7FfcCOXal5Fe8siFu1Sv7LnJtZ4ECrFDv5d+7/ZikERWacKxUx3USHUyx1IxwOst1U0UTTMZ4SDuGChxRFUwXp87QmVH6aBBLU0Kjhfp9YoojpSZRaDojrEfqtzcX//I6qR74wZSJJNVUkOWiQcqRjtH8b9RnkhLNJ4ZgIpm5FZERlphok07OhPD1KfqfNIu2W7KLN16h5q3iyMIJnMI5uFCFGlxDHRpAYAgP8ATPFrcerRfrddmasVYzx/AD1tsnT8qNyQ==</latexit>

n = 3
<latexit sha1_base64="wFSYoIcDdkHZhzeRs5txNJIQXkI=">AAAB6nicdVDLSsNAFL3xWeur6tLNYBFchSStNC6EghuXFe0D2lAm00k7dDIJMxOhhH6CGxeKuPWL3Pk3Th+Cih64cDjnXu69J0w5U9pxPqyV1bX1jc3CVnF7Z3dvv3Rw2FJJJgltkoQnshNiRTkTtKmZ5rSTSorjkNN2OL6a+e17KhVLxJ2epDSI8VCwiBGsjXQrLiv9Utmx/XPPq7nIsSvuRc31DHGrvu94yLWdOcqwRKNfeu8NEpLFVGjCsVJd10l1kGOpGeF0WuxliqaYjPGQdg0VOKYqyOenTtGpUQYoSqQpodFc/T6R41ipSRyazhjrkfrtzcS/vG6mIz/ImUgzTQVZLIoyjnSCZn+jAZOUaD4xBBPJzK2IjLDERJt0iiaEr0/R/6Tl2W7F9m6q5Xp1GUcBjuEEzsCFGtThGhrQBAJDeIAneLa49Wi9WK+L1hVrOXMEP2C9fQIv042z</latexit>

↵s = ↵s(Q0)
<latexit sha1_base64="oXCy/s2pYrl0P07uVcI90SnKzIU=">AAAB/3icbZDLSsNAFIZPvNZ6iwpu3AwWoW5KUgu6EQpuXLZgL9CGMJlO26GTSZiZCCV24au4caGIW1/DnW/jtI2grT8MfPznHM6ZP4g5U9pxvqyV1bX1jc3cVn57Z3dv3z44bKookYQ2SMQj2Q6wopwJ2tBMc9qOJcVhwGkrGN1M6617KhWLxJ0ex9QL8UCwPiNYG8u3j7uYx0Psq+sfKNZ959y3C07JmQktg5tBATLVfPuz24tIElKhCcdKdVwn1l6KpWaE00m+mygaYzLCA9oxKHBIlZfO7p+gM+P0UD+S5gmNZu7viRSHSo3DwHSGWA/VYm1q/lfrJLp/5aVMxImmgswX9ROOdISmYaAek5RoPjaAiWTmVkSGWGKiTWR5E4K7+OVlaJZL7kWpXK8UqpUsjhycwCkUwYVLqMIt1KABBB7gCV7g1Xq0nq03633eumJlM0fwR9bHN+gElVM=</latexit>

n = 4
<latexit sha1_base64="PBhPl850ZyqYk02uJ20H/8WPvWI=">AAAB6nicdVDLSgMxFM34rPVVdekmWARXwzwy2o1QcOOyon1AO5RMmmlDM5khyQhl6Ce4caGIW7/InX9j+hBU9MCFwzn3cu89UcaZ0o7zYa2srq1vbJa2yts7u3v7lYPDlkpzSWiTpDyVnQgrypmgTc00p51MUpxEnLaj8dXMb99TqVgq7vQko2GCh4LFjGBtpFtxifqVqmMjDwWeCx3br/kuQoYEAQr8c+jazhxVsESjX3nvDVKSJ1RowrFSXdfJdFhgqRnhdFru5YpmmIzxkHYNFTihKizmp07hqVEGME6lKaHhXP0+UeBEqUkSmc4E65H67c3Ev7xuruNaWDCR5ZoKslgU5xzqFM7+hgMmKdF8YggmkplbIRlhiYk26ZRNCF+fwv9Jy7Nd3/ZuULWOlnGUwDE4AWfABRegDq5BAzQBAUPwAJ7As8WtR+vFel20rljLmSPwA9bbJy38jbI=</latexit>

p

ŝ = 1TeV , �Y = 2
<latexit sha1_base64="ZPnjZDIPYTpsCethNbR0UlR9q9Y=">AAACFnicbVDLSgNBEJz1GdfXqkcvg0HwEMNuDOglENCDxwgmKtkQZicdMzj7cKZXDEvyE178FS8eFPEq3vwbJzEHXwUNRVU33V1BIoVG1/2wpqZnZufmcwv24tLyyqqztt7Qcao41HksY3UeMA1SRFBHgRLOEwUsDCScBVeHI//sBpQWcXSK/QRaIbuMRFdwhkZqO7u+vlaY+T2GVA8qnl/wEW4xO4XGgPqFgj0c2v4RSGT0olJqO3m36I5B/xJvQvJkglrbefc7MU9DiJBLpnXTcxNsZUyh4BIGtp9qSBi/YpfQNDRiIehWNn5rQLeN0qHdWJmKkI7V7xMZC7Xuh4HpDBn29G9vJP7nNVPsHrQyESUpQsS/FnVTSTGmo4xoRyjgKPuGMK6EuZXyHlOMo0nSNiF4v1/+SxqlordXLJ2U89XyJI4c2SRbZId4ZJ9UyTGpkTrh5I48kCfybN1bj9aL9frVOmVNZjbID1hvn+p8nd0=</latexit>

gg ! gg
<latexit sha1_base64="VCGhFBjjw9cS6CcNy/HmcYsLpos=">AAAB73icbVDLSgMxFL1TX7W+qi7dBIvgqszUgi4LblxWsA9oh5JJb6ehmcyYZIQy9CfcuFDErb/jzr8xbWehrQcCh3PuJfecIBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9FQ8hFn1FipG4Z9E5MwHJQrbtVdgKwTLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJD7FkqaYTazxb3zsiFVYZkFCv7pCEL9fdGRiOtp1FgJyNqxnrVm4v/eb3UjG78jMskNSjZ8qNRKojNOA9PhlwhM2JqCWWK21sJG1NFmbEVlWwJ3mrkddKuVb2rau2+XmnU8zqKcAbncAkeXEMD7qAJLWAg4Ble4c15dF6cd+djOVpw8p1T+APn8we/WY+7</latexit>

n = 5
<latexit sha1_base64="vpDiL7BK9UpSaHPT/y390kyePks=">AAAB6nicdVBNS8NAEJ3Ur1q/qh69LBbBU0iafuhBKHjxWNHWQhvKZrtpl242YXcjlNKf4MWDIl79Rd78N27TCir6YODx3gwz84KEM6Ud58PKrayurW/kNwtb2zu7e8X9g7aKU0loi8Q8lp0AK8qZoC3NNKedRFIcBZzeBePLuX93T6VisbjVk4T6ER4KFjKCtZFuxEW1Xyw5dq3u1CoecmyvVvcy4rrn9XIVubaToQRLNPvF994gJmlEhSYcK9V1nUT7Uyw1I5zOCr1U0QSTMR7SrqECR1T50+zUGToxygCFsTQlNMrU7xNTHCk1iQLTGWE9Ur+9ufiX1011eOZPmUhSTQVZLApTjnSM5n+jAZOUaD4xBBPJzK2IjLDERJt0CiaEr0/R/6Rdtl3PLl9XSo3KMo48HMExnIILdWjAFTShBQSG8ABP8Gxx69F6sV4XrTlrOXMIP2C9fQI7b427</latexit>

Figure 3: Individual contributions of the terms of order ↵
n+3
s L

2n+3 to the series of SLLs in (22), in units of
the Born cross section (corresponding to the lowest order), for forward qq ! qq scattering (left) and gg ! gg

scattering (right) at partonic center-of-mass energy of 1TeV and a rapidity gap �Y = 2 between the jets. We
use ↵s = ↵s(Q0) for the QCD coupling.

where w = Nc↵s
4⇡ L

2 encodes the double-logarithmic dependence, and w⇡ = Nc↵s
4⇡ (2⇡)2 is a “⇡

2-

enhanced” term containing the two Coulomb phases. For
p

ŝ = 1 TeV and Q0 = 25 GeV, and setting
↵s = ↵s(Q0), both w ⇡ 1.9 and w⇡ ⇡ 1.4 are of O(1), and w⇡w 2F2

�
1, 1; 2,

5
2 ; �w

�
⇡ 1.9. Therefore,

the numerical e↵ect of the SLLs is of the same order as a logarithmically enhanced, 1/Nc-suppressed
one-loop contribution to the cross section. In the asymptotic limit, one finds

w 2F2
�
1, 1; 2,

5
2 ; �w

�
!

3

2
[ln(4w) + �E � 2] for

Q
2

Q
2
0

! 1 . (26)

The left panel of Figure 3 illustrates the behavior of the first few terms in the series of SLLs for
the case of qq ! qq scattering in the color-octet channel, which is more relevant because in QCD the
lowest-order diagram for quark-quark scattering involves a t-channel gluon exchange. The size of the
corrections is of comparable magnitude with the singlet case. The colored curves show the individual
contributions of the terms of order ↵

n+3
s L

2n+3 to the series in (22), in units of the Born cross section,
for the case of forward scattering at

p
ŝ = 1TeV and a rapidity gap �Y = 2 between the jets. The

shown contributions correspond to logarithmically enhanced e↵ects arising at 3-loop to 7-loop order
in perturbation theory. We use ↵s = ↵s(Q0) for the QCD coupling, as done in [24] (see the comments
below). Note the alternating behavior of the series, which according to (22) is a general feature of the
series of SLLs. It is only because of this property that the sum of all contributions (n = 0, 1, . . . , 1)
adds up to a moderate correction to the cross section, which varies between 17% and 9% for Q0

between 20 and 35 GeV. The largest contribution comes from the term with n = 0, which is not a SLL
in the strict sense of the word, as this e↵ect scales like ↵

3
sL

3 (=mL)2. Nevertheless, this contribution
has the same physical origin and is not captured by conventional parton showers (see e.g. [63]), and
it is important to include it for consistency.

I. Resummation of SLLs for arbitrary jet processes, including subleading e↵ects

Quark-initiated processes are relatively simple, because in the fundamental representation of SU(Nc)
arbitrary products of color generators can be expressed as linear combinations of the unit matrix and
the generators themselves:

{T
a

i ,T
b

i } =
1

Nc

�ab 1 + �i dabc T
c

i , (27)

where �i = ±1 was defined after (23). It is of paramount importance for many important LHC
processes to generalize the approach to processes containing gluons in the initial state. This necessarily
leads to a vastly more complicated color algebra, because in the adjoint representation of SU(Nc)
symmetrized products of color generators cannot be simplified in a straightforward way. It is not at
all obvious that a closed expression for the traces Crn can be found in this case, but my calculations
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qq ! qq
<latexit sha1_base64="JplbPc4gmVyO4h31y87UW1nkS3g=">AAAB73icbVDLSgMxFL3js9ZX1aWbYBFclZla0GXBjcsK9gHtUDJp2oZmMjPJHaEM/Qk3LhRx6++4829M21lo64HA4Zx7yT0niKUw6Lrfzsbm1vbObmGvuH9weHRcOjltmSjVjDdZJCPdCajhUijeRIGSd2LNaRhI3g4md3O//cS1EZF6xGnM/ZCOlBgKRtFKnSTpYUSSpF8quxV3AbJOvJyUIUejX/rqDSKWhlwhk9SYrufG6GdUo2CSz4q91PCYsgkd8a6liobc+Nni3hm5tMqADCNtn0KyUH9vZDQ0ZhoGdjKkODar3lz8z+umOLz1M6HiFLliy4+GqSQ24zw8GQjNGcqpJZRpYW8lbEw1ZWgrKtoSvNXI66RVrXjXlepDrVyv5XUU4Bwu4Ao8uIE63EMDmsBAwjO8wpuTOC/Ou/OxHN1w8p0z+APn8wf8hY/j</latexit>

p

ŝ = 1TeV , �Y = 2
<latexit sha1_base64="ZPnjZDIPYTpsCethNbR0UlR9q9Y=">AAACFnicbVDLSgNBEJz1GdfXqkcvg0HwEMNuDOglENCDxwgmKtkQZicdMzj7cKZXDEvyE178FS8eFPEq3vwbJzEHXwUNRVU33V1BIoVG1/2wpqZnZufmcwv24tLyyqqztt7Qcao41HksY3UeMA1SRFBHgRLOEwUsDCScBVeHI//sBpQWcXSK/QRaIbuMRFdwhkZqO7u+vlaY+T2GVA8qnl/wEW4xO4XGgPqFgj0c2v4RSGT0olJqO3m36I5B/xJvQvJkglrbefc7MU9DiJBLpnXTcxNsZUyh4BIGtp9qSBi/YpfQNDRiIehWNn5rQLeN0qHdWJmKkI7V7xMZC7Xuh4HpDBn29G9vJP7nNVPsHrQyESUpQsS/FnVTSTGmo4xoRyjgKPuGMK6EuZXyHlOMo0nSNiF4v1/+SxqlordXLJ2U89XyJI4c2SRbZId4ZJ9UyTGpkTrh5I48kCfybN1bj9aL9frVOmVNZjbID1hvn+p8nd0=</latexit>

p

ŝ = 1TeV , �Y = 2
<latexit sha1_base64="ZPnjZDIPYTpsCethNbR0UlR9q9Y=">AAACFnicbVDLSgNBEJz1GdfXqkcvg0HwEMNuDOglENCDxwgmKtkQZicdMzj7cKZXDEvyE178FS8eFPEq3vwbJzEHXwUNRVU33V1BIoVG1/2wpqZnZufmcwv24tLyyqqztt7Qcao41HksY3UeMA1SRFBHgRLOEwUsDCScBVeHI//sBpQWcXSK/QRaIbuMRFdwhkZqO7u+vlaY+T2GVA8qnl/wEW4xO4XGgPqFgj0c2v4RSGT0olJqO3m36I5B/xJvQvJkglrbefc7MU9DiJBLpnXTcxNsZUyh4BIGtp9qSBi/YpfQNDRiIehWNn5rQLeN0qHdWJmKkI7V7xMZC7Xuh4HpDBn29G9vJP7nNVPsHrQyESUpQsS/FnVTSTGmo4xoRyjgKPuGMK6EuZXyHlOMo0nSNiF4v1/+SxqlordXLJ2U89XyJI4c2SRbZId4ZJ9UyTGpkTrh5I48kCfybN1bj9aL9frVOmVNZjbID1hvn+p8nd0=</latexit>

gg ! gg
<latexit sha1_base64="VCGhFBjjw9cS6CcNy/HmcYsLpos=">AAAB73icbVDLSgMxFL1TX7W+qi7dBIvgqszUgi4LblxWsA9oh5JJb6ehmcyYZIQy9CfcuFDErb/jzr8xbWehrQcCh3PuJfecIBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9FQ8hFn1FipG4Z9E5MwHJQrbtVdgKwTLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJD7FkqaYTazxb3zsiFVYZkFCv7pCEL9fdGRiOtp1FgJyNqxnrVm4v/eb3UjG78jMskNSjZ8qNRKojNOA9PhlwhM2JqCWWK21sJG1NFmbEVlWwJ3mrkddKuVb2rau2+XmnU8zqKcAbncAkeXEMD7qAJLWAg4Ble4c15dF6cd+djOVpw8p1T+APn8we/WY+7</latexit>

↵s(Q0)
<latexit sha1_base64="A5iM9Hyb6qNZx3ememHaN7B/v5w=">AAAB9HicdVDLSsNAFJ3UV62vqks3g0WomzBpE9plwY3LFuwD2hAm00k7dPJwZlIood/hxoUibv0Yd/6Nk7aCih64cDjnXu69x084kwqhD6Owtb2zu1fcLx0cHh2flE/PejJOBaFdEvNYDHwsKWcR7SqmOB0kguLQ57Tvz25yvz+nQrI4ulOLhLohnkQsYAQrLbkjzJMp9mS146Frr1xBZt1yHLsJkWmjWsPJieOgerMGLROtUAEbtL3y+2gckzSkkSIcSzm0UKLcDAvFCKfL0iiVNMFkhid0qGmEQyrdbHX0El5pZQyDWOiKFFyp3ycyHEq5CH3dGWI1lb+9XPzLG6YqaLoZi5JU0YisFwUphyqGeQJwzAQlii80wUQwfSskUywwUTqnkg7h61P4P+nVTKtu1jp2pWVv4iiCC3AJqsACDdACt6ANuoCAe/AAnsCzMTcejRfjdd1aMDYz5+AHjLdPHEeRog==</latexit>

↵s(Q)
<latexit sha1_base64="U8jEIODmXbqJZ3b7q27tPKNDtOc=">AAAB8nicdVDLSsNAFJ34rPVVdelmsAh1E5KaknZXcOOyBfuANJTJdNIOncyEmYlQQj/DjQtF3Po17vwbpw9BRQ9cOJxzL/feE6WMKu04H9bG5tb2zm5hr7h/cHh0XDo57SqRSUw6WDAh+xFShFFOOppqRvqpJCiJGOlF05uF37snUlHB7/QsJWGCxpzGFCNtpGCAWDpBQ1VpXw1LZcf2667XcKBj17xGveYb4vqu4dC1nSXKYI3WsPQ+GAmcJYRrzJBSgeukOsyR1BQzMi8OMkVShKdoTAJDOUqICvPlyXN4aZQRjIU0xTVcqt8ncpQoNUsi05kgPVG/vYX4lxdkOq6HOeVppgnHq0VxxqAWcPE/HFFJsGYzQxCW1NwK8QRJhLVJqWhC+PoU/k+6Vdu9tqttr9z01nEUwDm4ABXgAh80wS1ogQ7AQIAH8ASeLW09Wi/W66p1w1rPnIEfsN4+AQzTkRI=</latexit>

↵s(
�

QQ0)
<latexit sha1_base64="16QROGqLC9ROUulaUFQ0iBDwgcY=">AAAB/3icdVDLSsNAFJ34rPUVFdy4GSxC3YQ0qWmXBTcuW7APaEKYTCft0MnDmYlQYhf+ihsXirj1N9z5N04fgooeuHA4517uvSdIGRXSND+0ldW19Y3NwlZxe2d3b18/OOyIJOOYtHHCEt4LkCCMxqQtqWSkl3KCooCRbjC+nPndW8IFTeJrOUmJF6FhTEOKkVSSrx+7iKUj5IuyK264zFuw5ZvTc18vmUbduqiaNjQN27Ycp66I5dhOrQYrhjlHCSzR9PV3d5DgLCKxxAwJ0a+YqfRyxCXFjEyLbiZIivAYDUlf0RhFRHj5/P4pPFPKAIYJVxVLOFe/T+QoEmISBaozQnIkfnsz8S+vn8mw7uU0TjNJYrxYFGYMygTOwoADygmWbKIIwpyqWyEeIY6wVJEVVQhfn8L/SccyKrZhtaqlRnUZRwGcgFNQBhVQAw1wBZqgDTC4Aw/gCTxr99qj9qK9LlpXtOXMEfgB7e0TijuVwg==</latexit>

↵s(Q0)
<latexit sha1_base64="A5iM9Hyb6qNZx3ememHaN7B/v5w=">AAAB9HicdVDLSsNAFJ3UV62vqks3g0WomzBpE9plwY3LFuwD2hAm00k7dPJwZlIood/hxoUibv0Yd/6Nk7aCih64cDjnXu69x084kwqhD6Owtb2zu1fcLx0cHh2flE/PejJOBaFdEvNYDHwsKWcR7SqmOB0kguLQ57Tvz25yvz+nQrI4ulOLhLohnkQsYAQrLbkjzJMp9mS146Frr1xBZt1yHLsJkWmjWsPJieOgerMGLROtUAEbtL3y+2gckzSkkSIcSzm0UKLcDAvFCKfL0iiVNMFkhid0qGmEQyrdbHX0El5pZQyDWOiKFFyp3ycyHEq5CH3dGWI1lb+9XPzLG6YqaLoZi5JU0YisFwUphyqGeQJwzAQlii80wUQwfSskUywwUTqnkg7h61P4P+nVTKtu1jp2pWVv4iiCC3AJqsACDdACt6ANuoCAe/AAnsCzMTcejRfjdd1aMDYz5+AHjLdPHEeRog==</latexit>

↵s(Q)
<latexit sha1_base64="U8jEIODmXbqJZ3b7q27tPKNDtOc=">AAAB8nicdVDLSsNAFJ34rPVVdelmsAh1E5KaknZXcOOyBfuANJTJdNIOncyEmYlQQj/DjQtF3Po17vwbpw9BRQ9cOJxzL/feE6WMKu04H9bG5tb2zm5hr7h/cHh0XDo57SqRSUw6WDAh+xFShFFOOppqRvqpJCiJGOlF05uF37snUlHB7/QsJWGCxpzGFCNtpGCAWDpBQ1VpXw1LZcf2667XcKBj17xGveYb4vqu4dC1nSXKYI3WsPQ+GAmcJYRrzJBSgeukOsyR1BQzMi8OMkVShKdoTAJDOUqICvPlyXN4aZQRjIU0xTVcqt8ncpQoNUsi05kgPVG/vYX4lxdkOq6HOeVppgnHq0VxxqAWcPE/HFFJsGYzQxCW1NwK8QRJhLVJqWhC+PoU/k+6Vdu9tqttr9z01nEUwDm4ABXgAh80wS1ogQ7AQIAH8ASeLW09Wi/W66p1w1rPnIEfsN4+AQzTkRI=</latexit>

↵s(
�

QQ0)
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Figure 4: Resummed contributions of SLLs in forward qq ! qq (left) and gg ! gg (right) scattering for three
di↵erent scale choices for the QCD coupling ↵s.

the scale integrals, it is possible to account for other higher-order contributions by using the known
expressions for the two-loop cusp anomalous dimension and �-function. Further contributions arising
at order ↵

n+3
s L

2n+2 involve color traces analogous to those in (20), in which one includes one less
insertion of �c but a second insertion of �. I expect that it will be possible to evaluate these traces
in closed form. If this is not the case, one can truncate the sum over n in (22) at a finite order and
perform the relevant color traces using the ColorMath tool [76].

The SLLs arise from the color traces (20) with two insertions of the Glauber operator V
G. Since

for realistic choices of the parameters Q and Q0 the quantities w = Nc↵s
4⇡ L

2 and w⇡ = Nc↵s
4⇡ (2⇡)2 are

of similar magnitude, it is natural to ask how important the contributions from color traces involving
four, six or more Glauber insertions are. These traces have the structure

Cr1...r2kn =
⌦
H2+nJ (�c)r1 V G (�c)r2 V G

. . . (�c)r2k V G � ⌦ 1
↵
, (30)

where
P2k

i=1 ri = n, and they contribute at order ↵
n+2k+1
s L

2n+2k+1(2⇡)2k / ↵s w
n+k

w
k
⇡ in perturbation

theory. The SLLs are recovered in the case where k = 1. Including also the terms with k > 1 generates
a Glauber series of subleading logarithmic e↵ects. I believe it should be possible to calculate some of
these higher-order e↵ects analytically by generalizing the methods developed in [24] (milestone I.3).

As a result of these improvements, I expect to obtain all-order predictions for the contributions of
the SLLs to arbitrary LHC jet cross sections with vastly improved perturbative stability (compared
with the bands shown in Figure 4). Since there is no double counting between these e↵ects and any
state-of-the-art perturbative calculations of jet rates, even those improved using parton showers, the
e↵ects of the SLLs can be taken into account consistently by means of a multiplicative correction
factor to the di↵erential cross section, i.e.

d�(pp ! X+jets)
��
fixed order+PS

!

✓
1 +

d�SLL

d�Born

◆
d�(pp ! X+jets)

���
fixed order+PS

. (31)

This correction must be applied to the di↵erential cross sections, because in general the SLLs will be
sensitive to the kinematic dependence of the Born cross section (milestone I.4). Our estimates show
that the corrections from SLLs can be sizable (see Figure 4). Their e↵ects are not included in existing
calculations of jet cross sections, and the possibility of their existence is not reflected in the error
estimates for these calculations.

II. Systematic study of single-logarithmic corrections (including NGLs)

The factorization formula (10) provides a complete EFT description of non-global hadron-collider
observables, in which all logarithmically enhanced e↵ects can be calculated in a systematic way. Once
the SLLs have been calculated for in the way described above, one must still account for the remaining
single-logarithmic corrections. They start at one-loop order and are described by color traces with
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understood in a quantitative way?     
Can  a more general notion of 
factorization be established?
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2a. State-of-the-art and objectives

With the discovery of the Higgs boson in 2012, the Large Hadron Collider (LHC) at CERN has
revealed the mechanism underlying electroweak symmetry breaking, a key feature of the Standard
Model (SM) of elementary-particle physics. At the same time, the LHC should guide us to resolve
some of the pressing questions left unanswered by the SM. The existence of dark matter and the
abundance of matter over antimatter in the universe are among the phenomena that can only be
explained postulating the existence of “new physics” in the form of new particles and interactions.
In April 2022, the LHC has continued its high-luminosity run, 12 years after the first protons were
collided. In the absence of any direct discoveries of new physics, and in light of some intriguing indirect
hints for the existence of heavy new particles from precision measurements of the anomalous magnetic
moment of the muon [1] and some rare decay processes of B mesons [2], the question poses itself:
Which strategy should one take to fully exploit the discovery potential of the high-luminosity LHC?
I argue in this proposal that precision is the key! Indirect signals of new physics might be hiding
“right under our noses”, but we are limited in our ability to discover them due to present theoretical
uncertainties. In searches for new phenomena, the SM background processes must be controlled with
highest possible accuracy. Thus, we need to significantly improve our ability to calculate the cross
sections for important LHC processes, both in the SM and in extensions featuring new particles.

Scattering processes in which jets – highly collimated sets of energetic particles – are produced
are the most important class of observables studied in high-energy processes, because they closely
mirror the underlying hard-scattering event. They are thus well suited to study short-distance
physics and play an important role in the search for new phenomena. However, the rates for jet
production at hadron colliders are also among the most complicated observables to calculate the-
oretically. Traditionally, cross sections for hadron-collider processes are calculated using pertur-
bative expansions in powers of the strong coupling ↵s along with QCD factorization theorems ,
which relate the hadronic cross sections to partonic cross sections convoluted with parton distri-
bution functions. There has been impressive recent progress on the front of fixed-order perturbative
calculations, where an increasing number of inclusive observables have been computed at next-to-
next-to-next-to-leading order (NNNLO) of perturbation theory [3–16]. For exclusive (or non-global)
observables such as jet cross sections, in which a veto is imposed on radiation in a region away
from the jets, the state-of-the-art is NNLO, see e.g. [17]. Despite these advances, for non-global
observables we are still lacking an understanding of even the leading logarithmically enhanced cor-
rections in higher orders of perturbation theory. Starting from four-loop order, double-logarithmic
corrections arise – the super-leading logarithms (SLLs) [18] – whose structure is still largely unknown.

p

p

Figure 1: Diagrammatic representation of
two Glauber-gluon exchanges (red) between the
initial-state partons in a proton-proton collision.
Collinear gluons moving along the beam directions
are drawn in blue, soft gluons emitted into the gap
are shown in green.

One might think that these e↵ects are numerically
very small, because they only arise in higher orders,
but I argue that they can naturally be of the same or-
der as a one-loop correction. It is then imperative to
study these e↵ects in detail and add the corresponding
corrections to existing fixed-order calculations. The
SLLs are caused by a subtle quantum e↵ect: the ex-
change of two Coulomb gluons (or Glauber gluons) be-
tween the two initial-state partons in the scattering
process, see Figure 1. This leads to a breakdown of
color coherence, the fact the sum of soft-gluon emis-
sion o↵ two collinear partons has the same e↵ect as
a single soft emission o↵ the parent parton. Color
coherence, however, is the basis for proofs of QCD
factorization theorems, which underly the theoretical
calculation of all LHC cross sections. The physics that
gives rise to the SLLs therefore leads to a breaking of
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red: Coulomb gluons
blue: gluons along beams 
green: soft gluons between jets
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▸ What are the implications for LHC 
phenomenology? Some benchmark 
processes: , , 

, , …
pp → 2 jets pp → H/V + jets

pp → jet + ET pp → new particles/
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2a. State-of-the-art and objectives

With the discovery of the Higgs boson in 2012, the Large Hadron Collider (LHC) at CERN has
revealed the mechanism underlying electroweak symmetry breaking, a key feature of the Standard
Model (SM) of elementary-particle physics. At the same time, the LHC should guide us to resolve
some of the pressing questions left unanswered by the SM. The existence of dark matter and the
abundance of matter over antimatter in the universe are among the phenomena that can only be
explained postulating the existence of “new physics” in the form of new particles and interactions.
In April 2022, the LHC has continued its high-luminosity run, 12 years after the first protons were
collided. In the absence of any direct discoveries of new physics, and in light of some intriguing indirect
hints for the existence of heavy new particles from precision measurements of the anomalous magnetic
moment of the muon [1] and some rare decay processes of B mesons [2], the question poses itself:
Which strategy should one take to fully exploit the discovery potential of the high-luminosity LHC?
I argue in this proposal that precision is the key! Indirect signals of new physics might be hiding
“right under our noses”, but we are limited in our ability to discover them due to present theoretical
uncertainties. In searches for new phenomena, the SM background processes must be controlled with
highest possible accuracy. Thus, we need to significantly improve our ability to calculate the cross
sections for important LHC processes, both in the SM and in extensions featuring new particles.

Scattering processes in which jets – highly collimated sets of energetic particles – are produced
are the most important class of observables studied in high-energy processes, because they closely
mirror the underlying hard-scattering event. They are thus well suited to study short-distance
physics and play an important role in the search for new phenomena. However, the rates for jet
production at hadron colliders are also among the most complicated observables to calculate the-
oretically. Traditionally, cross sections for hadron-collider processes are calculated using pertur-
bative expansions in powers of the strong coupling ↵s along with QCD factorization theorems ,
which relate the hadronic cross sections to partonic cross sections convoluted with parton distri-
bution functions. There has been impressive recent progress on the front of fixed-order perturbative
calculations, where an increasing number of inclusive observables have been computed at next-to-
next-to-next-to-leading order (NNNLO) of perturbation theory [3–16]. For exclusive (or non-global)
observables such as jet cross sections, in which a veto is imposed on radiation in a region away
from the jets, the state-of-the-art is NNLO, see e.g. [17]. Despite these advances, for non-global
observables we are still lacking an understanding of even the leading logarithmically enhanced cor-
rections in higher orders of perturbation theory. Starting from four-loop order, double-logarithmic
corrections arise – the super-leading logarithms (SLLs) [18] – whose structure is still largely unknown.
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Figure 1: Diagrammatic representation of
two Glauber-gluon exchanges (red) between the
initial-state partons in a proton-proton collision.
Collinear gluons moving along the beam directions
are drawn in blue, soft gluons emitted into the gap
are shown in green.

One might think that these e↵ects are numerically
very small, because they only arise in higher orders,
but I argue that they can naturally be of the same or-
der as a one-loop correction. It is then imperative to
study these e↵ects in detail and add the corresponding
corrections to existing fixed-order calculations. The
SLLs are caused by a subtle quantum e↵ect: the ex-
change of two Coulomb gluons (or Glauber gluons) be-
tween the two initial-state partons in the scattering
process, see Figure 1. This leads to a breakdown of
color coherence, the fact the sum of soft-gluon emis-
sion o↵ two collinear partons has the same e↵ect as
a single soft emission o↵ the parent parton. Color
coherence, however, is the basis for proofs of QCD
factorization theorems, which underly the theoretical
calculation of all LHC cross sections. The physics that
gives rise to the SLLs therefore leads to a breaking of
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