

## MATTHIAS NEUBERT

MITP — JOHANNES GUTENBERG UNIVERSITY MAINZ — GERMANY

59TH INTERNATIONAL WINTER MEETING ON NUCLEAR PHYSICS BORMIO (ITALY), 23-27 JANUARY 2023

## TOWARD AN EFFECTIVE FIELD THEORY FOR LHC JETS

## STANDARD MODEL TESTS AND NEW PHYSICS SEARCHES


symmetrymagazine.org


Photo by CERN


Photo by CERN

- Origin of Dark Matter?
- Abundance of matter over antimatter?


## THEORY OF JET PROCESSES AT LHC



CERN Document Server, ATLAS-PHOTO-2018-022-6

## THEORY OF JET PROCESSES AT LHC



CERN Document Server, ATLAS-PHOTO-2018-022-6

## TOWARD AN EFFECTIVE FIELD THEORY FOR LHC JETS

## THEORY OF JET PROCESSES AT LHC


[Forshaw, Kyrieleis, Seymour 2006]
Loss of color coherence from initialstate Coulomb interactions
red: Coulomb gluons
blue: gluons emitted along beams
green: soft gluons between jets

$$
d \sigma_{p p \rightarrow f}(s)=\sum_{a, b=q, \bar{q}, g} \int d x_{1} d x_{2} f_{a / p}\left(x_{1}, \mu\right) f_{b / p}\left(x_{2}, \mu\right) d \sigma_{a b \rightarrow f}\left(\hat{s}=x_{1} x_{2} s, \mu\right)
$$

## THEORY OF JET PROCESSES AT LHC


red: Coulomb gluons
[Forshaw, Kyrieleis, Seymour 2006]
Loss of color coherence from initialstate Coulomb interactions

" Weird "superleading logarithms"

- Breakdown of naive factorization
- Phenomenological consequences?
blue: gluons emitted along beams
green: soft gluons between jets

$$
d \sigma_{p p \rightarrow f}(s)=\sum_{a, b=q, \bar{q}, g} \int d x_{1} d x_{2} f_{a / p}\left(x_{1}, \mu\right) f_{b / p}\left(x_{2}, \mu\right) d \sigma_{a b \rightarrow f}\left(\hat{s}=x_{1} x_{2} s, \mu\right)
$$

## THEORY OF JET PROCESSES AT LHC


red: Coulomb gluons
blue: gluons emitted along beams
green: soft gluons between jets

$$
d \sigma_{p p \rightarrow f}(s) \neq \sum_{a, b=q, \bar{q}, g} \int d x_{1} d x_{2} f_{a / p}\left(x_{1}, \mu\right) f_{b / p}\left(x_{2}, \mu\right) d \sigma_{a b \rightarrow f}\left(\hat{s}=x_{1} x_{2} s, \mu\right)
$$

## THEORY OF JET PROCESSES AT LHC


red: Coulomb gluons
blue: gluons emitted along beams
green: soft gluons between jets
[Forshaw, Kyrieleis, Seymour 2006]
Loss of color coherence from initialstate Coulomb interactions

" Weird "superleading logarithms"

- Breakdown of naive factorization
- Phenomenological consequences?

Need for a complete theory of quantum interference effects in jet processes!

## THEORY OF JET PROCESSES AT LHC



Perturbative expansion:

$$
\sigma \sim \sigma_{\mathrm{Born}} \times\left\{1+\alpha_{s} L+\alpha_{s}^{2} L^{2}\right\}
$$

state-of-the-art: 2-loop order

## THEORY OF JET PROCESSES AT LHC



Perturbative expansion including "superleading" logarithms:

$$
\left.\begin{array}{c}
\sigma \sim \sigma_{\text {Born }} \times\left\{1+\alpha_{s} L+\alpha_{s}^{2} L^{2}+\alpha_{s}^{3} L^{3}+\alpha_{s}^{4} L^{5}+\alpha_{s}^{5} L^{7}+\ldots\right\} \\
\text { state-of-the-art: 2-loop order }
\end{array} \sim\left(\alpha_{s} L\right)^{3}\left(\alpha_{s} L^{2}\right)^{n}: \text { formally larger than O(1) }\right) ~[\text { Forshaw, Kyrieleis, Seymour 2006] })
$$

## THEORY OF JET PROCESSES AT LHC

## Novel factorization theorem

$$
\sigma_{2 \rightarrow M}\left(Q, Q_{0}\right)=\sum_{a, b=q, \bar{q}, g} \int d x_{1} d x_{2} \sum_{m=2+M}^{\infty}\left\langle\mathcal{H}_{m}^{a b}(\{\underline{n}\}, Q, \mu) \otimes \mathcal{W}_{m}^{a b}\left(\{\underline{n}\}, Q_{0}, x_{1}, x_{2}, \mu\right)\right\rangle
$$

Renormalization-group equation:

$$
\mu \frac{d}{d \mu} \boldsymbol{\mathcal { H }}_{l}^{a b}(\{\underline{n}\}, Q, \mu)=-\sum_{m \leq l} \boldsymbol{\mathcal { H }}_{m}^{a b}(\{\underline{n}\}, Q, \mu) \boldsymbol{\Gamma}_{m l}^{H}(\{\underline{n}\}, Q, \mu)
$$

operator in color space and in the infinite space of parton multiplicities
$\Rightarrow$ new perspective to think about non-global observables

## TOWARD AN EFFECTIVE FIELD THEORY FOR LHC JETS

## RESUMMATION OF SUPERLEADING LOGARITHMS

All-order summation of large logarithmic corrections, including the superleading logarithms:

$$
d \sigma_{\mathrm{SLL}}=d \sigma_{\mathrm{Born}} \sum_{n=0}^{\infty}\left(\frac{\alpha_{s}}{4 \pi}\right)^{n+3} L^{2 n+3} \frac{(-4)^{n} n!}{(2 n+3)!} \sum_{r=0}^{n} \frac{(2 r)!}{4^{r}(r!)^{2}} C_{r n}
$$

with color traces:

$$
\left.\left.\begin{array}{c}
C_{r n}=-256 \pi^{2}\left(4 N_{c}\right)^{n-r}
\end{array}\right]\left[\sum_{j=3}^{M+2} J_{j} \sum_{i=1}^{4} c_{i}^{(r)}\left\langle\mathcal{H}_{2 \rightarrow M} \boldsymbol{O}_{i}^{(j)}\right\rangle-J_{12} \sum_{i=1}^{6} d_{i}^{(r)}\left\langle\mathcal{H}_{2 \rightarrow M} \boldsymbol{S}_{i}\right\rangle\right]\right] .
$$

## TOWARD AN EFFECTIVE FIELD THEORY FOR LHC JETS

## RESUMMATION OF SUPERLEADING LOGARITHMS

$$
C_{r n}=-256 \pi^{2}\left(4 N_{c}\right)^{n-r}\left[\sum_{j=3}^{M+2} J_{j} \sum_{i=1}^{4} c_{i}^{(r)}\left\langle\mathcal{H}_{2 \rightarrow M} \boldsymbol{O}_{i}^{(j)}\right\rangle-J_{12} \sum_{i=1}^{6} d_{i}^{(r)}\left\langle\mathcal{H}_{2 \rightarrow M} \boldsymbol{S}_{i}\right\rangle\right]
$$

[Becher, MN, Shao, Stillger (in preparation)]

## Basis of color structures:

$$
\begin{array}{ll}
\boldsymbol{O}_{1}^{(j)}=f_{a b e} f_{c d e} \boldsymbol{T}_{2}^{a}\left\{\boldsymbol{T}_{1}^{b}, \boldsymbol{T}_{1}^{c}\right\} \boldsymbol{T}_{j}^{d}-(1 \leftrightarrow 2) & \boldsymbol{S}_{1}=f_{a b e} f_{c d e}\left\{\boldsymbol{T}_{1}^{b}, \boldsymbol{T}_{1}^{c}\right\}\left\{\boldsymbol{T}_{2}^{a}, \boldsymbol{T}_{2}^{d}\right\} \\
\boldsymbol{O}_{2}^{(j)}=d_{\text {ade }} d_{b c e} \boldsymbol{T}_{2}^{a}\left\{\boldsymbol{T}_{1}^{b}, \boldsymbol{T}_{1}^{c}\right\} \boldsymbol{T}_{j}^{d}-(1 \leftrightarrow 2) & \boldsymbol{S}_{2}=d_{\text {ade }} d_{b c e}\left\{\boldsymbol{T}_{1}^{b}, \boldsymbol{T}_{1}^{c}\right\}\left\{\boldsymbol{T}_{2}^{a}, \boldsymbol{T}_{2}^{d}\right\} \\
\boldsymbol{O}_{3}^{(j)}=\boldsymbol{T}_{2}^{a}\left\{\boldsymbol{T}_{1}^{a}, \boldsymbol{T}_{1}^{b}\right\} \boldsymbol{T}_{j}^{b}-(1 \leftrightarrow 2) & \boldsymbol{S}_{3}=d_{\text {ade }} d_{b c e}\left[\boldsymbol{T}_{2}^{a}\left(\boldsymbol{T}_{1}^{b} \boldsymbol{T}_{1}^{c} \boldsymbol{T}_{1}^{d}\right)_{+}+(1 \leftrightarrow 2)\right] \\
\boldsymbol{O}_{4}^{(j)}=2 C_{1} \boldsymbol{T}_{2} \cdot \boldsymbol{T}_{j}-2 C_{2} \boldsymbol{T}_{1} \cdot \boldsymbol{T}_{j} & \boldsymbol{S}_{4}=\left\{\boldsymbol{T}_{1}^{a}, \boldsymbol{T}_{1}^{b}\right\}\left\{\boldsymbol{T}_{2}^{a}, \boldsymbol{T}_{2}^{b}\right\} \\
& \boldsymbol{S}_{5}=\boldsymbol{T}_{1} \cdot \boldsymbol{T}_{2} \\
& \boldsymbol{S}_{6}=\mathbf{1}
\end{array}
$$

## TOWARD AN EFFECTIVE FIELD THEORY FOR LHC JETS

## RESUMMATION OF SUPERLEADING LOGARITHMS

$$
C_{r n}=-256 \pi^{2}\left(4 N_{c}\right)^{n-r}\left[\sum_{j=3}^{M+2} J_{j} \sum_{i=1}^{4} c_{i}^{(r)}\left\langle\mathcal{H}_{2 \rightarrow M} \boldsymbol{O}_{i}^{(j)}\right\rangle-J_{12} \sum_{i=1}^{6} d_{i}^{(r)}\left\langle\mathcal{H}_{2 \rightarrow M} \boldsymbol{S}_{i}\right\rangle\right]
$$

[Becher, MN, Shao, Stillger (in preparation)]

## Coefficient functions:

$c_{1}^{(r)}=2^{r-1}\left[\left(3 N_{c}+2\right)^{r}+\left(3 N_{c}-2\right)^{r}\right]$
$c_{2}^{(r)}=2^{r-2} N_{c}\left[\frac{\left(3 N_{c}+2\right)^{r}}{N_{c}+2}+\frac{\left(3 N_{c}-2\right)^{r}}{N_{c}-2}-\frac{\left(2 N_{c}\right)^{r+1}}{N_{c}^{2}-4}\right]$
$c_{3}^{(r)}=2^{r-1}\left[\left(3 N_{c}+2\right)^{r}-\left(3 N_{c}-2\right)^{r}\right]$
$c_{4}^{(r)}=2^{r-1}\left[\frac{\left(3 N_{c}+2\right)^{r}}{N_{c}+1}+\frac{\left(3 N_{c}-2\right)^{r}}{N_{c}-1}-\frac{2 N_{c}^{r+1}}{N_{c}^{2}-1}\right]$

$$
\begin{aligned}
d_{1}^{(r)}= & 2^{3 r-1}\left[\left(N_{c}+1\right)^{r}+\left(N_{c}-1\right)^{r}\right]-2^{r-1}\left[\left(3 N_{c}+2\right)^{r}+\left(3 N_{c}-2\right)^{r}\right] \\
d_{2}^{(r)}= & 2^{3 r-2} N_{c}\left[\frac{\left(N_{c}+1\right)^{r}}{N_{c}+2}+\frac{\left(N_{c}-1\right)^{r}}{N_{c}-2}\right]-2^{r-2} N_{c}\left[\frac{\left(3 N_{c}+2\right)^{r}}{N_{c}+2}+\frac{\left(3 N_{c}-2\right)^{r}}{N_{c}-2}\right] \\
d_{3}^{(r)}= & 2^{r-1} N_{c}\left[\frac{\left(3 N_{c}+2\right)^{r}}{N_{c}+2}+\frac{\left(3 N_{c}-2\right)^{r}}{N_{c}-2}-\frac{\left(2 N_{c}\right)^{r+1}}{N_{c}^{2}-4}\right] \\
d_{4}^{(r)}= & 2^{3 r-1}\left[\left(N_{c}+1\right)^{r}-\left(N_{c}-1\right)^{r}\right]-2^{r-1}\left[\left(3 N_{c}+2\right)^{r}-\left(3 N_{c}-2\right)^{r}\right] \\
d_{5}^{(r)}= & 2^{r}\left(C_{1}+C_{2}\right)\left[\frac{N_{c}+2}{N_{c}+1}\left(3 N_{c}+2\right)^{r}-\frac{N_{c}-2}{N_{c}-1}\left(3 N_{c}-2\right)^{r}-\frac{2 N_{c}^{r+1}}{N_{c}^{2}-1}\right] \\
& -\frac{2^{r-1} N_{c}}{3}\left[\left(N_{c}+4\right)\left(3 N_{c}+2\right)^{r}+\left(N_{c}-4\right)\left(3 N_{c}-2\right)^{r}-\left(2 N_{c}\right)^{r+1}\right] \\
d_{6}^{(r)}= & 2^{3 r+1} C_{1} C_{2}\left[\left(N_{c}+1\right)^{r-1}+\left(N_{c}-1\right)^{r-1}\right]\left(1-\delta_{r 0}\right) \\
& -2^{r+1} C_{1} C_{2}\left[\frac{\left(3 N_{c}+2\right)^{r}}{N_{c}+1}+\frac{\left(3 N_{c}-2\right)^{r}}{N_{c}-1}-\frac{2 N_{c}^{r+1}}{N_{c}^{2}-1}\right]
\end{aligned}
$$

## TOWARD AN EFFECTIVE FIELD THEORY FOR LHC JETS

## RESUMMATION OF SUPERLEADING LOGARITHMS

All-order summation of large logarithmic corrections, including the superleading logarithms!
$\Rightarrow$ Example: Summation of superleading logarithms for $q q \rightarrow q q$
scattering in color-singlet channel:
[Becher, MN, Shao 2021]

## TOWARD AN EFFECTIVE FIELD THEORY FOR LHC JETS

## RESUMMATION OF SUPERLEADING LOGARITHMS

Phenomenological impact in forward gluon-gluon scattering:


$\Rightarrow$ necessary to include eight terms ( $\leq 10$ loops) to obtain reliable results; resummation formalism is essential!

## EXPLORING UNCHARTERED TERRITORY

## Important open questions

- Do the strong cancellations persist when subleading terms are included? How large is the remaining scale ambiguity?


## EXPLORING UNCHARTERED TERRITORY

## Important open questions

- Do the strong cancellations persist when subleading terms are included? How large is the remaining scale ambiguity?
- Can factorization violations be understood in a quantitative way? Can a more general notion of factorization be established?

red: Coulomb gluons
blue: gluons along beams
green: soft gluons between jets


## EXPLORING UNCHARTERED TERRITORY

## Important open questions

- Do the strong cancellations persist when subleading terms are included? How large is the remaining scale ambiguity?
- Can factorization violations be understood in a quantitative way? Can a more general notion of factorization be established?
- What are the implications for LHC phenomenology? Some benchmark processes: $p p \rightarrow 2$ jets, $p p \rightarrow H / V+$ jets, $p p \rightarrow$ jet $+\boldsymbol{E}_{T}, p p \rightarrow$ new particles, $\ldots$

red: Coulomb gluons
blue: gluons along beams green: soft gluons between jets


## REACHING THE NEXT LEVEL OF PRECISION

## Toward a complete theory of non-global LHC processes

- Based on a powerful new factorization theorem
- Analytic all-order resummation of superleading logarithms for arbitrary jet processes
- Calculation of subleading effects using analytical, numerical and Monte Carlo tools
- Ab initio understanding of violations of "conventional" factorization and derivation of generalized factorization theorems


High-precision probes of known and yet unknown phenomena at the energy frontier!

