

MATTHIAS NEUBERT

MITP — JOHANNES GUTENBERG UNIVERSITY MAINZ — GERMANY

59TH INTERNATIONAL WINTER MEETING ON NUCLEAR PHYSICS BORMIO (ITALY), 23-27 JANUARY 2023

STANDARD MODEL TESTS AND NEW PHYSICS SEARCHES

symmetrymagazine.org

Photo by CERN

Photo by CERN

- Origin of Dark Matter?
- Abundance of matter over antimatter?

CERN Document Server, ATLAS-PHOTO-2018-022-6

CERN Document Server, ATLAS-PHOTO-2018-022-6

[Forshaw, Kyrieleis, Seymour 2006]

Loss of color coherence from initialstate Coulomb interactions

red: Coulomb gluons *blue*: gluons emitted along beams *green*: soft gluons between jets

$$d\sigma_{pp \to f}(s) = \sum_{a,b=q,\bar{q},g} \int dx_1 dx_2 f_{a/p}(x_1,\mu) f_{b/p}(x_2,\mu) d\sigma_{ab \to f}(\hat{s} = x_1 x_2 s,\mu)$$

red: Coulomb gluons *blue*: gluons emitted along beams *green*: soft gluons between jets [Forshaw, Kyrieleis, Seymour 2006]

Loss of color coherence from initialstate Coulomb interactions

- Breakdown of naive factorization
- Phenomenological consequences?

$$d\sigma_{pp \to f}(s) = \sum_{a,b=q,\bar{q},g} \int dx_1 dx_2 f_{a/p}(x_1,\mu) f_{b/p}(x_2,\mu) \frac{d\sigma_{ab \to f}(\hat{s} = x_1 x_2 s,\mu)}{\text{SLLs}}$$

red: Coulomb gluons *blue*: gluons emitted along beams *green*: soft gluons between jets [Forshaw, Kyrieleis, Seymour 2006]

Loss of color coherence from initialstate Coulomb interactions

- Breakdown of naive factorization
- Phenomenological consequences?

$$d\sigma_{pp \to f}(s) \neq \sum_{a,b=q,\bar{q},g} \int dx_1 dx_2 f_{a/p}(x_1,\mu) f_{b/p}(x_2,\mu) \frac{d\sigma_{ab \to f}(\hat{s} = x_1 x_2 s,\mu)}{\mathsf{SLLs}}$$

red: Coulomb gluons *blue*: gluons emitted along beams *green*: soft gluons between jets [Forshaw, Kyrieleis, Seymour 2006]

Loss of color coherence from initialstate Coulomb interactions

- Breakdown of naive factorization
- Phenomenological consequences?

Need for a complete theory of quantum interference effects in jet processes!

Perturbative expansion:

$$\sigma \sim \sigma_{\rm Born} \times \left\{ 1 + \alpha_s L + \alpha_s^2 L^2 \right\}$$

Matthias Neubert – 4

Bormio Winter Meeting 2023

mtp

Perturbative expansion including "superleading" logarithms:

$$\sigma \sim \sigma_{\text{Born}} \times \left\{ 1 + \alpha_s L + \alpha_s^2 L^2 + \alpha_s^3 L^3 + \alpha_s^4 L^5 + \alpha_s^5 L^7 + \dots \right\}$$

~ $(\alpha_s L)^3 (\alpha_s L^2)^n$: formally larger than O(1)

state-of-the-art: 2-loop order

[Forshaw, Kyrieleis, Seymour 2006]

Novel factorization theorem

$$\sigma_{2 \to M}(Q, Q_0) = \sum_{a, b=q, \bar{q}, g} \int dx_1 dx_2 \sum_{m=2+M}^{\infty} \langle \mathcal{H}_m^{ab}(\{\underline{n}\}, Q, \mu) \otimes \mathcal{W}_m^{ab}(\{\underline{n}\}, Q_0, x_1, x_2, \mu) \rangle$$
[Becher, MN, Shao 2021] high scale low scale

Renormalization-group equation:

$$\mu \frac{d}{d\mu} \mathcal{H}_{l}^{ab}(\{\underline{n}\}, Q, \mu) = -\sum_{m \leq l} \mathcal{H}_{m}^{ab}(\{\underline{n}\}, Q, \mu) \Gamma_{ml}^{H}(\{\underline{n}\}, Q, \mu)$$

 operator in color space and in the infinite space of parton multiplicities

⇒ new perspective to think about non-global observables

All-order summation of large logarithmic corrections, including the superleading logarithms:

$$d\sigma_{\rm SLL} = d\sigma_{\rm Born} \sum_{n=0}^{\infty} \left(\frac{\alpha_s}{4\pi}\right)^{n+3} L^{2n+3} \frac{(-4)^n n!}{(2n+3)!} \sum_{r=0}^n \frac{(2r)!}{4^r (r!)^2} C_{rn}$$

with color traces:

$$C_{rn} = -256\pi^2 (4N_c)^{n-r} \left[\sum_{j=3}^{M+2} J_j \sum_{i=1}^{4} c_i^{(r)} \langle \mathcal{H}_{2 \to M} O_i^{(j)} \rangle - J_{12} \sum_{i=1}^{6} d_i^{(r)} \langle \mathcal{H}_{2 \to M} S_i \rangle \right]$$
[Becher, MN, Shao, Stillger (in preparation)]

$$C_{rn} = -256\pi^2 \left(4N_c\right)^{n-r} \left[\sum_{j=3}^{M+2} J_j \sum_{i=1}^4 c_i^{(r)} \left\langle \mathcal{H}_{2\to M} O_i^{(j)} \right\rangle - J_{12} \sum_{i=1}^6 d_i^{(r)} \left\langle \mathcal{H}_{2\to M} S_i \right\rangle \right]$$

[Becher, MN, Shao, Stillger (in preparation)]

Basis of color structures:

$$O_{1}^{(j)} = f_{abe} f_{cde} T_{2}^{a} \{ T_{1}^{b}, T_{1}^{c} \} T_{j}^{d} - (1 \leftrightarrow 2)$$

$$O_{2}^{(j)} = d_{ade} d_{bce} T_{2}^{a} \{ T_{1}^{b}, T_{1}^{c} \} T_{j}^{d} - (1 \leftrightarrow 2)$$

$$O_{3}^{(j)} = T_{2}^{a} \{ T_{1}^{a}, T_{1}^{b} \} T_{j}^{b} - (1 \leftrightarrow 2)$$

$$O_{4}^{(j)} = 2C_{1} T_{2} \cdot T_{j} - 2C_{2} T_{1} \cdot T_{j}$$

$$egin{aligned} m{S}_1 &= f_{abe} \, f_{cde} \, \{ m{T}_1^b, m{T}_1^c \} \, \{ m{T}_2^a, m{T}_2^d \} \ m{S}_2 &= d_{ade} \, d_{bce} \, \{ m{T}_1^b, m{T}_1^c \} \, \{ m{T}_2^a, m{T}_2^d \} \ m{S}_3 &= d_{ade} \, d_{bce} \, \left[m{T}_2^a \, m{(} m{T}_1^b m{T}_1^c m{T}_1^d m{)}_+ + (1 \leftrightarrow 2)
ight] \ m{S}_4 &= \{ m{T}_1^a, m{T}_1^b \} \, \{ m{T}_2^a, m{T}_2^b \} \ m{S}_5 &= m{T}_1 \cdot m{T}_2 \ m{S}_6 &= m{1} \end{aligned}$$

$$C_{rn} = -256\pi^2 \left(4N_c\right)^{n-r} \left[\sum_{j=3}^{M+2} J_j \sum_{i=1}^4 c_i^{(r)} \left\langle \mathcal{H}_{2\to M} O_i^{(j)} \right\rangle - J_{12} \sum_{i=1}^6 d_i^{(r)} \left\langle \mathcal{H}_{2\to M} S_i \right\rangle \right]$$

[Becher, MN, Shao, Stillger (in preparation)]

Coefficient functions:

$$c_{1}^{(r)} = 2^{r-1} \left[\left(3N_{c} + 2 \right)^{r} + \left(3N_{c} - 2 \right)^{r} \right]$$

$$c_{2}^{(r)} = 2^{r-2} N_{c} \left[\frac{\left(3N_{c} + 2 \right)^{r}}{N_{c} + 2} + \frac{\left(3N_{c} - 2 \right)^{r}}{N_{c} - 2} - \frac{\left(2N_{c} \right)^{r+1}}{N_{c}^{2} - 4} \right]$$

$$c_{3}^{(r)} = 2^{r-1} \left[\left(3N_{c} + 2 \right)^{r} - \left(3N_{c} - 2 \right)^{r} \right]$$

$$c_{4}^{(r)} = 2^{r-1} \left[\frac{\left(3N_{c} + 2 \right)^{r}}{N_{c} + 1} + \frac{\left(3N_{c} - 2 \right)^{r}}{N_{c} - 1} - \frac{2N_{c}^{r+1}}{N_{c}^{2} - 1} \right]$$

$$\begin{split} &d_{1}^{(r)} = 2^{3r-1} \left[\left(N_{c}+1\right)^{r} + \left(N_{c}-1\right)^{r} \right] - 2^{r-1} \left[\left(3N_{c}+2\right)^{r} + \left(3N_{c}-2\right)^{r} \right] \\ &d_{2}^{(r)} = 2^{3r-2} N_{c} \left[\frac{\left(N_{c}+1\right)^{r}}{N_{c}+2} + \frac{\left(N_{c}-1\right)^{r}}{N_{c}-2} \right] - 2^{r-2} N_{c} \left[\frac{\left(3N_{c}+2\right)^{r}}{N_{c}+2} + \frac{\left(3N_{c}-2\right)^{r}}{N_{c}-2} \right] \\ &d_{3}^{(r)} = 2^{r-1} N_{c} \left[\frac{\left(3N_{c}+2\right)^{r}}{N_{c}+2} + \frac{\left(3N_{c}-2\right)^{r}}{N_{c}-2} - \frac{\left(2N_{c}\right)^{r+1}}{N_{c}^{2}-4} \right] \\ &d_{4}^{(r)} = 2^{3r-1} \left[\left(N_{c}+1\right)^{r} - \left(N_{c}-1\right)^{r} \right] - 2^{r-1} \left[\left(3N_{c}+2\right)^{r} - \left(3N_{c}-2\right)^{r} \right] \\ &d_{5}^{(r)} = 2^{r} \left(C_{1}+C_{2}\right) \left[\frac{N_{c}+2}{N_{c}+1} \left(3N_{c}+2\right)^{r} - \frac{N_{c}-2}{N_{c}-1} \left(3N_{c}-2\right)^{r} - \frac{2N_{c}^{r+1}}{N_{c}^{2}-1} \right] \\ &- \frac{2^{r-1}N_{c}}{3} \left[\left(N_{c}+4\right) \left(3N_{c}+2\right)^{r} + \left(N_{c}-4\right) \left(3N_{c}-2\right)^{r} - \left(2N_{c}\right)^{r+1} \right] \\ &d_{6}^{(r)} = 2^{3r+1}C_{1}C_{2} \left[\left(N_{c}+1\right)^{r-1} + \left(N_{c}-1\right)^{r-1} \right] \left(1-\delta_{r0}\right) \\ &- 2^{r+1}C_{1}C_{2} \left[\frac{\left(3N_{c}+2\right)^{r}}{N_{c}+1} + \frac{\left(3N_{c}-2\right)^{r}}{N_{c}-1} - \frac{2N_{c}^{r+1}}{N_{c}^{2}-1} \right] \end{split}$$

All-order summation of large logarithmic corrections, including the superleading logarithms!

Example: Summation of superleading logarithms for $qq \rightarrow qq$ scattering in color-singlet channel:

$$\sigma_{\rm SLL} = -\sigma_{\rm Born} \underbrace{\frac{16\alpha_s L}{81\pi} \Delta Y}_{1-\text{loop factor}} (3\alpha_s L)^2 \, _2F_2(1,1;2,\frac{5}{2};-w) \sim (\alpha_s L)^3 \sum_{n\geq 0} c_n \left(\alpha_s L^2\right)^n \\ w = \frac{3\alpha_s}{\pi} \, L^2$$

[Becher, MN, Shao 2021]

Phenomenological impact in forward gluon-gluon scattering:

⇒ necessary to include eight terms (≤ 10 loops) to obtain reliable results; resummation formalism is essential!

EXPLORING UNCHARTERED TERRITORY

Important open questions

Do the strong cancellations persist when subleading terms are included? How large is the remaining scale ambiguity?

EXPLORING UNCHARTERED TERRITORY

Important open questions

- Do the strong cancellations persist when subleading terms are included? How large is the remaining scale ambiguity?
- Can factorization violations be understood in a quantitative way?
 Can a more general notion of factorization be established?

red: Coulomb gluons *blue*: gluons along beams *green*: soft gluons between jets

EXPLORING UNCHARTERED TERRITORY

Important open questions

- Do the strong cancellations persist when subleading terms are included? How large is the remaining scale ambiguity?
- Can factorization violations be understood in a quantitative way?
 Can a more general notion of factorization be established?
- What are the implications for LHC phenomenology? Some benchmark processes: $pp \rightarrow 2$ jets, $pp \rightarrow H/V +$ jets, $pp \rightarrow$ jet $+ E_T$, $pp \rightarrow$ new particles, ...

red: Coulomb gluons *blue*: gluons along beams *green*: soft gluons between jets

REACHING THE NEXT LEVEL OF PRECISION

Toward a complete theory of non-global LHC processes

- Based on a powerful new factorization theorem
- Analytic all-order resummation of superleading logarithms for arbitrary jet processes
- Calculation of subleading effects using analytical, numerical and Monte Carlo tools
- Ab initio understanding of violations of "conventional" factorization and derivation of generalized factorization theorems

High-precision probes of known and yet unknown phenomena at the energy frontier!

