Synthesis of light nuclei in hadronic collisions

Harald Appelshäuser Goethe Universität Frankfurt

59th International Winter Meeting on Nuclear Dynamics January 23 – 27 2023, Bormio, Italy

ALICE Pb-Pb 5.36 TeV

LHC22s period 18th November 2022 16:52:47.893

Outline

- Phenomenology of light nuclei production
 - in small collision systems
 - in large collision systems
- Outlook:
 - Dynamical study of nucleosynthesis using femtoscopy

Statistical hadronization

Statistical hadronization models (SHM) provide very good description of hadron production in central Pb-Pb collisions:

$$n_i = \frac{N}{V} = \frac{g_i}{2\pi^2} \int_0^\infty \frac{p^2 dp}{\exp((E_i - \mu_i)/T) \pm 1}$$

In the grandcanonical limit at LHC:

 $\mu_i\approx 0$

- Production rate depends only on energy (mass) of the particle
- $T \equiv T_{ch} \approx T_c$

Statistical hadronization

Good description of light nuclei production is not easy to understand:

 $T_{ch} \gg E_{bind}$

- How are nuclei produced at the phase boundary?
- How do weakly-bound objects survive a long-lived hadronic phase?

Coalescence

Nuclear clusters are formed after kinetic freeze-out if nucleons are close in phase space.

Coalescence into cluster A is determined by the momentum space density of n, p:

$$E_{A} \frac{d^{3} N_{A}}{d p_{A}^{3}} = B_{A} \left(E_{p,n} \frac{d^{3} N_{p,n}}{d p_{p,n}^{3}} \right)^{A} |_{\vec{p}_{p} = \vec{p}_{n} = \frac{\vec{p}_{A}}{A}}$$

with coalescence parameter B_A :

$$B_A = \left(\frac{4\pi}{3}p_0^3\right)^{(A-1)}\frac{M}{m^A}$$

J. Kapusta, Phys. Rev. C 21 (1980) 1301

Coalescence

State-of-the-art approaches include source size R and finite size r_A of the cluster:

Light nuclei production in small systems

Light nuclei production in small systems

Comprehensive ALICE data on d, ³H and ³He production in different collision systems exist:

- Suppression at small system sizes observed
- Compatible with coalescence calculations
- SHM with canonical suppression can explain data as well

³H/³He ratio

Coalescence predicts ${}^{3}H/{}^{3}He > 1$ in small systems due to different nuclear radii:

$$r_{3_H}/r_{3_{He}} \approx 0.9$$

while ${}^{3}H/{}^{3}He = 1$ in SHM

present data not yet conclusive

January 23 2023

Hypertriton

- Λ, p, n bound state
- Lightest known hypernucleus

Hypertriton

- Λ, p, n bound state
- Lightest known hypernucleus

Hypertriton lifetime

- Hypertriton lifetime measured by ALICE is compatible with the free- Λ lifetime
- $\tau = 253 \pm 11 \text{ (stat.)} \pm 6 \text{ (syst.) ps}$
- No more lifetime puzzle

Hypertriton binding energy

- High-resolution mass spectroscopy allows measurement of the Λ binding energy
- $B_{\Lambda} = 72 \pm 63 \text{ (stat.)} \pm 36 \text{ (syst.) keV}$
- In agreement with estimates based on $p\Lambda$ correlation data

Hypertriton

- Λ, p, n bound state
- Lightest known hypernucleus
- Loosely bound
- Large radius \approx 10 fm:

$$r_{\Lambda H}^3/r_{He} \approx 3-5$$

Hypertriton coalescence

- Λ, p, n bound state
- Lightest known hypernucleus
- Loosely bound
- Large radius ≈10 fm:

$$r_{\Lambda H}^3/r_{He} \approx 3-5$$

 Large discriminating power between SHM and coalescence expected in small systems e.g. in

$$S_3 = \frac{\frac{{}^{3}H}{\Lambda}{}^{3}He}{\Lambda/p}$$

CM: K.-J. Sun, C.M. Ko, B. Dönigus, PLB792 (2019) 132 SHM: V. Vovchenko, B. Dönigus, and H. Stoecker, PLB785 (2018) 171

Hypertritons in pp and p-Pb

• First data available on hypertriton production in p-Pb and pp collisions from ALICE:

ALICE, PRL 128 (2022) 252003

³He

Hypertritons in pp and p-Pb

• First S₃ measurements in p-Pb and pp are compatible with coalescence models and disfavor SHM predictions

Light nuclei production in large systems

Light nuclei in large systems: Pb-Pb

Light nuclei in Pb-Pb: ratios

- Both coalescence and canonical SHM describe the system size dependence qualitatively
- Possible indication of absorption in central collisions

Light nuclei in Pb-Pb – ⁴He

• First measurement of (anti-)⁴He momentum spectra

Light nuclei in Pb-Pb – ⁴He

- First measurement of (anti-)⁴He momentum spectra
- (anti-)⁴He production favors SHM

Nuclei freeze-out

 Momentum spectra of measured hadron species (π, K, p) are compatible with a common radial flow field

$$\langle \beta \rangle \approx 0.65$$

and kinetic freeze-out temperature

 $T_{kin} \approx 115 \text{ MeV}$

 Light nuclei (d, ³He, ³H, ⁴He) are consistent with this picture

Nuclei freeze-out

• Exclusive fit of only p, d, ³He, ³H, ⁴He points also to a common flow velocity

$$\langle \beta \rangle \approx 0.65$$

Nuclei freeze-out

 Exclusive fit of only p, d, ³He, ³H, ⁴He points also to a common flow velocity

 $\left<\beta\right>\approx 0.65$

but significantly larger kinetic freezeout temperature

$$T_{kin} \approx 145 \text{ MeV}$$

i.e. $T_{kin} \leq T_{ch} \approx T_c$

Femtoscopy as a tool to study nuclei formation

Femtoscopy

Employ final-state correlations to unravel two- (or multi-) particle dynamics

Experimental correlation function:

$$C(k^*) = A \frac{N_{same}(k^*)}{N_{mixed}(k^*)}$$

Koonin-Pratt formalism connects characteristics of the emission source with two-particle dynamics:

$$C(k^*) = \int S(r^*) |\Psi(k^*, r^*)|^2 d^3 r^*$$

 $S(r^*)$: source function $\Psi(k^*, r^*)$: quantum statistics, final-state interactions (strong, EM)

Femtoscopy 1: Source size

If $\Psi(k^*, r^*)$ is well known, study of $C(k^*)$ allows characterization of the particle source $S(k^*)$:

- Excellent description of the p-p correlation function using known interaction and quantum statistics
- Common baryon source in pp collisions observed

Femtoscopy 2: Interactions

If $S(k^*)$ is well known, study of $C(k^*)$ allows characterization of the particle dynamics in $\Psi(k^*, r^*)$:

- Cusp structure in **p-** Λ correlation function at 289 MeV/*c* is evidence for $N\Sigma \leftrightarrow N\Lambda$ coupling
- Analysis of $p-\Lambda$ correlations constrains Λ separation energy in ${}^{3}{}_{\Lambda}H$, confirmed by recent measurements
- High-precision study of p-Ξ correlations constrains Ξ in-medium properties relevant for hyperon puzzle in neutron stars

January 23 2023

Femtoscopy of the Third Kind

In the case of **p-d**, both $S(k^*)$ and $\psi(k^*, r^*)$ are well constrained:

Measured p-d scattering parameters allow prediction of p-d correlation functions

- Coulomb + strong interaction from Lednicky-Lyuboshits approach
- $r_{core+reso.} = 1.06 \pm 0.04 \text{ fm}$
- Scattering parameters from experiments (S = 3/2 and S = 1/2)

	Quartet ⁴ S _{3/2}	Doublet ² S _{1/2}
Van Oers et al. (1967)	$11.4^{+1.8}_{-1.2}$	$1.2^{+0.2}_{-0.2}$
Arvieux et al. (1973)	$11.88^{+0.4}_{-0.1}$	$2.73^{+0.1}_{-0.1}$
Huttel et al. (1983)	11.1	4.0
Kievsky et al. (1997)	13.8	0.024
Black et al. (1999)	$14.7^{+2.3}_{-2.3}$	$-0.13\substack{+0.04\\-0.04}$

Femtoscopy of the Third Kind

Preliminary p-d correlation data in significant disagreement with predictions based on scattering data and known source characteristics

- First occurence in ALICE femto analyses
- First time nuclei are involved: possible effects from formation time, coalescence, and three-body interactions

ightarrow see presentation by B. Singh on Friday

Summary

- Study of light nuclei production in small collision systems at the LHC reveals patterns suggestive of coalescence mechanism
- Observed object-size dependence may enable tomographic studies of composite and exotic objects
- Dominant production mechanism in central collisions not yet fully resolved
- Study of femtoscopic correlations can shed light on underlying two- and three-body dynamics
- Precision will improve by factor 10-100 with new ALICE data in Run 3 and 4