Antinuclei as messengers from the depths of our galaxy

Stephan Koenigstorfer on behalf of the ALICE Collaboration Technische Universität München

59th International Winter Meeting on Nuclear Physics

ALICE measurements of $\sigma_{\text{inel}}(^{3}\overline{\text{He}})$ | Introduction

Introduction

r Meeting on Nuclear Physics in Bormio | 24.1.2023 2

ALICE measurements of $\sigma_{\text{inel}}(^{3}\overline{\text{He}})$ Introduction

Introduction

Introduction

Introduction

Introduction

ALICE measurements of $\sigma_{\text{inel}}(^{3}\overline{\text{He}})$ Introduction

Introduction

Cosmic ray antinuclei - unique probe into new physics such as dark matter

Low background from astrophysical processes is expected

Introduction

Cosmic ray antinuclei - unique probe into new physics such as dark matter

Low background from astrophysical processes is expected

Introduction

- Low background from astrophysical processes is expected
- •Need to determine exact primary and secondary fluxes, which requires precise knowledge of antinuclei production, propagation and annihilation

Space: the final frontier

> Measure the production and annihilation of antinuclei => this helps interpret measurements by space bourne experiments, e.g.: AMS and GAPS

> Measure the production and annihilation of antinuclei => this helps interpret measurements by space bourne experiments, e.g.: AMS and GAPS

afternoon an

Harald

yesterday!

> Measure the production and annihilation of antinuclei => this helps interpret measurements by space bourne experiments, e.g.: AMS and GAPS

afternoon an

Harald

yesterday!

Measure the production and annihilation of antinuclei => this helps interpret measurements by space bourne experiments, e.g.: AMS and GAPS

ALICE measurements of $\sigma_{\text{inel}}(^{3}\overline{\text{He}})$ Introduction

Annihilation: pieces of the puzzle

Previous

• Antinuclei (A \geq 2) σ_{inel} remained poorly known since the 70s – only 2 papers on d at high energies from '70, '71 [1-2]

[1] Binon et al. <u>PLB 31 (1970)</u> [2] Denisov et. al. <u>Nuc. Phys. B 31 (1971)</u> S. Koenigstorfer | 59th International Winter Meeting on Nuclear Physics in Bormio | 24.1.2023 4

Propagation using GALPROP Summary

Previous

- Antinuclei (A \geq 2) σ_{inel} remained poorly known since the 70s – only 2 papers on \overline{d} at high energies from '70, '71 [1-2]
- 3 years ago, ALICE started contributing to this field by measuring the inelastic cross sections of \overline{d} , \overline{t} and ${}^{3}\overline{He}$ [3-4]

[1] Binon et al. <u>PLB 31 (1970)</u> [2] Denisov et. al. <u>Nuc. Phys. B 31 (1971)</u> S. Koenigstorfer | 59th International Winter Meeting on Nuclear Physics in Bormio | 24.1.2023 4 [3] <u>PRL 125, 162001 (2020)</u> [4] <u>arxiv.org/2202.01549</u>

Propagation using GALPROP Summary

Now

- Antinuclei (A \geq 2) σ_{inel} remained poorly known since the 70s – only 2 papers on d at high energies from '70, '71 [1-2]
- 3 years ago, ALICE started contributing to this field by measuring the inelastic cross sections of \overline{d} , \overline{t} and ${}^{3}\overline{He}$ [3-4]
- Studied the impact of these measurements on cosmic ray antinuclei

[1] Binon et al. <u>PLB 31 (1970)</u> [2] Denisov et. al. <u>Nuc. Phys. B 31 (1971)</u> S. Koenigstorfer | 59th International Winter Meeting on Nuclear Physics in Bormio | 24.1.2023 4 [3] <u>PRL 125, 162001 (2020)</u> [4] <u>arxiv.org/2202.01549</u>

Propagation using GALPROP Summary

Previous

 $\overline{\mathbf{p}}$ d $^{3}\overline{\text{He}}$

Now

- Antinuclei (A \geq 2) σ_{inel} remained poorly known since the 70s – only 2 papers on d at high energies from '70, '71 [1-2]
- 3 years ago, ALICE started contributing to this field by measuring the inelastic cross sections of \overline{d} , \overline{t} and ${}^{3}\overline{He}$ [3-4]
- Studied the impact of these measurements on cosmic ray antinuclei
- This talk focuses mainly on A=3 results

[1] Binon et al. <u>PLB 31 (1970)</u> [2] Denisov et. al. <u>Nuc. Phys. B 31 (1971)</u> S. Koenigstorfer | 59th International Winter Meeting on Nuclear Physics in Bormio | 24.1.2023 4 [3] <u>PRL 125, 162001 (2020)</u> [4] <u>arxiv.org/2202.01549</u>

Propagation using GALPROP Summary

Previous

Now

ALICE measurements of $\sigma_{\text{inel}}(^{3}\overline{\text{He}})$ Introduction

The ALICE experiment at CERN

- Excellent tracking and particle identification (PID) capabilities
- Most suitable detector at the LHC to study the physics of (anti)nuclei

Time Projection Chamber (TPC)

• Tracking, PID (d*E*/dx)

Time of Flight detector (TOF)

• PID (TOF measurement)

Transition Radiation Detector (TRD)

Propagation using GALPROP Summary

Use the LHC as an antimatter factory...

At LHC energies, particles and antiparticles are produced in almost equal amounts. $\overline{\mathbf{p}}/\mathbf{p}$ ratio at mid-rapidity vs \sqrt{s} [1]

This talk has results from:

- High multiplicity pp collisions at $\sqrt{s} = 13$ TeV.
- Pb—Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV. ^{0.7}
- p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.

and the ALICE detector material as a target ALICE

- Antiparticles undergo annihilation while traveling through the detector material
- By quantifying this loss, we can measure the inelastic cross section of antinuclei!

... and the ALICE detector material as a target ALICE

- Antiparticles undergo annihilation while traveling through the detector material
- By quantifying this loss, we can measure the inelastic cross section of antinuclei!
- But: need to know our material budget very accurately

and the ALICE detector material as a target ALICE

- Antiparticles undergo annihilation while traveling through the detector material
- By quantifying this loss, we can measure the inelastic cross section of antinuclei!
- But: need to know our material budget very accurately

and the ALICE detector material as a target

- Antiparticles undergo annihilation while traveling through the detector material
- By quantifying this loss, we can measure the inelastic cross section of antinuclei!
- But: need to know our material budget very accurately

and the ALICE detector material as a target ALICE

Details in <u>CERN public note</u>

The observables: antimatter-to-matter and TOF/TPC ratio ALICE

The observables: antimatter-to-matter and TOF/TPC ratio ALICE

Antimatter-to-matter ratio

• Measure reconstructed ${}^{3}\overline{\text{He}}/{}^{3}\text{He}$ and compare with MC simulations

The observables: antimatter-to-matter and TOF/TPC ratio ALICE

Antimatter-to-matter ratio

• Measure reconstructed ${}^{3}\overline{\text{He}}/{}^{3}\text{He}$ and compare with MC simulations

TOF-TPC-matching

• Measure reconstructed ${}^{3}\overline{\text{He}}_{\text{TOF}}/{}^{3}\overline{\text{He}}_{\text{TPC}}$ and compare with MC simulations

ALICE measurements of $\sigma_{inel}(^{3}\overline{He})$ Propagation using GALPROP Introduction Summary

Extracting σ_{inel} from data and Monte Carlo

[1] <u>arxiv.org/2202.01549</u>

ALICE measurements of $\sigma_{\text{inel}}(^{3}\overline{\text{He}})$ Propagation using GALPROP Introduction Summary

Extracting σ_{inel} from data and Monte Carlo

 Monte Carlo (MC) simulations with varied σ_{inel}

Extracting σ_{inel} from data and Monte Carlo

- Monte Carlo (MC) simulations with varied σ_{inel}
- In each momentum bin, compare the antiparticle-to-particle ratio in MC to the one in data
- MC points are fit with an exponential, according to the Lambert-Beer law:

$$\overline{\mathsf{B}}/\mathsf{B} \propto \exp(-\sigma_{inel}/\sigma_{inel}^{def})$$

Propagation using GALPROP Summary

Extracting σ_{inel} from data and Monte Carlo

- Monte Carlo (MC) simulations with varied σ_{inel}
- In each momentum bin, compare the antiparticle-to-particle ratio in MC to the one in data
- MC points are fit with an exponential, according to the Lambert-Beer law:

$$\overline{\mathsf{B}}/\mathsf{B} \propto \exp(-\sigma_{inel}/\sigma_{inel}^{def})$$

Propagation using GALPROP Summary

Extracting σ_{inel} from data and Monte Carlo

- Monte Carlo (MC) simulations with varied σ_{inel}
- In each momentum bin, compare the antiparticle-to-particle ratio in MC to the one in data
- MC points are fit with an exponential, according to the Lambert-Beer law:

$$\overline{\mathsf{B}}/\mathsf{B} \propto \exp(-\sigma_{inel}/\sigma_{inel}^{def})$$

Propagation using GALPROP Summary

- Monte Carlo (MC) simulations with varied σ_{inel}
- In each momentum bin, compare the antiparticle-to-particle ratio in MC to the one in data
- MC points are fit with an exponential, according to the Lambert-Beer law:

$$\overline{\mathsf{B}}/\mathsf{B} \propto \exp(-\sigma_{inel}/\sigma_{inel}^{def})$$

Propagation using GALPROP Summary

- Monte Carlo (MC) simulations with varied σ_{inel}
- In each momentum bin, compare the antiparticle-to-particle ratio in MC to the one in data
- MC points are fit with an exponential, according to the Lambert-Beer law:

$$\overline{\mathsf{B}}/\mathsf{B} \propto \exp(-\sigma_{inel}/\sigma_{inel}^{def})$$

Propagation using GALPROP Summary

- Monte Carlo (MC) simulations with varied σ_{inel}
- In each momentum bin, compare the antiparticle-to-particle ratio in MC to the one in data
- MC points are fit with an exponential, according to the Lambert-Beer law:

$$\overline{\mathsf{B}}/\mathsf{B} \propto \exp(-\sigma_{inel}/\sigma_{inel}^{def})$$

Propagation using GALPROP Summary

- Monte Carlo (MC) simulations with varied σ_{inel}
- In each momentum bin, compare the antiparticle-to-particle ratio in MC to the one in data
- MC points are fit with an exponential, according to the Lambert-Beer law:

$$\overline{\mathsf{B}}/\mathsf{B} \propto \exp(-\sigma_{inel}/\sigma_{inel}^{def})$$

Propagation using GALPROP Summary

- Monte Carlo (MC) simulations with varied σ_{inel}
- In each momentum bin, compare the antiparticle-to-particle ratio in MC to the one in data
- MC points are fit with an exponential, according to the Lambert-Beer law:

$$\overline{\mathsf{B}}/\mathsf{B} \propto \exp(-\sigma_{inel}/\sigma_{inel}^{def})$$

Antideuteron inelastic cross section $\sigma_{inel}(d)$ on average ALICE detector material Hint of a steeper rise at low momentum

S. Koenigstorfer | 59th International Winter Meeting on Nuclear Physics in Bormio | 24.1.2023 10

ALI-PUB-490982

Introduction

ALICE measurements of $\sigma_{inel}({}^{3}\overline{He})$ Propagation using GALPROP Introduction Summary

Antitriton inelastic cross section

$\sigma_{inel}(t)$ on average ALICE detector material Good agreement with Geant4, but with significant uncertainties

Antitriton inelastic cross section

$\sigma_{inel}(t)$ on average ALICE detector material Good agreement with Geant4, but with significant uncertainties

³He inelastic cross section $\sigma_{inel}(^{3}He)$ on average ALICE detector material Good agreement between the measurements and the Geant4

parameterizations

ALICE measurements of $\sigma_{inel}({}^{3}\overline{He})$ Propagation using GALPROP Introduction

³He inelastic cross section

 $\sigma_{inel}(^{3}He)$ on average ALICE detector material Good agreement between the measurements and the Geant4

parameterizations

ALICE measurements of $\sigma_{inel}({}^{3}\overline{He})$ Propagation using GALPROP Introduction

³He inelastic cross section

 $\sigma_{inel}(^{3}He)$ on average ALICE detector material Good agreement between the measurements and the Geant4

parameterizations

ALICE measurements of $\sigma_{\text{inel}}(^{3}\overline{\text{He}})$ Introduction **Recipe to cook antinuclei fluxes** $\chi + \overline{\chi} \rightleftharpoons f + \overline{f}, W^+ + W^-, \dots \rightleftharpoons \overline{p}, \overline{d}, \overline{He}, \gamma, \dots$ **Dark matter** annihilation and decays $p + p, p + He, He + He \rightleftharpoons \overline{p}, \overline{d}, \overline{He}, \gamma \dots$ Production of secondary anti³He

Propagation using GALPROP Summary

ALICE results \rightarrow $\sigma_{inel}(^{3}\overline{He})$ on H and He **Results:** anti³He fluxes **Propagation through** near Earth the Galaxy: diffusion, convection, solar modulation

Introduction | ALICE measurements of $\sigma_{inel}({}^{3}\overline{He})$

Galprop

Source **Function**

Propagation: diffusion, convection...

[1] Boschini et al. ApJS 250 27 (2020)

[2] Galprop modifications

[3] A. Strong, et. al. Nuclear and Particle Physics Proceedings, 297-299, 2018

Transport equation

$$D_{pp}\frac{\partial}{\partial p}\frac{\psi}{p^2} - \frac{\partial}{\partial p}\left[\psi\frac{dp}{dt} - \frac{p}{3}(\mathbf{div}\cdot\mathbf{V})\psi\right] - \frac{\psi}{\tau_f} - \frac{\psi}{\tau_r}$$

Fragmentation, annihilation

Galprop

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \mathbf{div}(D_{xx}\mathbf{grad}\psi - \mathbf{V}\psi) + \frac{\partial}{\partial p}p^2 D_{pp}\frac{\partial}{\partial p}\frac{\psi}{p^2} - \frac{\partial}{\partial p}\left[\psi\frac{dp}{dt} - \frac{p}{3}(\mathbf{div}\cdot\mathbf{V})\psi\right] - \frac{\psi}{\tau_f} - \frac{\psi}{\tau_f}$$

Source Function

Propagation: diffusion, convection...

[1] Boschini et al. ApJS 250 27 (2020)

[2] Galprop modifications

[3] A. Strong, et. al. Nuclear and Particle Physics Proceedings, 297-299, 2018

Transport equation

Fragmentation, annihilation

Antinuclei source terms: dark matter

• The source term for antinuclei from dark matter can be written as:

$$q(\mathbf{r}, E_{kin}) = \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle$$

- dN
- dE_{kin}

Antinuclei source terms: dark matter

• The source term for antinuclei from dark matter can be written as:

$$q(\mathbf{r}, E_{kin}) = \frac{1(\rho_{\rm DM}^2(\mathbf{r}))}{2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} m_{\chi}^2 \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \langle \sigma v \rangle (1 + \epsilon)$$

 dE_{kin}

Antinuclei source terms: dark matter

• The source term for antinuclei from dark matter can be written as:

$$q(\mathbf{r}, E_{kin}) = \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle$$

dN

 dE_{kin}

This is the thermally averaged annihilation cross section. We can use $< \sigma v > = 2.6 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}$ [1] Korsmeier et al, Phys. Rev. D. 97, 103011 (2018)

Antinuclei source terms: dark matter

• The source term for antinuclei from dark matter can be written as:

$$q(\mathbf{r}, E_{kin}) = \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle$$

- dN
- dE_{kin}

This accounts for anti-tritons which will then decay into ${}^{3}\overline{\text{He}}$. $\epsilon \approx 1$

Antinuclei source terms: dark matter

• The source term for antinuclei from dark matter can be written as:

$$q(\mathbf{r}, E_{kin}) = \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle$$

 The final term is the spectra of produced antinuclei, normalized to each dark matter annihilation.

Antinuclei source terms: dark matter

• The source term for antinuclei from dark matter can be written as:

$$q(\mathbf{r}, E_{kin}) = \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) - \frac{1}{2} \frac{\rho_{\rm DM}^2(\mathbf{r})}{m_{\chi}^2} \langle \sigma v \rangle$$

- The final term is the spectra of produced antinuclei, normalized to each dark matter annihilation.
- This can be calculated using a coalescence model. [3]

Antinuclei source terms: CR collisions with the ISM

Antinuclei source terms: CR collisions with the ISM

Relevant collision systems: pp, p-He, He-p, He-He

Introduction | ALICE measurements of $\sigma_{\text{inel}}(^{3}\overline{\text{He}})$ |

Antinuclei source terms: CR collisions with the ISM

Relevant collision systems: pp, p-He, He-p, He-He

• Production cross section in pp collisions from [1] (EPOS LHC + event-by-event coalescence)

$^{3}\overline{\text{He}}$ production in pp $p + p \rightarrow He^3 + X$ 12500 GeV 4700 GeV 1900 GeV 750 GeV 310 GeV 200 GeV I20 GeV 10² 10³ 10 Kinetic energy per nucleon [GeV/n]

Introduction | ALICE measurements of $\sigma_{inel}({}^{3}\overline{He})$ |

Antinuclei source terms: CR collisions with the ISM

Relevant collision systems: pp, p-He, He-p, He-He

- Other collision types scaled (A_TA_P)^{2.2/3}

• Production cross section in pp collisions from [1] (EPOS LHC + event-by-event coalescence)

³He production in pp $10^{-34} = p + p \rightarrow He^3 + X$ 12500 GeV 4700 GeV 1900 GeV 750 GeV 310 GeV 200 GeV I20 GeV 10² 10³ 10 Kinetic energy per nucleon [GeV/n]

Antinuclei source terms: CR collisions with the ISM

Relevant collision systems: pp, p-He, He-p, He-He

- Other collision types scaled (A_TA_P)^{2.2/3}

• Production cross section in pp collisions from [1] (EPOS LHC + event-by-event coalescence)

Introduction | ALICE measurements of $\sigma_{inel}({}^{3}\overline{He})$

Galprop

Source **Function**

Propagation: diffusion, convection...

[1] Boschini et al. ApJS 250 27 (2020)

[2] Galprop modifications

[3] A. Strong, et. al. Nuclear and Particle Physics Proceedings, 297-299, 2018

Transport equation

$$D_{pp}\frac{\partial}{\partial p}\frac{\psi}{p^2} - \frac{\partial}{\partial p}\left[\psi\frac{dp}{dt} - \frac{p}{3}(\mathbf{div}\cdot\mathbf{V})\psi\right] - \frac{\psi}{\tau_f} - \frac{\psi}{\tau_r}$$

Fragmentation, annihilation

Introduction | ALICE measurements of $\sigma_{inel}({}^{3}\overline{He})$

Galprop

Source Function

Propagation: diffusion, convection...

[1] Boschini et al. ApJS 250 27 (2020)

[2] Galprop modifications

[3] A. Strong, et. al. Nuclear and Particle Physics Proceedings, 297-299, 2018

Transport equation

$$D_{pp}\frac{\partial}{\partial p}\frac{\psi}{p^2} - \frac{\partial}{\partial p}\left[\psi\frac{dp}{dt} - \frac{p}{3}(\mathbf{div}\cdot\mathbf{V})\psi\right] - \frac{\psi}{\tau_f} - \frac{\psi}{\tau_r}$$

Fragmentation, annihilation

Galprop

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \mathbf{div}(D_{xx}\mathbf{grad}\psi - \mathbf{V}\psi) + \frac{\partial}{\partial p}p^2 D_{pp}\frac{\partial}{\partial p}\frac{\psi}{p^2} - \frac{\partial}{\partial p}\left[\psi\frac{dp}{dt} - \frac{p}{3}(\mathbf{div}\cdot\mathbf{V})\psi\right] - \frac{\psi}{\tau_f} - \frac{\psi}{\tau_f}$$

Source **Function**

Propagation can be constrained using proton and heavier nuclei cosmic ray measurements

[1] Boschini et al. ApJS 250 27 (2020)

[2] Galprop modifications

[3] A. Strong, et. al. Nuclear and Particle Physics Proceedings, 297-299, 2018

Transport equation

Propagation: diffusion, convection...

Fragmentation, annihilation

Galprop

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \mathbf{div}(D_{xx}\mathbf{grad}\psi - \mathbf{V}\psi) + \frac{\partial}{\partial p}p^2 D_{pp}\frac{\partial}{\partial p}\frac{\psi}{p^2} - \frac{\partial}{\partial p}\left[\psi\frac{dp}{dt} - \frac{p}{3}(\mathbf{div}\cdot\mathbf{V})\psi\right] - \frac{\psi}{\tau_f} - \frac{\psi}{\tau_f}$$

Source **Function**

Propagation: diffusion, convection...

Propagation can be constrained using proton and heavier nuclei cosmic ray measurements

[1] Boschini et al. ApJS 250 27 (2020)

[2] Galprop modifications

[3] A. Strong, et. al. Nuclear and Particle Physics Proceedings, 297-299, 2018

Transport equation

Fragmentation, annihilation

S. Koenigstorfer | 59th International Winter Meeting on Nuclear Physics in Bormio | 24.1.2023 17

Galprop

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \mathbf{div}(D_{xx}\mathbf{grad}\psi - \mathbf{V}\psi) + \frac{\partial}{\partial p}p^2 D_{pp}\frac{\partial}{\partial p}\frac{\psi}{p^2} - \frac{\partial}{\partial p}\left[\psi\frac{dp}{dt} - \frac{p}{3}(\mathbf{div}\cdot\mathbf{V})\psi\right] - \frac{\psi}{\tau_f} - \frac{\psi}{\tau_f}$$

Source **Function**

Propagation: diffusion, convection...

Propagation can be constrained using proton and heavier nuclei cosmic ray measurements

Propagation studied in detail in <u>Šerkšnytė et. al. PRD 105 (2022)</u>

[1] Boschini et al. ApJS 250 27 (2020)

[2] Galprop modifications

[3] A. Strong, et. al. Nuclear and Particle Physics Proceedings, 297-299, 2018

Transport equation

Fragmentation, annihilation

S. Koenigstorfer | 59th International Winter Meeting on Nuclear Physics in Bormio | 24.1.2023 17

Inelastic interactions

ALICE measurements of σ_{inel} are on heavy targets with $\langle A \rangle = 17.4$ to 34.7 Need to be scaled for proton and helium targets (ISM)

- Obtain correction factor for Geant4 parameterization using ALICE measurements
- Use this correction factor for all targets, with additional 8% uncertainty on A scaling [1]

[1] Uzhinsky et al., Phys. Lett. B 705 (2011) 235

Effect of various inelastic cross sections on ${}^{3}\overline{\text{He}}$ fluxes

Solar modulated flux shifts particles to lower energies

Uncertainties only from ALICE measurement on $\sigma_{
m inel}$

 Small compared to other uncertainties in the field!

Rather constant transparency of 50% for typical DM scenario and 25%-90% for background

• High transparency of the galaxy to ${}^{3}\overline{\text{He}}$ nuclei!

Transparency =
$$\frac{Flux(\sigma_{inel})}{Flux(\sigma_{inel} = 0)}$$

Effect of various inelastic cross sections on ${}^{3}\overline{\text{He}}$ fluxes

Solar modulated flux shifts particles to lower energies

Uncertainties only from ALICE measurement on $\sigma_{\rm inel}$

 Small compared to other uncertainties in the field!

Rather constant transparency of 50% for typical DM scenario and 25%-90% for background

• High transparency of the galaxy to ${}^{3}\overline{\text{He}}$ nuclei!

Transparency =
$$\frac{Flux(\sigma_{inel})}{Flux(\sigma_{inel} = 0)}$$

Outside heliosphere

Effect of various inelastic cross sections on ${}^{3}\overline{\text{He}}$ fluxes

Solar modulated flux shifts particles to lower energies

Uncertainties only from ALICE measurement on $\sigma_{\rm inel}$

 Small compared to other uncertainties in the field!

Rather constant transparency of 50% for typical DM scenario and 25%-90% for background

• High transparency of the galaxy to ${}^{3}\overline{\text{He}}$ nuclei!

Transparency =
$$\frac{Flux(\sigma_{inel})}{Flux(\sigma_{inel} = 0)}$$

Outside heliosphere

Effect of various inelastic cross sections on ${}^{3}\overline{\text{He}}$ fluxes

Solar modulated flux shifts particles to lower energies

Uncertainties only from ALICE measurement on $\sigma_{\rm inel}$

 Small compared to other uncertainties in the field!

Rather constant transparency of 50% for typical DM scenario and 25%-90% for background

• High transparency of the galaxy to ${}^{3}\overline{\text{He}}$ nuclei!

Transparency =
$$\frac{Flux(\sigma_{inel})}{Flux(\sigma_{inel} = 0)}$$

Outside heliosphere

Results: ³He fluxes

Effect of various inelastic cross sections on ${}^{3}\overline{\text{He}}$ fluxes

Solar modulated flux shifts particles to lower energies

Uncertainties only from ALICE measurement on σ_{inel}

 Small compared to other uncertainties in the field!

Rather constant transparency of 50% for typical DM scenario and 25%-90% for background

• High transparency of the galaxy to ${}^{3}\overline{\text{He}}$ nuclei!

Transparency =
$$\frac{Flux(\sigma_{inel})}{Flux(\sigma_{inel}=0)}$$

Propagation using GALPROP Summary

ALICE measurements of $\sigma_{\text{inel}}(^{3}\overline{\text{He}})$ Introduction

Summary and outlook

Propagation using GALPROP Summary

ALICE measurements of $\sigma_{\text{inel}}(^{3}\overline{\text{He}})$ Introduction

Summary and outlook

Measurement of σ_{inel} via comparison with detailed ALICE Monte Carlo simulations using Geant4

Measurement of σ_{inel} via comparison with detailed ALICE Monte Carlo simulations using Geant4

First low energy measurement of the antideuteron inelastic cross section

• Paper: <u>PRL 125, 162001 (2020)</u>

Measurement of σ_{inel} via comparison with detailed ALICE Monte Carlo simulations using Geant4

First low energy measurement of the antideuteron inelastic cross section

• Paper: <u>PRL 125, 162001 (2020)</u>

First measurement of the ${}^{3}\overline{\text{He}}$ inelastic cross section

Propagation using GALPROP

Measurement of σ_{inel} via comparison with detailed ALICE Monte Carlo simulations using Geant4

First low energy measurement of the antideuteron inelastic cross section

Paper: <u>PRL 125, 162001 (2020)</u>

First measurement of the ${}^{3}\overline{\text{He}}$ inelastic cross section

• Paper published in <u>Nature Physics</u>

Propagation using GALPROP

Measurement of σ_{inel} via comparison with detailed ALICE Monte Carlo simulations using Geant4

First low energy measurement of the antideuteron inelastic cross section

• Paper: <u>PRL 125, 162001 (2020)</u>

First measurement of the ${}^{3}\overline{\text{He}}$ inelastic cross section

• Paper published in <u>Nature Physics</u>

First measurement of the ${}^{3}\overline{H}$ inelastic cross section.

• Paper in preparation

Propagation using GALPROP

Measurement of σ_{inel} via comparison with detailed ALICE Monte Carlo simulations using Geant4

First low energy measurement of the antideuteron inelastic cross section

• Paper: <u>PRL 125, 162001 (2020)</u>

First measurement of the ${}^{3}\overline{\text{He}}$ inelastic cross section

• Paper published in <u>Nature Physics</u>

First measurement of the ${}^{3}\overline{H}$ inelastic cross section.

• Paper in preparation

Effect of σ_{inel} measurements:

• Transparency of the galaxy to ${}^{3}\overline{\text{He}}$ from different sources

Propagation using GALPROP

Measurement of σ_{inel} via comparison with detailed ALICE Monte Carlo simulations using Geant4

First low energy measurement of the antideuteron inelastic cross section

• Paper: <u>PRL 125, 162001 (2020)</u>

First measurement of the ${}^{3}\overline{\text{He}}$ inelastic cross section

• Paper published in <u>Nature Physics</u>

First measurement of the ${}^{3}\overline{H}$ inelastic cross section.

• Paper in preparation

Effect of σ_{inel} measurements:

• Transparency of the galaxy to ${}^{3}\overline{\text{He}}$ from different sources

In the future ALICE will improve the precision of these measurements in Run 3!

Propagation using GALPROP

Measurement of $\sigma_{\rm inel}$ via comparison with detailed ALICE Mop^{*} Carlo simulations using Geant4

First low energy measurement of the antideuteron inelast section

Paper: <u>PRL 125, 162001 (2020)</u>

First measurement of the ${}^{3}\overline{He}$ inelastic cross section

• Paper published in <u>Nature Physics</u>

First measurement of the ${}^{3}\overline{H}$ inelastic cross section.

• Paper in preparation

Effect of σ_{inel} measurements:

• Transparency of the galaxy to ${}^{3}\overline{\text{He}}$ from different sources

In the future ALICE will improve the precision of these measurements in Run 3!

Back-up slides

Particle identification in TPC and TOF Complementary information from TPC and TOF

detectors allows us to select high purity (anti)particles:

Particle identification in TPC and TOF Complementary information from TPC and TOF

detectors allows us to select high purity (anti)particles:

• TPC: dE/dx in gas

Particle identification in TPC and TOF Complementary information from TPC and TOF

detectors allows us to select high purity (anti)particles:

• TPC: dE/dx in gas

TOF measurement
$$\beta = \frac{v}{c}$$
, $p = \gamma\beta mc$ -> massing $\beta = \frac{v}{c}$

ass

Particle identification in TPC and TOF

• TOF measurement
$$\beta = -\frac{v}{c}$$
, $p = \gamma\beta mc$ -> ma

S. Koenigstorfer | 59th International Winter Meeting on Nuclear Physics in Bormio | 24.1.2023 22

ALICE material budget

ALICE material budget at mid-rapidity [1]:

- Beryllium beam pipe (~0.3% X_0)
- ITS (~8% X₀)
- **TPC (~4%** X₀)
- **TRD (~25%** X₀)
- **Space frame (~20%** X_0 between TPC and TOF)

ALICE measurements of $\sigma_{\text{inel}}(^{3}\overline{\text{He}})$ Introduction

Raw primary antiproton-to-proton ratio

Raw primary \overline{p}/p ratio:

ALICE measurements of $\sigma_{\text{inel}}(^{3}\overline{\text{He}})$ Introduction

Raw primary antiproton-to-proton ratio

Raw primary \overline{p}/p ratio:

- Higher loss of antiprotons in detector material
- Step at 0.7 GeV/c due to additional detector material

ALICE measurements of $\sigma_{inel}({}^{3}\overline{He})$ Introduction

Raw primary antiproton-to-proton ratio

Raw primary \overline{p}/p ratio:

- Higher loss of antiprotons in detector material
- Step at 0.7 GeV/c due to additional detector material
- Monte Carlo simulation:
- Detailed simulations of the ALICE detector performance
- Propagation with Geant4

ALICE measurements of $\sigma_{inel}({}^{3}\overline{He})$ Introduction

Raw primary antiproton-to-proton ratio

Raw primary \overline{p}/p ratio:

- Higher loss of antiprotons in detector material
- Step at 0.7 GeV/c due to additional detector material
- Monte Carlo simulation:
- Detailed simulations of the ALICE detector performance
- Propagation with Geant4

Agreement between data and MC confirms the correctness of the procedure.

ALICE measurements of $\sigma_{\text{inel}}(^{3}\overline{\text{He}})$ Propagation using GALPROP Introduction Summary

Antiproton inelastic cross section

 $\sigma_{inel}(\overline{p})$ on average ALICE detector material. Good agreement with Geant4 parameterization.

ALICE measurements of $\sigma_{inel}({}^{3}\overline{He})$ Propagation using GALPROP Introduction Summary

Antiproton inelastic cross section

 $\sigma_{inel}(\overline{p})$ on average ALICE detector material. Good agreement with Geant4 parameterization.

Comparison of pp and p-Pb systems

Comparison of raw primary antiparticle-to-particle ratio in p-Pb and pp collisions. ➡Consistent with the difference expected from primordial antimatter-to-matter ratio. The cross section measurements are independent of the collisions system, as expected. Analysis method is consistent.

Uncertainty due to σ_{inel} (proton)

How precise σ_{inel} (proton) is described by Geant4?

- Check available experimental data (Be,B,C,O,Al,Fe,Cu,Ge,Sn,Pb)
- Vary Geant4 parametrisation, calculate χ² for all data points
- Minimum χ² and ±1σ : 0.9925 +0.0375 -0.0325

S. Koenigstorfer | 59th International Winter Meeting on Nuclear Physics in Bormio | 24.1.2023 27

Parameterisations used in GEANT4

Direct Glauber calculations in GEANT4 in a run-time mode are too heavy \rightarrow parametrise Glauber calculations with [1]:

$$\sigma_{hA}^{tot} = 2\pi R_A^2 \ln\left[1 + \frac{A\sigma_{hN}^{tot}}{2\pi R_A^2}\right] \qquad \sigma_{BA}^{tot} = 2\pi \left(R_B^2 + R_A^2\right) \ln\left[1 + \frac{BA\sigma_{NN}^{tot}}{2\pi \left(R_B^2 + R_A^2\right)}\right] \\ \sigma_{hA}^{in} = \pi R_A^2 \ln\left[1 + \frac{A\sigma_{hN}^{tot}}{\pi R_A^2}\right], \qquad \sigma_{BA}^{in} = \pi \left(R_B^2 + R_A^2\right) \ln\left[1 + \frac{BA\sigma_{hN}^{tot}}{\pi \left(R_B^2 + R_A^2\right)}\right],$$

R_A cannot be directly connected with known values due to some simplifications Use equations as a determination of R_A having calculated σ_{hA} and σ_{BA} with Glauber

For total cross-section:

 $\bar{p}A R_A = 1.34A^{0.23} + 1.35/A^{1/3}$ (fm), $\bar{d}A R_A = 1.46A^{0.21} + 1.45/A^{1/3}$ (fm), $\bar{t}A R_A = 1.40A^{0.21} + 1.63/A^{1/3}$ (fm), $\bar{\alpha}A R_A = 1.35A^{0.21} + 1.10/A^{1/3}$ (fm).

[1] V.M. Grichine, Eur. Phys. J. C 62 (2009) 399, Nucl. Instrum. Methods B 267 (2009) 2460

For inelastic cross-section:

$$\bar{p}A R_A = 1.31A^{0.22} + 0.90/A^{1/3}$$
 (fm),
 $\bar{d}A R_A = 1.38A^{0.21} + 1.55/A^{1/3}$ (fm),
 $\bar{t}A R_A = 1.34A^{0.21} + 1.51/A^{1/3}$ (fm),
 $\bar{\alpha}A R_A = 1.30A^{0.21} + 1.05/A^{1/3}$ (fm).

Solar environment effects

Solar magnetic field forms heliosphere which shields cosmic rays. Solar modulation is accounted for using the Force-Field approximation [1] with Fisk potential ϕ = 0.4 GV:

$$F_{mod}(E_{mod},\phi) = F(E) \frac{(E-Z\phi)^2 - m_{^3He}^2}{E^2 - m_{^3He}^2} \ , \ {\rm where}$$

[1] Gleeson, Axford, Astrophys. J. 154 (1968) 1011

ere $E_{mod} = E - Z\phi$

 $^{3}\overline{He}$ in cosmic rays is expected to be exceedingly rare, since the secondary flux expected from cosmic ray collisions is negligible.

 ${}^{3}\overline{He}$ in cosmic rays is expected to be exceedingly rare, since the secondary flux expected from cosmic ray collisions is negligible.

• In ALICE, ca. $1^{3}\overline{He}$ per 10⁶ high multiplicity pp events at $\sqrt{s}=13$ TeV.

 ${}^{3}\overline{He}$ in cosmic rays is expected to be exceedingly rare, since the secondary flux expected from cosmic ray collisions is negligible.

- In ALICE, ca. $1^{3}\overline{He}$ per 10⁶ high multiplicity pp events at $\sqrt{s}=13$ TeV.
- AMS has teased the observation of ${}^3\overline{He}$ candidates at conferences for the past few years, but the results have not been published yet.

 ${}^{3}\overline{He}$ in cosmic rays is expected to be exceedingly rare, since the secondary flux expected from cosmic ray collisions is negligible.

- In ALICE, ca. $1^{3}\overline{He}$ per 10⁶ high multiplicity pp events at $\sqrt{s}=13$ TeV.
- AMS has teased the observation of ${}^3\overline{He}$ candidates at conferences for the past few years, but the results have not been published yet.

 ${}^{3}\overline{He}$ in cosmic rays is expected to be exceedingly rare, since the secondary flux expected from cosmic ray collisions is negligible.

- In ALICE, ca. $1^{3}\overline{He}$ per 10⁶ high multiplicity pp events at $\sqrt{s}=13$ TeV.
- AMS has teased the observation of ${}^{3}\overline{He}$ candidates at conferences for the past few years, but the results have not been published yet.
- If published, even the observation of 1 event would signal new physics, because the flux cannot currently be explained by any considered production process (except an antistar within 1 parsec).

 $^{3}\overline{He}$ in cosmic rays is expected to be exceedingly rare, since the secondary flux expected from cosmic ray collisions is negligible.

- In ALICE, ca. $1^{3}\overline{He}$ per 10⁶ high multiplicity pp events at $\sqrt{s}=13$ TeV.
- AMS has teased the observation of ${}^{3}\overline{He}$ candidates at conferences for the past few years, but the results have not been published yet.
- If published, even the observation of 1 event would signal new physics, because the flux cannot currently be explained by any considered production process (except an antistar within 1 parsec).
- This is why it is vital to measure these cross sections.

Physics of AMS on ISS: Complex anti-matter He, C, O

and S. Ting, 2018, Conference Kounine [1] A. Ko ICHEP

AMS ³He candidates

