Study of the D(p,γ)³H reaction at BBN energies with LUNA: implications in cosmology, particle physics and theoretical nuclear physics

Carlo Gustavino

- Introduction
- The $D(p,\gamma)^{3}$ He reaction at LUNA
- Experimental results
- d σ /d Ω Vs ab-initio calculations
- Baryon and radiation densities of Universe
- Conclusions

59th International Winter Meeting on Nuclear Physics 23-27 Jan 2023 Bormio, Italy

LUNA 400: experiment overview

LUNA 400 kV at LNGS

 $E_{beam} \approx 50 - 400 \text{ keV}$ I max $\approx 300 \text{ }\mu\text{A} \text{ protons},^{4}\text{He}$ Energy spread $\approx 70 \text{ eV}$

- ¹⁴N(p,γ)¹⁵O
- ³He(⁴He,γ)⁷Be
- ²⁵Mg(p,γ)²⁶Al
- ¹⁵N(p,γ)¹⁶O
- ¹⁷O(p,γ)¹⁸F
- ²H(⁴He,γ)⁶Li
- ${}^{22}Ne(p,\gamma){}^{23}Na$
- ¹³C(α,n)¹⁶O
- ^{12,13}C(p,γ)^{13,14}N
- ${}^{22}Ne(\alpha,\gamma){}^{23}Na$
- ²H(p,γ)³He

- (Sun,CNO-I cycle)
- (Sun, BBN)
- (Mg-Al Cycle)
- (CNO-II Cycle)
- (CNO-III Cycle)
- (BBN)
- (Ne-Na Cycle)
- (s-process)
- (¹²C/¹³C ratio)
- (s-process)
- (BBN)

- Mixing parameters of solar neutrinos
- Temperature and metallicity of Sun
- Stellar evolution
- Universal chemical composition
- Age of Universe
- Cosmology
- Particle physics
- Theoretical Nuclear physics
- •

Gran Sasso National Laboratories

LUNA

2023**→**

M

Background reduction with respect to Earth's surface: $\mu \sim 10^{-6}$

 $\gamma \sim 10^{-2} - 10^{-5}$ neutrons ~ 10^{-3}

LUNA 50 kV 1991-2001

> LUNA 400 kV 2000→...

$D(p,\gamma)^{3}$ He reaction before LUNA400

- Large systematic error of measurements at BBN energies (~10%)
- Measurements NOT in agreement with "ab-initio" calculations at the 20% level.
- Deuterium abundance error mainly due to the D(p,γ)³He reaction
- ♦ $\Delta(D/H)_{BBN} >> \Delta(D/H)_{obs}$

Di Valentino, C.G. et al. 2014)

Measurement goal:

- Cross section measurement at 30<E_{cm}[keV]<270 with ~ 3% accuracy
- Differential cross section measurement at 50<E_{cm}[keV]<270

Physics

- ↔ Cosmology: measurement of $Ω_b$
- ✤ Neutrino physics: measurement of N_{eff}
- Nuclear physics: comparison of data with "ab initio" predictions

$D(p,\gamma)^{3}$ He reaction before LUNA400

- Large systematic error of measurements at BBN energies (~10%)
- Measurements NOT in agreement with "ab-initio" calculations at the 20% level.
- Deuterium abundance error mainly due to the D(p,γ)³He reaction
- ♦ $\Delta(D/H)_{BBN} >> \Delta(D/H)_{obs}$

Reaction	Δ (D/H) _{BBN} /(D/H) _{BBN}
$p(n, \gamma)D$	0.08%
$D(p, \gamma)^3$ He	2.34%
$D(d, n)^3$ He	0.75%
$D(d,p)^{3}H$	0.49%

(Di Valentino, C.G. et al. 2014)

Measurement goal:

Cross section measurement at $30 \le E_{cm}[keV] \le 270$ with ~ 3% accuracy

Physics:

 Neutrino physics: measurement of N_{eff}
Nuclear physics: comparison of data with "ab initio" predictions

$D(p,\gamma)^{3}$ He reaction before LUNA400

- Large systematic error of measurements at BBN energies (~10%)
- Measurements NOT in agreement with "ab-initio" calculations at the 20% level.
- Deuterium abundance error mainly due to the D(p,γ)³He reaction
- ♦ $\Delta(D/H)_{BBN} >> \Delta(D/H)_{obs}$

Reaction	Δ (D/H) _{BBN} /(D/H) _{BBN}
$\mathrm{p}(\mathrm{n},\gamma)\mathrm{D}$	0.08%
$D(p, \gamma)^3$ He	2.34%
$D(d, n)^3$ He	0.75%
$D(d,p)^3H$	0.49%

(Di Valentino, C.G. et al. 2014)

Measurement goal:

Cross section measurement at $30 < E_{cm}$ [keV]<270 with ~ 3% accuracy

- ♦ Cosmology: measurement of Ω_b
- ✤ Neutrino physics: measurement of N_{eff}
- Nuclear physics: comparison of data with "ab initio" predictions

$D(p,\gamma)^{3}$ He reaction: setup

Ge1: Detection of $D(p,\gamma)^{3}He$ photons. $E\gamma \sim 5.7 \text{ MeV}$ **Ge2**: Ancillary detector for calibrations and monitoring

Setup commissioning

$$\sigma(E) = \int_0^L \frac{N_{\gamma} \cdot e}{t \cdot I_{beam} \cdot \rho(z) \cdot \varepsilon(z)} W(\vartheta(z)) dz$$

V. Mossa et al.: **Eur. Phys. J. A (2020) 56:144** https://doi.org/10.1140/epja/s10050-020-00149-1

Source	Method	$\Delta S/S$
Beam energy	Direct measurement	$\ll 1\%$
Energy loss	Low pressure	$\ll 1\%$
T and P profiles	Direct measurement	1.0%
Beam heating	Direct measurement	0.5%
Gas purity	Data sheet	$\ll 1\%$
Beam current	Calorimeter calibration	1.0%
Efficiency	Direct measurement	2.0%
Instrumental effects	Pulser method	$\ll 1\%$
Angular distribution	Peak shape analysis	0.5%
Total		2.6%

Moreover:

- Beam induced background \rightarrow Dedicated measurements
- Energy loss→Ziegler formulae/direct measurements
- Detailed simulation to correct second order effects

•

Setup commissioning

$$\sigma(E) = \int_0^L \frac{N_{\gamma} \cdot e}{t \cdot I_{beam} \cdot \rho(z) \cdot \varepsilon(z)} W(\vartheta(z)) dz$$

1384+6172

2375+5181

The gamma efficiency along the target is measured exploiting gamma coincidence of the ${}^{14}N(p,2\gamma){}^{15}O$ reaction at $E_R=259$ keV

57.8

17.1

Setup commissioning

$$\sigma(E) = \int_0^L \frac{N_{\gamma} \cdot e}{t \cdot I_{beam} \cdot \rho(z) \cdot \varepsilon(z)} W(\vartheta(z)) dz$$

The gamma efficiency along the target is measured exploiting gamma coincidence of the ${}^{14}N(p,2\gamma){}^{15}O$ reaction at $E_R=259$ keV

The D(p, γ)³He reaction: Results

$D(p,\gamma)^{3}$ He Total cross section

$$\sigma(E) = \int_0^L \frac{N_{\gamma} \cdot e}{t \cdot I_{beam} \cdot \rho(z) \cdot \varepsilon(z)} W(\vartheta(z)) dz$$

LUNA result:

- Improved accuracy with respect to previous data
- Higher cross section with respect to previous experimental data
- Lower cross section with respect to theoretical calculations

The D(p, γ)³He reaction: Results

$D(p,\gamma)^{3}$ He differential cross section

The use of extended target leads to a doppler broadening of the full detection peak

Peak Shape Analysis (PSA) provides the angular distribution of emitted photons

Deuterium abundance Vs Big Bang Nucleosynthesis

p

BBN is the result of the competition between the relevant nuclear processes and the expansion rate of the early universe:

$$H^2 = \frac{8\pi}{3} G\rho$$
$$= \rho_\gamma \left(1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\text{eff}} \right)$$

Deuterium abundances only depends on: -Baryon density Ω_b -Particle Physics (N_{eff}, α ...) -Nuclear Astrohysics, i.e. Cross sections of relevant processes at BBN energies

Comparison of calculations and observations leads to:

-Determination of the baryon density $(\Omega_b h^2)_{BBN}$ -Constrain on "dark radiation" (axions, sterile v,..)

Baryon density

-the baryon density $\Omega_b h^2$ (i.e. the baryon-to-photon ratio η) is a fundamental cosmological free parameter. Its value is directly related to the matter-antimatter asymmetry of Universe. - $\Omega_b h^2$ (BBN) is derived by comparing (D/H)_{obs} with (D/H)_{BBN}.

 $-\Omega_b h^2$ (CMB) is also inferred from the global analysis of CMB anisotropies.

Baryon density

-the baryon density $\Omega_b h^2$ (i.e. the baryon-to-photon ratio η) is a fundamental cosmological free parameter. Its value is directly related to the matter-antimatter asymmetry of Universe. - $\Omega_b h^2$ (BBN) is derived by comparing (D/H)_{obs} with (D/H)_{BBN}.

 $-\Omega_b h^2$ (CMB) is also inferred from the global analysis of CMB anisotropies.

N.B.

 $\Omega_b h^2$ (BBN) reflects the Universe as it was in the first minutes of Cosmic time.

 $\Omega_{\rm b}h^2$ (CMB) is derived when the Universe was some 380.000 years old.

A simple extension of the Λ CDM model has been considered, in which N_{eff} is a free parameters (N_{eff}=3.045 in the Standard Model):

A simple extension of the Λ CDM model has been considered, in which N_{eff} is a free parameters (N_{eff}=3.045 in the Standard Model):

1) Combining observed and predicted D/H with the observed and predicted Y_p

A simple extension of the Λ CDM model has been considered, in which N_{eff} is a free parameters (N_{eff}=3.045 in the Standard Model):

1) Combining observed and predicted D/H with the observed and predicted Y_p

2) Combining observed and predicted D/H with $\Omega_{b}(CMB)$

A simple extension of the Λ CDM model has been considered, in which N_{eff} is a free parameters (N_{eff}=3.045 in the Standard Model):

1) Combining observed and predicted D/H with the observed and predicted $Y_p \rightarrow N_{eff}=2.87\pm0.28$ 2) Combining observed and predicted D/H with $\Omega_b(CMB) \rightarrow N_{eff}=2.95\pm0.22$

→LUNA data are consistent with the existence of only **3 neutrino families**. No evidence of a sizeable amount of "dark radiation" (e.g. sterile neutrinos, hot axions).

Summary and outlook

-The theoretical $(D/H)_{BBN}$ abundance has been improved by the $D(p,\gamma)^3$ He study at LUNA - $\Omega_b(BBN)$ is now derived with a precision of 1.6% percent, in excellent agreement with $\Omega_b(CMB)$ -Room for a sizeabe amount of extra relativistic particles is further reduced ($\Delta N_{eff}/N_{eff}$ ~7%)

Looking forward:

OBSERVATIONS: More accurate determination of the primordial ⁴He abundance, with 4th generation of CMB experiments and/or with improved ⁴He direct observations $\rightarrow N_{eff}$ NUCLEAR PHYSICS: New precision d(d,n)³He and d(d,p)t data $\rightarrow \Omega_{b}$ (BBN)

Thank you!