
Quantum field-theoretic machine learning

Dimitrios Bachtis

Joint work with Profs. Gert Aarts and Biagio Lucini.



Can we view machine learning as part of 

quantum field theory?

And why?
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Probability distribution

A probability distribution is a product of strictly positive and appropriately normalized factors (or 
potential functions) ψ:
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Probability distribution

A probability distribution is a product of strictly positive and appropriately normalized factors (or 
potential functions) ψ:

1. Factors are the fundamental building blocks of probability distributions. 

2. By controlling the factors we are able to control the form of the probability distribution.
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Representation

We require some form of representation to construct the probability distribution. We 
are going to use a finite set 𝛬 that we express as a graph 𝓖(𝛬,e) where e is the set of 

edges in 𝓖.

A clique c is a subset of 𝛬 where the points are pairwise connected. A maximal clique is 
a clique where we cannot add another point that is pairwise connected with all the 

points in the subset.
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Representation

We require some form of representation to construct the probability distribution. We 
are going to use a finite set 𝛬 that we express as a graph 𝓖(𝛬,e) where e is the set of 

edges in 𝓖.

A clique c is a subset of 𝛬 where the points are pairwise connected. A maximal clique is 
a clique where we cannot add another point that is pairwise connected with all the 

points in the subset.

There are only two maximal cliques, the subsets {A,B,C} and {C,D}.

{A,B} is a clique but it is not maximal because another point (C) can 
be included that is pairwise connected with both {A,B}.

{A,B,C,D} is not a clique and not maximal because (D) is not pairwise 
connected with all other points (and vice versa).
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Representation

On the square lattice a 
maximal clique is a link.

On a triangular lattice a 
maximal clique is a triangle.

On the square lattice with 
both diagonals a maximal 

clique is a square.

On the bipartite graph, 
which represents 

conventional neural 
network architectures a 
maximal clique is a link.
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Representation

Given a graph 𝓖(𝛬,e), the random variables φi at each point i define a Markov 
random field if they fulfill the local Markov property with respect to 𝓖.

The local Markov property denotes that a random variable φi depends only on its 
neighbors and it is conditionally independent of all other random variables in the 

set:
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Representation

Hammersley-Clifford theorem

A strictly positive distribution p satisfies the local Markov property of an 
undirected graph 𝓖, if and only if p can be represented as a product of strictly 

positive potential functions ψc over 𝓖, one per maximal clique c, i.e.

where Z is the partition function and φ are all possible states of the system.
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Representation

There are two different directions to pursue:

1. We can devise potential functions that satisfy the Hammersley-Clifford theorem to 
construct a Markov random field.
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Representation

There are two different directions to pursue:

1. We can devise potential functions that satisfy the Hammersley-Clifford theorem to 
construct a Markov random field.

2. We can evaluate if known physical systems can be recast within this mathematical 
framework by verifying instead if they satisfy the theorem.

We will pursue the second direction. 
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2d φ4 theory:
Representation

k
L
,μ

L
,λ

L
 dimensionless parameters

Inhomogeneous φ4 theory:

wij
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Representation

The φ4 theory is formulated on a square lattice which is equivalent to a graph 𝓖(𝛬,e) 
where 𝛬 is the set of lattice sites and e the links. A non-unique choice of potential 

function per each maximal clique is:

The probability distribution is expressed as a product of strictly positive potential 
functions ψ, over each maximal clique:

The φ4 theory satisfies Markov properties and it is therefore a Markov random field.
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Representation

The Markov property in a Markov chain

φ1 φ2 φ3 φ4 φ5
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Representation

The Markov property in a Markov chain

φ1 φ2 φ3 φ4 φ5

Not allowed!!
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Representation

The Markov property in a Markov chain

φ1 φ2 φ3 φ4 φ5

A Markov random field satisfies the Markov property in high-dimensions

φ8

φ5

φ2

φ4 φ6

φ1 φ3

φ7 φ9
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Learning

Having established that certain physical systems are Markov random 

fields, how do we use them for machine learning?
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Learning

Having established that certain physical systems are Markov random 

fields, how do we use them for machine learning?

Exactly in the same way as any other machine learning algorithm...
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Learning

The φ4 theory has a probability distribution p(φ;θ) with action S(φ;θ):

 We now consider a different statistical system or quantum field theory with action or 
Hamiltonian Α and a target probability distribution q(φ):
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Learning

 We can then define an asymmetric distance between the probability distributions p(φ;θ) and 
q(φ), which is called the Kullback-Leibler divergence:
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Learning

 We can then define an asymmetric distance between the probability distributions p(φ;θ) and 
q(φ), which is called the Kullback-Leibler divergence:

We want to minimize the Kullback-Leibler divergence.

By minimizing it we would make the two probability distributions equal. We can then use the 
probability distribution p(φ;θ) to draw samples from the target distribution q(φ). In essence 
after the minimization we have created a mapping between the probability distributions of 

the two systems.
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Learning

We now substitute the two probability distributions in the Kullback-Leibler divergence to obtain:

The expression above sets a rigorous upper bound to the calculation of the free energy of the 
system with action A and this calculation is conducted entirely on samples drawn from the 

distribution p(φ;θ) of the φ4 theory. 
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Learning

To minimize the variational free energy we implement a gradient-based approach:

We then update the coupling constants θ at each step t until convergence.

After training we expect that, practically:
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Learning

to learn an action that includes longer-range interactions:

A proof-of-principle demonstration is to use the inhomogeneous action S:
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Learning

to learn an action that includes longer-range interactions:

A proof-of-principle demonstration is to use the inhomogeneous action S:
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Learning

What does the approximate equality of two probability distributions imply? 

We anticipate that observables calculated under the ensembles will also be 
approximately equal.
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Learning

What does the approximate equality of two probability distributions imply? 

We anticipate that observables calculated under the ensembles will also be 
approximately equal.

The numerical estimator/expectation value of an arbitrary observable O during a Monte 
Carlo simulation:
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Three reweighting (simultaneous) steps: Make the (already trained) inhomogeneous action S:

Equal to the target action A (acts as a correction step):

Learning
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Three reweighting (simultaneous) steps: Make the (already trained) inhomogeneous action S:

g’

Equal to the target action A (acts as a correction step):

Extrapolate in the parameter space along the trajectory of a coupling constant g’ of A

Learning
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Three reweighting (simultaneous) steps: Make the (already trained) inhomogeneous action S:

g’

g’

Equal to the target action A (acts as a correction step):

Extrapolate in the parameter space along the trajectory of a coupling constant g’ of A

Extrapolate to an imaginary term

Learning
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Learning
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Learning

Conclusion:
Inhomogeneous actions give rise to probability distributions that have increased 

representational capacity compared to those of homogeneous actions.

Simply put, an inhomogeneous system can approximate target distributions better than what the 
same homogeneous system can.
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Learning

Conclusion:
Inhomogeneous actions give rise to probability distributions that have increased 

representational capacity compared to those of homogeneous actions.

Simply put, an inhomogeneous system can approximate target distributions better than what the 
same homogeneous system can.
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Neural Networks

φ4 Markov random field φ4  neural network

Hidden layer

Visible layer
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Neural Networks

The φ4 neural network:

 is a generalization of other neural network architectures:

Gaussian-Gaussian 
restricted Boltzmann 

machine:

bi=nj=0

Gaussian-Bernoulli 
restricted Boltzmann 

machine:

bi=nj=mj=0
hj binary

Bernoulli-Bernoulli 
restricted Boltzmann 

machine:

bi=nj=mj=ai=0
φι,hj binary

φ4-Bernoulli restricted 
Boltzmann machine:

mj=nj=0
hj binary

Has not been studied yet

φ4 equivalence with the Ising model (under an appropriate limit)
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Learning

The same approach can be used even when the probability distribution is not known, but we 
have the probability distribution encoded in some available data. The data can be anything: 

images or experimental data or a set of Monte Carlo configurations.

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, (arXiv:2102.09449), Phys. Rev. D 103, 074510.
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Learning

Can we view machine learning functions as statistical-mechanical 
observables (in a somewhat formal manner)?
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Training of a neural network on the Ising model:

Labeled as 0.

Labeled as 1. Labeled as 1.

Labeled as 0.

f(·)

Neural Networks as Physical Observables

Extending machine learning classification capabilities with histogram reweighting, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102 (2020). 
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f(·)

Neural Networks as Physical Observables

Probability that a 
configuration is in the 

broken-symmetry 
phase

Extending machine learning classification capabilities with histogram reweighting, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102 (2020). 
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f(·)

Neural Networks as Physical Observables

Probability that a 
configuration is in the 

broken-symmetry 
phase

The configuration is drawn from an 
equilibrium distribution and therefore 
has an associated Boltzmann weight.

The output is calculated on the 
configuration so it must have the 

same Boltzmann weight.

Extending machine learning classification capabilities with histogram reweighting, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102 (2020). 
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The neural network function is an observable in the 
system:

Neural Networks as Physical Observables

: configuration of the system

: Boltzmann probability distribution

: inverse temperature

Extending machine learning classification capabilities with histogram reweighting, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102 (2020). 
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Neural Networks as Physical Observables

Extending machine learning classification capabilities with histogram reweighting, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102 (2020). 
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Results obtained by quantities derived entirely from the neural network

Neural Networks as Physical Observables



45

The function f(·) was learned on configurations of the Ising model and f(x) can 
successfully predict the phase of Ising configurations x.

 But what happens if we give configurations x’ of a different system as input to 
the Ising-learned function f(·)?

 Can we accurately separate phases in different systems?
 Can we discover a phase transition through f(x’)?

Neural Networks as Physical Observables

Mapping distinct phase transitions to a neural network, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102, 053306 (2020).
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f(·)

?

Learned on Ising configurations

Equivalently:

Neural Networks as Physical Observables

Mapping distinct phase transitions to a neural network, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102, 053306 (2020).
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Results obtained through a function f learned exclusively on the Ising model.

Potts models:

Neural Networks as Physical Observables

Mapping distinct phase transitions to a neural network, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102, 053306 (2020).
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φ4 scalar field theory:

Fixed dimensionless λ=0.7 and varied the 
dimensionless mass μ2

Results obtained through a function f learned exclusively on the Ising model.

Neural Networks as Physical Observables

Mapping distinct phase transitions to a neural network, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102, 053306 (2020).
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Neural Networks as Physical Observables
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Adding Machine Learning within Hamiltonians

But what does this mean?

The neural network function f is an observable in the system. 
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Adding Machine Learning within Hamiltonians

Parameters, constraints or fields that interact with a system have conjugate 
variables which represent the response of the system to the perturbation 

of the corresponding parameter. 

Can we make the same statement about the neural network function f? 

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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Adding Machine Learning within Hamiltonians

We considered that Vf, where V is the volume of the system, couples to an arbitrary 
external field Y and defined a modified Hamiltonian for the Ising model: 

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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Adding Machine Learning within Hamiltonians

We considered that Vf, where V is the volume of the system, couples to an arbitrary 
external field Y and defined a modified Hamiltonian for the Ising model: 

The question:
What happens if we allow a statistical system to interact with a neural 
network that has been trained to accurately separate its phases? The 

external field Y denotes the strength of the interaction.

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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Adding Machine Learning within Hamiltonians

Expectation value of an arbitrary observable <O> during a Monte Carlo simulation in the 
modified system: 

By choosing equal to the probabilities of the original system:

This form of reweighting is Hamiltonian-agnostic.
Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 

Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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Adding Machine Learning within Hamiltonians

Recall that:
β=0.43-> symmetric phase
β

c
≅0.440687 -> inverse critical temperature

β=0.45-> broken-symmetry phase

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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Adding Machine Learning within Hamiltonians

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).



57

Renormalization Group in Real Space

We then studied the neural network function f within the framework of the 
renormalization group and we were able to obtain the two relevant operators v and θ that 

govern the divergence of the correlation length in the Ising model as well as its critical 
point β

c
.

Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts and B. 
Lucini, Phys. Rev. Research 3, 013134 (arXiv:2010.00054).
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Conclusions

For machine learning in phase transitions:

1. No knowledge about the order parameter is required. Effective order parameters can 
be constructed for systems that undergo distinct phase transitions (universality class, 
order, etc.).

2. Machine learning observables can be extrapolated or interpolated in parameter space 
with reweighting. This can additionally be achieved with Hamiltonian-agnostic 
reweighting.

3. Neural networks can be included in Hamiltonians/lattice actions to break or restore 
symmetries.

4. We can obtain multiple critical exponents with machine learning functions.
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Conclusions

All one needs to conduct machine learning is any probability distribution p(φ;
θ):

For quantum field-theoretic machine learning:
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All one needs to conduct machine learning is any probability distribution p(φ;
θ):

Why do we ensure that the Markov property is satisfied?

Conclusions

For quantum field-theoretic machine learning:
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Conclusions

If we view machine learning as a physical concept...

...is lattice field theory the appropriate tool to describe it?
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Conclusions

A (mathematically rigorous) bridge between Euclidean and Minkowski QFT:
Construction of quantum fields from Markoff fields, E. Nelson, J. Funct. Anal. 12, 97 (1973)

The Lattice is…
1. Mathematical.
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Conclusions

The Lattice is…
1. Mathematical.
2. Theoretical.

The physics of inhomogeneous quantum field theories:
Renormalization Group in Field Theories with Quantum Quenched Disorder, V. Narovlansky and O. Aharony,  Phys. Rev. Lett. 121, 071601 (2018)

Renormalization group flow in field theories with quenched disorder, O. Aharony and V. Narovlansky,  Phys. Rev. D 104398, 045012 (2018).
Disorder in large-N theories , O. Aharony, Z. Komargodski, & S. Yankielowicz,  J. High Energ. Phys. 2016, 13 (2016).
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Conclusions

The Lattice is…
1. Mathematical.
2. Theoretical.
3. Experimental.

An interesting read:

The Hintons in your Neural Network: a Quantum Field Theory View of Deep Learning, Roberto Bondesan, Max Welling, arXiv:2103.04913.
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Conclusions

The Lattice is…
1. Mathematical.
2. Theoretical.
3. Experimental.
4. Computational.
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Conclusions

The Lattice is…
1. Mathematical.
2. Theoretical.
3. Experimental.
4. Computational.

Thank you for your attention!
Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, (arXiv:2102.09449), Phys. Rev. D 103, 074510.
Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration, D. Bachtis, G. Aarts 
and B. Lucini, Phys. Rev. Research 3, 013134 (2020).
Mapping distinct phase transitions to a neural network, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102, 053306 (2020).
Extending machine learning classification capabilities with histogram reweighting, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. E 102 (2020). 
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