
Deep Learning HMC
Building Topological Samplers for Lattice QCD

Sam Foreman
May, 2021

saforem2/l2hmc-qcd
 arXiv:2105.03418

http://github.com/saforem2/l2hmc-qcd
https://arxiv.org/abs/2105.03418
https://github.com/saforem2/l2hmc-qcd

Acknowledgements
This research used resources of the

Argonne Leadership Computing Facility,
which is a DOE Office of Science User
Facility supported under Contract DE-

AC02-06CH11357.

Collaborators:

Xiao-Yong Jin
James C. Osborn

Huge thank you to:

Norman Christ
Akio Tomiya
Luchang Jin
Chulwoo Jung

Peter Boyle
Taku Izubuchi
Critical Slowing Down group (ECP)
ALCF Staff + Datascience group

MCMC in Lattice QCD
Generating independent gauge configurations is a MAJOR
bottleneck for LatticeQCD.
As the lattice spacing, , the MCMC updates tend to get
stuck in sectors of fixed gauge topology.

This causes the number of steps needed to adequately
sample different topological sectors to increase
exponentially.

a→ 0

Critical slowing down!

Markov Chain Monte Carlo (MCMC)

Goal: Draw independent samples from a target distribution, p(x)

x =′ x +0 δ, δ ∼ N (0, 1)

Starting from some initial state , we generate
proposal configurations

x ∼0 N (0, 1)
x′

Use Metropolis-Hastings acceptance criteria

x =i+1 {x , with probability A(x ∣x)′ ′

x, with probability 1 −A(x ∣x)′

A(x ∣x) =′ min 1,{
p(x)
p(x)′

∣∣
∣∣ ∂xT
∂x′

∣∣
∣∣}

dropped Inefficient!

Issues with MCMC

 1. Construct chain:
x →0 x →1 x →2 ⋯→ x →m−1 x →m x →m+1 ⋯→ x →n−2 x →n−1 xn

, where x =′ x + δ δ ∼ N (0, 1)

Generate proposal :x′

random walk

x →0 x →1 x →2 ⋯→ x →m−1 x →m x →m+1 ⋯→ x →n−2 x →n−1 xn

 3. Drop correlated samples ("thinning"):

saved

Goal: Generate an ensemble of independent configurations

x →0 x →1 x →2 ⋯→ x →m−1 x →m x →m+1 ⋯→ x →n−2 x →n−1 xn

 2. Thermalize ("burn-in"):

Hamilton's Equations

Hamiltonian Monte Carlo (HMC)

Introduce fictitious momentum: v ∼ N (0, 1)

Target distribution: p(x) ∝ e−S(x)

=ẋ ,∂v
∂H =v̇ − ∂x

∂H

Joint target distribution:

p(x, v) = p(x) ⋅ p(v) = e ⋅−S(x) e =− v v2
1 T

e−H(x,v)

p(x, v) = p(x∣v)p(v)

lift to phase space
v ∼ N (0, 1)

H = const

H(x, v) = S(x) + v v2
1 T

Hamiltonian:

Hamilton's Eqs:
=ẋ , =∂v

∂H v̇ − ∂x
∂H

(x , v) →0 0 ⋯→ (x , v)NLF NLF

 leapfrog steps:NLF

(trajectory)

⟹

HMC: Leapfrog Integrator

Leapfrog Integrator

x =′ x+ εv1/2

v =′ v −1/2 ∂ S(x)2
ε

x
′

v =1/2 v − ∂ S(x)2
ε

x

2. Full-step -update:x

3. Half-step -update:v

1. Half-step -update:v

HMC: Issues

Cannot easily traverse low-density zones.

What do we want in a good sampler?
Fast mixing
Fast burn-in

Mix across energy levels
Mix between modes

Energy levels selected randomly slow mixing!⟶

Stuck!

Leapfrog Layer
Introduce a persistent direction
 (forward/backward)

d ∼ U(+,−)

Let denote a complete state, then
the target distribution is given by

ξ = (x, v, ±)

p(ξ) = p(x) ⋅ p(v) ⋅ p(d)
Introduce a discrete index to
denote the current leapfrog step

k ∈ {1, 2,… ,N }LF

Each leapfrog step transforms
 by passing it through the leapfrog

layer

ξ =k (x , v , ±) →k k

(x , v , ±) =k
′′

k
′′ ξk

′′ kth

-update :x (d = +)

x =k
′ Λ (x ; ζ)k

+
k xk

= x ⊙k exp ε s (ζ) +(x
k

x
k

xk) ε v ⊙ exp ε q (ζ) + t (ζ)x
k [k

′ (x
k

x
k

xk) x
k

xk]

ζ ≡xk (⊙ x , ∂ S(x))k x km̄t

masks: mtm̄t = 1+

() -independentmt⊙ x

Each leapfrog step transforms by
passing it through the leapfrog layer.

ξ =k (x , v , ±) →k k (x , v , ±) =k
′′

k
′′ ξk

′′

kth

≡ v ⊙k exp s (ζ) −(2
εv
k

v
k

vk) ∂ S(x) ⊙ exp ε q (ζ) + t (ζ)2
εv
k

[x k (v
k

v
k

vk) v
k

vk]

ζ ≡vk (x , ∂ S(x))k x k

-update :v (d = +)

v =k
′ Γ (v ; ζ)k

+
k vk

(-independent)v

Momentum () scalingvk Gradient scaling∂ S(x)x k Translation

Leapfrog Layer

where , and , are parameterized by neural networks(s , q , t)v
k

v
k

v
k (s , q , t)x

k
x
k

x
k

L2HMC: Generalized Leapfrog
Complete (generalized) update:

1. Half-step update:

2. Full-step update:

3. Full-step update:

4. Half-step update:

v

x2
1

x2
1

v

v =k
′ Γ (v ; ζ)±

k vk

x =k
′ ⊙x +k ⊙Λ (x ; ζ)±

k xkm̄t mt

x =k
′′ ⊙Λ (x ; ζ) +k

±
k
′

x
k
′ ⊙xk

′m̄t mt

v =k
′′ Γ (v ; ζ)±

k
′

v
k
′

masks: Stack of fully-
connected layers

Leapfrog Layer
x ∈k U(1)⟶
x =k cos θ, sin θ[]

Training Algorithm

 construct
trajectory

Compute loss
 + backprop

 Metropolis-Hastings
 accept/reject

 re-sample
 momentum
 + direction

Maximize

L θ ≡θ () E A(ξ ∣ξ) ⋅ δ(ξ , ξ)p(ξ) [′ ′]

Example: GMM ∈ R2
Define the squared jump distance:
δ(ξ , ξ) =′ ∥x −′ x∥2

2

Note:
 = acceptance probability

= avg. distance

 = initial state

 = initial state

A(ξ , ξ)′

A(ξ ∣ξ) ⋅′ δ(ξ , ξ)′

ξ

ξ

HMC
L2HMC

expected squared jump distance:

Annealing Schedule

p (x) ∝t e , for t =−γ S(x)t 0, 1,… ,N

For , this helps to rescale (shrink) the energy barriers
between isolated modes

Allows our sampler to explore previously inaccessible regions
of the target distribution

∥γ ∥ <t 1

Target distribution becomes:

γ ={ t}t=0
N

γ , γ ,… , γ , γ ,{ 0 1 N−1 N}

γ <0 γ <1 …< γ ≡N 1

γ −t+1 γ ≪t 1

Introduce an annealing schedule during the training phase:

(varied slowly)

 e.g. {0.1, 0.2,… , 0.9, 1.0}

(increasing)

Topological charge:

x =⌊ P ⌋ x −P 2π ⌊ 2π
x +πP ⌋

Q =Z x ∈2π
1 ∑P ⌊ P ⌋ Z

Q =R sinx ∈2π
1 ∑P P R

Lattice Gauge Theory
Link variables:

U (x) =μ e ∈ix (n)μ U(1)
x (n) ∈μ [−π,π]

Wilson action:

S (x) =β β 1 −∑P cosxP
x =P x (n) +μ x (n+ν) −μ̂ x (n+μ) −ν̂ x (n)ν

continuous,
differentiable

discrete, hard to
work with

Non-Compact Projection

 [1.] "Normalizing Flows on Tori and Spheres" arXiv:2002.02428

[1.]
Project onto using a transformation: ,

Perform the update in

Project back to using the inverse transformation ,

These steps can be combined into a single update equation

with corresponding Jacobian factor

[−π,π] R z = g(x) g : [−π,π] → R
z = tan (2

x)

R
z =′ m ⊙t z + ⊙m̄t [αz + β]

[−π,π] x = g (z)−1

g :−1 R → [−π,π]

x = 2 tan (z)−1

x =′ m ⊙t x+ ⊙m̄t 2 tan α tan + β[−1 ((2
x))]

=∂x
∂x′

cos (x/2)+exp(2εs) sin(x/2)2
x

exp(εs)x

x ∈k U(1)⟶
x =k cos θ, sin θ[]

https://arxiv.org/abs/2002.02428
https://arxiv.org/abs/2002.02428
https://arxiv.org/abs/2002.02428
https://arxiv.org/abs/2002.02428
https://arxiv.org/abs/2002.02428

We maximize the expected squared charge difference:

Loss function: L(θ)

δQ (ξ , ξ) ≡R
2 ′ Q (x) −Q (x)(R

′
R)2

L(θ) = E −δQ (ξ , ξ) ⋅A(ξ ∣ξ)p(ξ) [R
2 ′ ′]

A(ξ ∣ξ) =′ min 1,{
p(ξ)
p(ξ)′

∣
∣∣∣ ∂ξT
∂ξ′

∣
∣∣∣}

Want to calculate: ⟨O⟩ ∝ Dx O(x)e∫ [] −S[x]

If we had independent configurations, we could approximate
by ⟨O⟩ ≃ O(x)⟶

N
1 ∑n=1

N
n σ =2 Var O(x) ∝

N
1 []

N
1

β = 5 β = 6 β = 7

Results: τint
QZ

Instead, we account for the autocorrelation, so the
variance becomes: σ =2 Var O(x)

N

τint
O

[]

Rescale: to
account for different

trajectory lengths

N ⋅LF τint
QZ

Results: τint
QZ

We maximize the expected
squared charge difference:

δQ (ξ , ξ) ≡R
2 ′ Q (x) −Q (x)(R

′
R)2

L(θ) = E −δQ (ξ , ξ) ⋅A(ξ ∣ξ)p(ξ) [R
2 ′ ′]

A(ξ ∣ξ) =′ min 1,{
p(ξ)
p(ξ)′

∣∣
∣∣ ∂ξT
∂ξ′

∣∣
∣∣}

Interpretation
Look at how different quantities evolve over a
single trajectory

See that the sampler artificially increases the
energy during the first half of the trajectory
(before returning to original value)

Le
ap

fr
og

 s
te

p

variation in the avg plaquette continuous topological charge shifted energy

leapfrog step

⟨x
−

P
x
⟩

p∗

Interpretation
Look at how the variation in
varies for different values of

⟨δx ⟩P
β

 β = 7

≃ β = 3

Training Costs
We trained our model(s) using with on
the supercomputer at the Argonne Leadership
Computing Facility.
A typical training run:

1 node (8 NVIDIA A100 GPUs)
 Batch size
Hidden layer shapes
Leapfrog layers
Lattice volume
Training steps

 24 hours to complete.

Horovod TensorFlow
ThetaGPU

×
M = 2048

= {256, 256, 256}
N =LF 10
= 16 × 16
= 5 × 105

≃

https://github.com/horovod/horovod
https://tensorflow.org/
https://www.alcf.anl.gov/support-center/theta/theta-thetagpu-overview

Next Steps
Going forward, we plan to:

Continue testing on larger lattice
volumes to better understand
scaling efficiency
Generalize to 2D / 4D
Test alternative network
architectures

Gauge Equivariant layers

SU(3)

Thanks for listening!
Interested?

arXiv:2105.03418

saforem2/l2hmc-qcd

slides.com/samforeman/dlhmc

https://arxiv.org/abs/2105.03418
http://github.com/saforem2/l2hmc-qcd
https://github.com/saforem2/l2hmc-qcd
http://slides.com/samforeman/dlhmc

