Deep Learning HMC

Building Topological Samplers for Lattice QCD

e

F

0.2 -5 0 5 500 1000
Or H—> log|J|
Sam Foreman saforem2/12hmc—chO
Argonne & May, 2021

http://github.com/saforem2/l2hmc-qcd
https://arxiv.org/abs/2105.03418
https://github.com/saforem2/l2hmc-qcd

Acknowledgements

Collaborators: This research used resources of the
Argonne Leadership Computing Facility,
° Xiao_YongJin which is a DOE Office of Science User

Facility supported under Contract DE-

o
James C. Osborn AC02-06CH11357.

Huge thank you to:

e Norman Christ e Peter Boyle
e Akio Tomiya e Taku lzubuchi
e LuchangJin e Critical Slowing Down group (ECP)

e Chulwoo Jung ALCF Staff + Datascience group

_—
2R U.S. DEPARTMENT OF : > \

{(0JENERGY Argonne@ & (L

NATIONAL LABORATORY

EXASCALE COMPUTING PROJECT

MCMC in Lattice QCD

e Generating independent gauge configurations is a MAJOR
bottleneck for LatticeQCD.
e As the lattice spacing, a — 0, the MCMC updates tend to get

stuck in sectors of fixed gauge topology.
= This causes the number of steps needed to adequately

sample different topological sectors to increase
exponentially.

B=1
1
n — HMC

Critical slowing down!

0.0 0.2 0.4 0.6 0.8 1.0
MC Step x10°

Markov Chain Monte Carlo (MCMC)

e Goal: Draw independent samples from a target distribution, p(x)

e Starting from some initial state =y ~ M (0,1) , we generate
proposal configurations x'

' =xz9+6, §~N(0,1)
e Use Metropolis-Hastings acceptance criteria
~J &', with probability A(z'|z)
i {:c, with probability 1 — A('|x)

|

oz’
OxT

p(z)

A(z'|z) = min {1, plz)

Issues with MCMC

Goal: Generate an ensemble of independent configurations

e Generate proposal z':

' =z + 6, where§ ~ N(0,1)
1. Construct chain:

Ty —> T1 —> Ty —> = Tyl —> Ty —> Tyl —> =+ *

2. Thermalize ("burn-in"):

3. Drop correlated samples ("thinning"):

- saved

e R e
B -

random walk
— Lp—92 7> Tp_1 —7 Tp

—> Tp—9 —> Lpn—1 —7 Tn

s

Inefficient!

Hamiltonian Monte Carlo (HMC()

Target distribution: p(x) xe

—S(x)

e Introduce fictitious momentum: v ~ N(0,1)

Joint target distribution:
p(z,v) = p(z) - p(v) =e”

Hamilton's Equations

S(x) | e—%vTv _ e—’H(a:,’u)
n _ OH o OH
L= 5,5 V= Ox

AD
‘H = const

p(z,v) = p(z[v)p(v) m ')
lift to phase space = ﬂ >

v~ N(0,1)

X

HMC: Leapfrog Integrator

Leapfrog Integrator| . Hamiltonian: —

1. Half-step v-update: H(z,v) = S(z) + %'UT’U
/2 =y — £0,5() « Hamilton's Eqs:
2. Full-step z-update: p— OH 5 _OH
Oov oz

r' =z + evl/?

e Nipr leapfrog steps:

3. Half-step v-update:
V1?2 — £0,8(x') (x07 UO) o T (a:NLF7 UNLF)

(trajectory)

HMC: Issues

e Energy levels selected randomly — slow mixing!

e Cannot easily traverse low-density zones.

e What do we want in a good sampler?

e Fast mixing
e Fast burn-in

e Mix across energy levels
e Mix between modes

0.5 {
I G A
' 8502
[. ‘\T\Q\ %
00 -_ ! % -B'G,’ 1)
o= s oV
| i 2V
_05 B . - . Stu M 1 . .)
0.5F \ Ck/
Reo—ao o0
0.0__ { ,.’ A
I O ——@)
» ° P
I @
-0.5 1 ® _@Bm 1
-3 -2 -1 0 1 2

Leapfrog Layer

e |ntroduce a persistent direction d ~ U(+, —)
(forward/backward)

e let{ = (z,v,+) denote a complete state, then
the target distribution is given by

p(§) = p(z) - p(v) - p(d)

e |ntroduce a discrete index k € {1,2,..., Npr} to
denote the current leapfrog step

e Each leapfrog step transforms &, = (zy, vy, =) —
(z, v}, &) = & by passing it through the k** leapfrog
layer

Leapfrog Layer

e Each leapfrog step transforms &, = (zg, vk, £) — (2}, v;, £) = £, by
passing it through the k* leapfrog layer.

e v-update (d = +):

v, = I} (vk; Gy) o = (@h, 025 (1)) (v-independent)
k k
= v @ exp (F55(Gn)) — F [0:5(m) © exp (chak(G)) + (G
A\ - ~~ A\ - ~~ J A\ - ~~ _J/
Momentum (v;) scaling Gradient 9,5 (zy) scaling Translation

e r-update (d = +):

masks: m; + m;=1

), = A} (z1; () (o = (M@ zg, 0,8 (2g)) (m:© @) -independent

— 21, © exp (k5 (C,)) + € [v), © exp (88 (o)) + 5 (Car)]

where (s*, g%, t¥), and (s%, ¢*, %), are parameterized by neural networks

L2HMC: Generalized Leapfrog

e Complete (generalized) update:
1. Half-step v update: v = TF (vg; Gy,
2. Full-step ;z update: 2 =m! Oy, + m! OAF (xy; s,
3. Full-step jz update: 7 = ! @A} (z}; ¢y) + m! O,

4. Half-step v update: vp =I5 (v 6oy)
k

Leapfrog Layer

T € U(].) —
rsif = O, tanh(ngm 24+ bsvw)i L — [COS 9, sin H]

k T
by = Wy, " 24+ bt
k T
qz = Oz tanh(wq,m < 2q+ bq,w)

J/

input
Gk Cht1
]{Zth leapfrog layer
sk =a,, tanh(ngv < 2q+ bs,v)‘
th = wg:v - 24+ by
masks Stack of fully- ¢t = o, tanh (wZ, - 24+ byy)

+ = 1 connected layers

Training Algorithm
input:

1. Loss function, Ly(&,&, A(E'[E))

2. Batch of initial states,zx

3. Learning rate schedule, {a:t}Nt”‘“

4. Annealing schedule, {7y}, Ntra.ln

5. Target distribution, pt(:r:) ox e~ Vt58(2)

Initialize weights 6

resample v~ N(0,1) re-sample
resample d~U(+,—) momentum
construct & = (xo,v0,do) + direction
for0< k < Nyp: construct
| propose (leapfrog layer) fi: — & trajectory
compute A(§’|§) min {1 —Z(E DET } Compute 10Ss
update L« Ly(£,&, A(£'[€)) + backprop
backprop 0 < 60— a;VeLl
assign Tpq x’ with probability A(£’|€) Metropolis-Hastings
s x with probability (1 — A(£'|€)). accept/reject

Example: GMM € R?

e Define the squared jump distance: Note:

/ L ‘e 2 A(¢,€) = acceptance probability
5(5 ’g) B ||£C $H2 A(E'|€) - 4(¢,€)= avg. distance
e Maximize ¢ = initial state
expected squared jump distance: ¢ = initial state
Ly (0) = Epe) [A(E'|E) - 6(€7,€)]
0.5} \ o
Gj'o >y el
S P u s
I '. e P
| @
HMC 75 e 0 1 2 3
[2HMCos =
0.0 @?@f" : ga«: *
C/ o2) ——
o= \ g e°
-0.5 o . e Yy
-3 _2 -1 0 1 2 3

Annealing Schedule

e |ntroduce an annealing schedule during the training phase:

N
{vitico = {70571+ -5 IN-1, YN}, €8 {0.1,0.2,...,0.9,1.0}
Yo<nn<...<yy=1 (increasing)

Vi1 — Y K 1 (varied slowly)

e For ||| < 1, this helps to rescale (shrink) the energy barriers
between isolated modes

= Allows our sampler to explore previously inaccessible regions
of the target distribution

e Target distribution becomes:
pe(T) o e %) for t=0,1,... N

Lattice Gauge Theory

e Link variables:

I_xu(";+)
U.(z) = ez (M) ¢ U(1) - ¢
wﬂ(n) E [_ﬂ-? ﬂ-] _xu(n)v sz/(n—{_la)
e Wilson action: - e o

Sg(x) =B> . p1l—coszp
zp = zu(n) + z,(n+) —zu(n +7) — z,(n)

e Topological charge:
Or = 5~ Y. psinzp e R @ Ominuows

differentiable
_ 1 discrete, hard to
LZ = ox ZP LCBPJ €7 e work with

|zp| = zp — 2m [2577 |

Non-Compact Projection [1.]

e Project [—m,w] onto R using a transformation: z = g(z), g : [-7, 7] = R
® 2 =tan (%)

e Perform the update in R
= Y =m'Oz+m O laz+]
e Project back to [—m,n] using the inverse transformation z = g *(2),
gl:R— [-m, 7

T € U(].) —
xp = [cosf,sin]

= = 2tan 1(2)
e These steps can be combined into a single update equation
" ' =mlOz+m O [2tan! (atan (£)) + B

= with corresponding Jacobian factor
o 0z __ exp(es;)

0r ~ cos?(z/2)+exp(2es,;) sin(z/2)

[1.] "Normalizing Flows on Tori and Spheres" arXiv:2002.02428

https://arxiv.org/abs/2002.02428
https://arxiv.org/abs/2002.02428
https://arxiv.org/abs/2002.02428
https://arxiv.org/abs/2002.02428
https://arxiv.org/abs/2002.02428

Loss function: £(0)

e We maximize the expected squared charge difference:

L(0) = Epe) [-0Q4(£,€) - A(€'[€)]
5%(5',&) (Qz(2') — Qu(w))’

A(€')¢) = min {1, 26} 1 26 |1
B=1

0.0

—2.5

0.0 0.2 0.4 0.6 0.8 1.0
MC Step

x10°

Results: 72

int

NLF * Tint

Want to calculate: (0) « [[Dz] O(z)e 5

If we had independent configurations, we could approximate

by (0) = § 3u1 Ofzn) — 0

- N

1 1

Var [O(z)] <

Instead, we account for the qutocorrelation, so the
. o
variance becomes: o = % Var [O(z)]

B =6

Rescale: Nip - 7.2 to
account for different
trajectory lengths

B="1

10° 5

1043

103 5

1 -r'|1II I !

000000
$hdddddd

1053

104;

103 4

*ﬂ ISR
] 2 'MVVVV
: PR ceee

% &W‘im

®
|
|

A

10° 4

10% 4

103 5

1

|
103

M

v
C Step

Illlll T
10°

LI B T T 17T

104 105
MC Step

T
103

10°

Results: 722

int
5 -0 . .
0 ; :t‘.#}jiﬁegaggg) V.o e \We maximize thg expected
10" 3 o squared charge difference:
=] 7’
© 103 e’
. o L(9) = Eye) |—0Q%(£,€) - AE'16)]
03 ././'/_/ 5Q(€,6) = (Qx(a!) — Qa(@))
'N€) = mi p¢) | o¢
T T A9 —min {158 5]
5
B=T
5.0
2.5
Qz
0.0
—2.5

0.0

1.0

0.4 0.6 0.8

0.2)
MC Step

x10°

Interpretation

e Look at how different quantities evolve over a

single trajectory
= See that the sampler artificially increases the
energy during the first half of the trajectory

(before returning to original value)

o
()
+—
(Vp)
& /%Q\
@)
s
o
(v}
(D)
—
\ 4
0.0 0.1 0.2 -5 0 5 500 1000
(rp —xp) Or H—> log|T|

variation in the avg plaquette continuous topological charge shifted energy

Interpretation

e Look at how the variation in (dxp)
varies for different values of 3

fgg [T e
0.90 --
0.88
TR W | /78 855
* 2,0.86
| 0.84
A,
8 0.82
\/ --------------- 7 -n anm
= o7 ¢ /8:3
0.80 = / /S =14
S —4-8=5
0.78 —¥—3=6
® H—3=7
0 2 4 6 8 10 12

leapfrog step

Training Costs

e We trained our model(s) using Horovod with TensorFlow on
the ThetaGPU supercomputer at the Argonne Leadership
Computing Facility.

e A typical training run:

= 1 node (8x NVIDIA A100 GPUs)

m Batch size M = 2048

= Hidden layer shapes = {256, 256,256}
m | eapfrog layers Nprp = 10

m | attice volume =16 x 16

= Training steps = 5 x 10°

m ~ 24 hours to complete.

https://github.com/horovod/horovod
https://tensorflow.org/
https://www.alcf.anl.gov/support-center/theta/theta-thetagpu-overview

Next Steps

e Going forward, we plan to:

= Continue testing on larger lattice
volumes to better understand
scaling efficiency

= Generalize to 2D /4D SU(3)

m Test alternative network
architectures

o Gauge Equivariant layers

Thanks for listening!

Interested?

arXiv:2105.03418
()saforem2/12hmc-qgcd

slides.com/samforeman/dlhmc

https://arxiv.org/abs/2105.03418
http://github.com/saforem2/l2hmc-qcd
https://github.com/saforem2/l2hmc-qcd
http://slides.com/samforeman/dlhmc

