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Based on …
… flow-based sampling for lattice QFT:

… flows for compact vars & lattice gauge theories:



Motivations
Critical slowing down and topological freezing obstruct MCMC sampling 
near the continuum limit. See [K. Clark, Mon].


- Problem: Local/diffusive Markov chain updates


- Generative ML models can directly sample, may be used to propose global updates


ML models provide flexible “variational ansatz” distribution .q(U)

q(U) = e−Seff(U) ≈ p(U) = e−S(U)−log Z

After optimizing the model “ansatz”:
Seff(U) ≈ S(U) + log Z

↔

Efficiently sampled Desired target



Generative modeling for LQFT

Estimating thermodynamic 
observables: 

• Flow-based models precisely 
estimate 


• Asymptotic exactness 

log Z

N → ∞

[L. Funcke, Tue]

Improved HMC updates: 
• Flows/INNs describing modified 

HMC updates to 


• Topological freezing can be avoided


• Detailed balance for exactness 

(π, U)

[S. Foreman, Thur]

Flow-based MCMC: 
• Flows directly propose new configs


• Metropolis step (satisfying balance) 
for exactness

[D. Rezende, Mon] & this talk
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Common theme: 
Black-box ML components wrapped 

inside exact schemes
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Flow-based sampling
(Convolutional) neural networks: Black-box (local) function approximators

Coupling layers: Invertible transformations, tractable Jacobian

Flow-based model: Transform prior density to computable and sample-able 
output model density

q(ϕ′�) = r(ϕ) det
ij

∂[ f(ϕ)]i

∂ϕj

−1

Training: 
• Measure KL divergence

• Apply gradient-based opt

Exactness: 
• Use  and to 

correct approximation
q(ϕ′�) p(ϕ′�)



Symmetries in flows
Invariant prior + equivariant flow = symmetric model 
 
 
 

Symmetries…


- Reduce data complexity of training


- Reduce model parameter count


- See [D. Luo, Wed] and [A. Tomiya, Fri]

q(�)

Exact symmetry

q(�)

Learned symmetry

Invariant

Pure-symmetry

r(t ⋅ U) = r(U) f(t ⋅ U) = t ⋅ f(U)

[Cohen, Welling 1602.07576]



Towards lattice QCD
This talk: SU(N) gauge symmetry of Lattice QCD [  small detour into U(1)]


- See [D. Rezende, Mon] and upcoming paper with 
 
M. S. Albergo, S. Racanière, D. J. Rezende, J. M. Urban, D. Boyda, K. Cranmer, D. C. Hackett, P. E. Shanahan 
 
for more on fermions


Wilson gauge action - prototypical, gauge-invariant lattice action


±

x x + µ̂Uµ(x)

a

µ

⌫

S(U) = −
β
N ∑

x
∑
μ<ν

ReTrPμν(x)

Pμν(x) = Uμ(x)Uν(x + ̂μ)U†
μ(x + ̂ν)U†

ν (x)

For U(1):  and no TrN = 1
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Wilson gauge action - prototypical, gauge-invariant lattice action


±

x x + µ̂Uµ(x)

a

µ

⌫

S(U) = −
β
N ∑

x
∑
μ<ν

ReTrPμν(x)

Pμν(x) = Uμ(x)Uν(x + ̂μ)U†
μ(x + ̂ν)U†

ν (x)

For U(1):  and no TrN = 1

Invariant under 
gauge transforms: 

Uμ(x) → Ω(x) Uμ(x) Ω†(x + ̂μ)



Gauge fixing?

Explicit gauge fixing is at odds with translational symmetry + locality

1

0

Link physically encodes Wilson loop around shaded region

Where gauge DoFs are explicitly 
factored out, e.g. maximal tree

Fixed to 1



Gauge fixing?

Implicit gauge fixing difficult to act on via flow-based models

Where gauge DoFs are fixed by solving 
a constraint, e.g. Landau gauge

Ufix
μ (x) = argminUΩ ∑

x

Nd

∑
μ=1

ReTr[UΩ
μ (x)]Landau gauge:

Ufix
μ (x) = argminUΩ ∑

x

Nd−1

∑
μ=1

ReTr[UΩ
μ (x)]Coulomb gauge:

Unclear how to invertibly 
transform .Ufix

μ (x)



Gauge symmetries in un-fixed flows
Choose to act on the un-fixed link representation .


Carefully construct architecture to enforce… 

Uμ(x)

Gauge-invariant prior: 

Not very difficult! 
Uniform distribution works.


 r(U) = 1With respect to 
Haar measure

Gauge-equivariant flow: 

Coupling layers acting on 
(untraced) Wilson loops.


Loop transformation easier 
to satisfy.



Gauge symmetries in un-fixed flows
Choose to act on the un-fixed link representation .


Carefully construct architecture to enforce… 

Uμ(x)

Gauge-invariant prior: 

Not very difficult! 
Uniform distribution works.


 r(U) = 1With respect to 
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Gauge-equivariant flow: 

Coupling layers acting on 
(untraced) Wilson loops.


Loop transformation easier 
to satisfy.

`

W`(x) ! ⌦(x)W`(x)⌦†(x)

Open loop

`

tr W`(x) ! tr W`(x)

µ

⌫

Closed loop



Gauge-equivariant coupling layer
Compute a field of Wilson loops .


Inner coupling layer [function of ]


- “Actively” update a subset of loops.*


- Condition on “frozen” closed loops.


Outer coupling layer [function of ]


- Solve for link update to satisfy actively updated loops.


- Other loops in  may “passively” update.

Wℓ(x)

Wℓ(x)

Uμ(x)

Wℓ(x)
V`(x)

`

Uµ(x)

x

µ

⌫

`

W`(x) ! ⌦(x)W`(x)⌦†(x)

Open loop

`

tr W`(x) ! tr W`(x)

µ

⌫

Closed loop

Gauge invariant!

Wℓ(x) Flow W′�ℓ(x)

U′�μ(x) = W′�ℓ(x) V†
ℓ(x)[GK, Albergo, Boyda, Cranmer, Hackett, Racanière, Rezende, Shanahan  PRL125 (2020) 121601]

[Boyda, GK, Racanière, Rezende, Albergo, Cranmer, Hackett, Shanahan  PRD103 (2021) 074504]
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`
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µ
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Closed loop

Gauge invariant!

Wℓ(x) Flow W′�ℓ(x)

U′�μ(x) = W′�ℓ(x) V†
ℓ(x)

* This “kernel” must satisfy: 
h(WΩ

ℓ (x)) = hΩ(Wℓ(x))

[GK, Albergo, Boyda, Cranmer, Hackett, Racanière, Rezende, Shanahan  PRL125 (2020) 121601]
[Boyda, GK, Racanière, Rezende, Albergo, Cranmer, Hackett, Shanahan  PRD103 (2021) 074504]



Active, passive, and frozen loops

1

0
Active / Passive

Frozen

Links to be updated

Examples of active/passive/frozen loops



Active, passive, and frozen loops

1

0
Active / Passive

Frozen1

0
Active

Passive

Frozen

Links to be updated

Passive-Active-Frozen-Frozen (PAFF) pattern



U(1) kernels
Conjugation equivariance trivially satisfied: .


Invertible maps on U(1) variables:


- Periodic / compact domain must be addressed.


- For details, see: 

h(ΩWΩ†) = h(W) = Ωh(W)Ω†

[Rezende, Papamakarios, Racanière, Albergo, GK, Shanahan, Cranmer; 
ICML (2020) 2002.02428]

Non-compact projection: 
• Map , e.g. 


• Transform  as usual


• Map 

θ → x ∈ ℝ arctan(θ/2)

x → x′ �

x′� → θ′� ∈ [−π, π]

Circular invertible splines: 
• Spline “knots” trainable fns


• Identify endpoints  and 


• Number of knots  expressivity

π −π

↔

[Durkan, Bekasov, Murray, Papamakarios 1906.04032]



Learning U(1) gauge theory
There is exact lattice topology in 2D.


- Compared flow, analytical, HMC, and 
heat bath on  lattices for 


- Topo freezing in HMC and heat bath


- Gauge-equiv flow-based model at each 


- Flow-based MCMC observables agree

16 × 16 β = {1,…,7}

β

Q =
1

2π ∑
x

arg(P01(x))

MCMC for β = 7

5 6 7

�

0.6

0.8

1.0

1.2

1.4
�Q/Exact

HMC HB Flow

Topological susceptibility χQ = ⟨Q2/V⟩
[GK, Albergo, Boyda, Cranmer, Hackett, Racanière, Rezende, Shanahan  PRL125 (2020) 121601]



Topological freezing mitigated

1 2 3 4 5 6 7

�

1
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100

1000

10000

⌧ int
Q

HMC

HB

Flow



SU(N) kernels: strategy
SU(N) matrix-conj. equivariance is non-trivial.


Useful observations: 

- Conjugation only rotates eigenvectors.


- Spectrum is invariant.


- Wilson loop spectrum encodes gauge-invariant 
physics  This is what we want to transform. 

Strategy: Invertibly transform only the 
spectrum of  via a “spectral map”.

→

W

h(ΩWΩ†) = Ωh(W)Ω†

Or, “spectral flow”.

[Boyda, GK, Racanière, Rezende, Albergo, Cranmer, Hackett, Shanahan  PRD103 (2021) 074504]
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SU(N) kernels: 
Permutation equivariance

�⇡ 0 ⇡

�1

�⇡

0

⇡

�2

SU(2)

�1

�⇡

0

⇡�2

�⇡

0

⇡

�3

�⇡

0

⇡

SU(3)

See also [J. Thaler, Wed] 
for perm-inv NNs

Sub-manifold of 
 eigenvaluesdet = 1

“Cell”, related by 
perms of eigenvalues 

to other cells.



SU(N) kernels: 
Transform the canonical cell

Change variables to rectilinear box Ω

Transform by acting on coords of box , either…Ω

… or …



Plaquette distributions 

for 
, SU(9) β = 9 Plaquette distributions 

for 
, SU(3) β = 9

Density has zeros on vertical, horizontal, and 
diagonal lines where the slice crosses walls of cells
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q(U)

Exact symmetry

q(U)

Learned symmetry

Invariant

Pure-symmetry

Learning SU(2) and SU(3) gauge theory
Normalizing flows trained for 2D lattice gauge theory on  lattices.


- Approx matched ’t Hooft couplings, giving 
 for  and 
 for 


- 48 PAFF coupling layers, update all links 6 times 

- No equivalent topo freezing, studied absolute model quality instead

16 × 16

β = {1.8, 2.2, 2.7} SU(2)
β = {4.0, 5.0, 6.0} SU(3)

1

0
Active

Passive

Frozen

All flow-based models exactly 
gauge-equiv by construction



Results for SU(2) and SU(3) gauge theory
• Flow-based MCMC observables agree with 

analytical


• High-quality models: autocorrelation time in 
flow-based Markov chain  = 1—4


• Symmetries exactly / approximately reproduced

τint

0 100 200

i

�380

�360

�340

�320

�300

�280 Se↵ (Ti · U)

0 100 200

i

S (Ti · U) + log Z

Rotation and reflection symmetry learned

Exact translational subgroup, residual learned

Measure of “effective” # samples from target dist for 
each sample drawn from model (100% = perfect model)

Promising early results. No theoretical obstacle 
to scaling to 4D  lattice gauge theory.SU(N) 0 2 4 6

i

�380

�360

�340

�320

�300
Se↵ (Ri · U)

0 2 4 6

i

S (Ri · U) + log Z



Summary and Outlook
 
Gauge symmetry encoded in flow 
models while preserving (most of) 
translational symmetry


- Gauge equivariant coupling layers


- Kernels for  and  

High-quality models produced for 
, , and  lattice gauge 

theory in 1+1D


U(1) SU(N)

U(1) SU(2) SU(3)

Future work: 
1. Higher spacetime dims. Choices of untraced 

loops to transform, gauge-inv loops as input?


2. Training for multimodal distributions


3. Training hyperparameter tuning, different 
model arch for inner flows


4. Incorporation of dynamical fermions
[Albergo, GK, Racanière, Rezende, Urban, Boyda, 
Cranmer, Hackett, Shanahan; In preparation]

[Hsieh, Chen, Chen, Albergo, Boyda, Cranmer, Hackett, 
GK, Saito, Shanahan; In preparation]



Open Questions
1. Universality? 

• Limits in which (gauge-equiv) flow-based models capture arbitrary (gauge theory) distributions?


• How to avoid / diagnose silent “expressivity failure”?


2. Hierarchical structures? 
• Asymptotic freedom, RG information


• Hierarchical models to efficiently capture many scales?


3. Continuum scaling? 
• How to scale model expressivity as ?


• Computational cost?


• How to scale model training?

a → 0

E.g. Hierarchical based on “disentanglers” and 
“decimators”: [Li, Wang PRL121 (2018) 260601]

Posted last night: [Del Debbio, Marsh-Rossney, Wilson  2105.12481]



Backup Slides



Exactness: Reweighting
• Also possible to reweight independently drawn samples: 
 
 
 
 

• May be preferable when observables  are efficiently computed, and 
sampling is expensive.


• Observables  are expensive in lattice QCD. We prefer resampling or 
MCMC approaches in these settings.

𝒪(U)

𝒪(U)

⟨𝒪⟩ =
∫ 𝒟U q(U)[𝒪(U) p(U)

q(U) ]
∫ 𝒟U q(U)[ p(U)

q(U) ]



Translational equivariance
1. Make context functions Convolutional Neural Nets: 

- Compute output value for each site from linear transform 
of nearby DOF only


- Reuse same weights, scanning kernel across the lattice


CNNs are equivariant under translations. 

2. Make masking pattern (mostly) translationally 
invariant.


- E.g. checkerboard is symmetric modulo  even/odd


- Gauge theory: translational equiv modulo 

ℤ2

ℤ4 × ℤ4

[freecodecamp.org]

Output

Input (w/ periodic BCs)

https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/
https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/


U(1) study observables
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Map into canonical cell
Want to permute eigenvalues into canonical order


- Sorting doesn’t work directly: discontinuities when  jumps across the  boundary


- Simply trying all  permutations is slow for large 


- Need to ensure permutation taking points in the same cell to canonical is the same 

Short algorithm based on sorting works; Algorithm 1 of [‡]  

θk ±π

N! N

[‡] [Boyda, GK, Racanière, Rezende, Albergo, Cranmer, Hackett, Shanahan  2008.05456]



SU(N) study observables
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Details of  modelsSU(2)

• Inner flow on open box  is a spline 
flow with 4 knots


-  and  boundaries align to 0 and 1 
edges of the open box 
 

• CNNs to compute the knot locations


- 32 hidden channels


- 2 hidden layers

Ω

B −B

[Durkan, Bekasov, Murray, Papamakarios 1906.04032]



Gauge theory model training
• Adam optimizer ~ stochastic grad. descent with 

momentum


- Batches of size 3072 per gradient descent step


- Monitored value of effective sample size (ESS) 
 
 
 
 
 
 
 

• Transfer learning: model trained first on  then 
used to initialize model for training on 

8 × 8
16 × 16

ESS =
( 1

n ∑i w(Ui))
2

1
n ∑i w(Ui)2

, Ui ∼ q(U)

w(U) = p(U)/q(U) “reweighting factors”
0 2000 4000 6000 8000 10000

Training iteration

0.0

0.1

0.2

0.3

0.4

0.5

E
S
S

� = 6 (init. from 8 ⇥ 8) � = 6 (random init.)

Transferred model 
almost fully optimized

Model with random 
init takes many steps 

to optimize



Details of  modelsSU(3)

[Durkan, Bekasov, Murray, Papamakarios 1906.04032]

• Inner flow on open box  is a spline 
flow with 16 knots


-  and  boundaries align to 0 and 1 
edges of the open box 

• CNNs to compute the knot locations


- 32 hidden channels


- 2 hidden layers


• Exact conjugation equivariance also 
imposed

Ω

B −B

I

e2πi/3e−2πi/3
Complex 

Conjugation



Translational symmetry breaking pattern
• Masking patten = repeating tile of size 


• Rotate / translate the pattern between layers


•  symmetry breaking

1 × 4

ℤ4 × ℤ4

0 15�x

0

15

�y

0 15�x 0 15�x �0.05

0.00

0.05

Log density in 4x4 region extends by 
unbroken part of translational 
symmetry to rest of the lattice



Center symmetry
Using only contractible loops in coupling layers enforces center symmetry. 
 

Fundamental fermions: 

- Center symmetry explicitly broken


- Must include non-contractible loops (e.g. Polyakov) 
in the set of frozen and/or transformed loops

A

WA

A0

WA0

µ

⌫ X⌫


