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OUTLINE

Introduction 

GPUs for Lattice QCD 

Scaling Challenges 

Future Challenges 

Caveat: my focus is solver, gauge generation and GPU focussed, and not representative of all LQCD challenges 

If you have an LQCD-type problem that you’re struggling to get working on GPUs: mclark@nvidia.com
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INTRODUCTION
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WHY APPLICATION CO-DESIGN?

Understand what are the performance and 
scaling limiters today and tomorrow 

Intercept disruption and seize ensuing 
opportunities 

Ensure smooth transition while reducing time 
to science 

What do I do?

Domain

Architecture Algorithm
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LATTICE QCD IS HUNGRY

Summit cycle 
breakdown in 

INCITE allocation

Summit cycle 
breakdown in 

INCITE use 

NERSC Utilization  
(Aug ’17 - Jul’18)

LQCD ~40%

NERSC workload is extremely diverse,
but not evenly divided.

● 10 codes make up 50% 
of workload.

● 20 codes make up 66% 
of workload.

● 50 codes make up 84% 
of workload.

● Remaining codes
(over 600) make up 16% 
of workload.

Python

LQCD ~13%
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LATTICE QUANTUM CHROMODYNAMICS

Theory is highly non-linear ⇒ cannot solve directly 

Must resort to numerical methods to make predictions 

Lattice QCD 
Discretize spacetime ⇒ 4-d dimensional lattice of size 

Finite spacetime ⇒ periodic boundary conditions 

PDEs ⇒ finite difference equations ⇒ Linear solvers  Ax = b 

Consumer of 10+% of public supercomputer cycles 
Traditionally highly optimized on every HPC platform for the past 30 years  
Jobs often run at the 1000+ GPU scale 

Lx × Ly × Lz × Lt
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STEPS IN AN LQCD CALCULATION

1. Generate an ensemble of gluon field configurations “gauge generation” 
Hybrid Monte Carlo is the algorithm of choice 
Produced in sequence, with hundreds needed per ensemble 
Strong scaling required with 100-1000 TFLOPS sustained for several months 
50-90% of the runtime is in the linear solver 
O(1) solve per linear system 

2. “Analyze” the configurations 
Can be farmed out, assuming ~10 TFLOPS per job 
Task parallelism means that clusters reign supreme here 
80-99% of the runtime is in the linear solver 
Many solves per system, e.g., O(106) 

D↵�
ij (x, y;U) �

j (y) = ⌘↵i (x)

or Ax = b
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SCALING THE BERLIN WALL

Wittig et al 2001 Kennedy 2004 Clark 2006

Simulation Cost ~ Vαaβmγ  
 

α = 1.25
β ∈ − [3,6]
γ ∼ − 3

(Early 2000s possible values)
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SCALING THE BERLIN WALL

Metropolis Volume dependence  
Scaling arises from holding stepwise errors with second-order Symplectic integrator  

Suppressed through use of fourth-order integrator  

Linear solver critical critical slowing down 
Condition number diverges as we approach physical point 
(Adaptive) Multigrid removes the condition number and volume dependence  

Fermion force instability 

Instability in the MD integration due to low fermion modes requiring  as  
Hasenbusch mass preconditioning / multiple pseudo-fermions dealt with step size instabilities 

Autocorrelation length diverges as  
Topology freezing…

Vα

α → 1.125

δt → 0 m → 0

a → 0

Hasenbusch 2001, 
Urbach et al 2005, 
Clark and Kennedy 2006

Kennedy, Silva and Clark, 2012

Citations are illustrative, 
 not exhaustive

Lüscher 2007 
Brannick et al 2007 
Babbich et al 2010 
Frommer et al 2013
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GPUS FOR LQCD
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RISE OF GPU COMPUTING
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WHAT IS A GPU?

GPUs are extreme hierarchical processors 

Many-core processor programmed using a massively threaded model 
Threads arranged as Cartesian hierarchy of grids 

Deep memory hierarchy 
Registers <-> L1 <-> L2 <->              <-> 

Increasingly coupled instruction hierarchy 
Tensor cores <-> CUDA cores <-> shared mem atomics <-> L2 atomics 

Synchronization possible at many levels 
(Sub-)Warp <-> Thread Block <-> Grid <-> Node <-> Cluster

64 GB/s bi-directional

1.6 TB/s

> 20 TB/s

> 3 TB/s

Device 
Memory

Host 
Memory

A100 sketch
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QUDA
• “QCD on CUDA” – http://lattice.github.com/quda (open source, BSD license) 
• Effort started at Boston University in 2008, now in wide use as the GPU 

backend for BQCD, Chroma**, CPS**, MILC**, TIFR, etc. 
• Provides solvers for all major fermionic discretizations, with multi-GPU 

support 
• Maximize performance 

– Mixed-precision methods 
– Autotuning for high performance on all CUDA-capable architectures 
– Domain-decomposed (Schwarz) preconditioners for strong scaling 
– Multigrid solvers for optimal convergence 
– NVSHMEM for improving strong scaling 

• A research tool for how to reach the exascale (and beyond) 
– Optimally mapping the problem to hierarchical processors and node topologies

**ECP benchmarks apps

!9

QUDA

• “QCD on CUDA” – http://lattice.github.com/quda (C++14, open source, BSD license) 
• Effort started at Boston University in 2008, now in wide use as the GPU backend for 

BQCD, Chroma, CPS, MILC, TIFR, etc. 
• Various solvers for all major fermionic discretizations, with multi-GPU support 
• Maximize performance 

– Mixed-precision methods (runtime specification of precision for maximum flexibility) 
– Exploit physical symmetries to minimize memory traffic 
– Autotuning for high performance on all CUDA-capable architectures 
– Domain-decomposed (Schwarz) preconditioners for strong scaling 
– Eigenvector and deflated solvers (Lanczos, EigCG, GMRES-DR) 
– Multi-RHS solvers 
– Multigrid solvers for optimal convergence 

• A research tool for how to reach the exascale (and beyond)
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QUDA CONTRIBUTORS

! Ron Babich (NVIDIA) 
! Simone Bacchio (Cyprus) 
! Kip Barros (LANL) 
! Rich Brower (Boston University) 
! Nuno Cardoso (NCSA) 
! Kate Clark (NVIDIA) 
! Michael Cheng (Boston University) 
! Carleton DeTar (Utah University) 
! Justin Foley (Utah -> NIH) 
! Joel Giedt (Rensselaer Polytechnic Institute) 
! Arjun Gambhir (William and Mary) 
! Steve Gottlieb (Indiana University) 
! Kyriakos Hadjiyiannakou (Cyprus) 
! Dean Howarth (LLNL) 
! Bálint Joó (Jlab) 

! Hyung-Jin Kim (BNL -> Samsung) 
! Bartek Kostrzewa (Bonn) 
! Claudio Rebbi (Boston University) 
! Eloy Romero (William and Mary) 
! Hauke Sandmeyer (Bielefeld) 
! Guochun Shi (NCSA -> Google) 
! Mario Schröck (INFN) 
! Alexei Strelchenko (FNAL) 
! Jiqun Tu (NVIDIA) 
! Alejandro Vaquero (Utah University)  
! Mathias Wagner (NVIDIA) 
! André Walker-Loud (LBL) 
! Evan Weinberg (NVIDIA) 
! Frank Winter (Jlab) 
! Yi-bo Yang (CAS)

10+ years - lots of contributors
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QUDA NODE PERFORMANCE OVER TIME
Multiplicative speedup through software and hardware
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QUDA NODE PERFORMANCE OVER TIME
Multiplicative speedup through software and hardware
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Speedup determined by measured time to solution for solving the Wilson operator against a random source on a V=24364 lattice, 
β=5.5, Mπ= 416 MeV. One node is defined to be 3 GPUs
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MAPPING THE DIRAC OPERATOR TO GPUS

• Finite difference operator in LQCD is known as Dslash 

• Assign a single space-time point to each thread 
V = XYZT threads, e.g., V = 244 => 3.3x106 threads 

• Looping over direction each thread must 
– Load the neighboring spinor (24 numbers x8) 
– Load the color matrix connecting the sites (18 numbers x8) 
– Do the computation 
– Save the result (24 numbers)  

• Each thread has (Wilson Dslash) 0.92 naive arithmetic intensity 

• QUDA reduces memory traffic 
Exact SU(3) matrix compression (18 => 12 or 8 real numbers) 
Use 16-bit fixed-point representation with mixed-precision solver

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x0 are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� ⇥ plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.

Dx,x0 =
x x

x

x−

x−

U x



U
x

μ

μ

ν

X[0]

X[1]



19

SINGLE GPU PERFORMANCE
“Wilson-clover” stencil (Chroma, V100)

Tesla V100,  
CUDA 10.1,  
GCC 7.3,  
QUDA 1.0

~1325 GB/s

~1275 GB/s

~1200 GB/s
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MIXED PRECISION
Using your bits wisely

do
ub

le

do
ub

le-
sin

gle

do
ub

le-
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lf
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m
)

MILC/QUDA HISQ CG, mass = 0.001 => ~106κ MILC/QUDA HISQ CG solver 
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WHY MULTIGRID?
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CHROMA HMC ON SUMMIT

From Titan running 2016 code to Summit 
running 2019 code we see >82x speedup in HMC 
throughput 

Mul$plica$ve speedup coming from mapping 
hierarchical algorithm to hierarchical machine 

Highly opBmized mulBgrid for gauge field 
evoluBon 

Mixed precision an important piece of the puzzle 
• double – outer defect correcBon 
• single – GCR solver 
• half – precondiBoner 
• int32 – determinisBc parallel coarsening 

KC, Bálint Joó, Mathias Wagner, Evan Weinberg, Frank Winter, Boram Yoon

Chroma ECP benchmark
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on 8x fewer GPUs

~82x gain

2018
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SCALING CHALLENGES
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HPC IS GETTING MORE HIERARCHICAL
What does a node even mean?

Legacy Current

Cray XT4 (2007) 
https://www.nersc.gov/assets/NUG-Meetings/NERSCSystemOverview.pdf

NVIDIA DGX-A100 (2020) 
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
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MULTI-NODE SCALABILITY

GPU clusters have reputation for lack of scalability 
Summit vs BlueGene Q 

Supercomputers are built for a broad range of 
applications, of which LQCD is an outlier 

But is there more to it than simply NIC bandwidth? 

What happens when we build a balanced machine? 
e.g., Selene, Juelich booster 
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Selene = 560 x DGX A100 

640 Gb/s NIC / GPU 4-d neighbor bi-dir bandwidth
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MULTI-GPU BUILDING BLOCKS

Halo packing Kernel 

Interior Kernel 

Halo communication 

Halo update Kernel

Multi GPU Parallelization

face
exchange

wrap
around

face
exchange

wrap
around

Tuesday, July 12, 2011

Halo packing Kernel 

Interior Kernel 

Halo communication 

Halo update Kernel
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MULTI-GPU PROFILE
overlapping comms and compute

324  local volume, 
single precision

P2P copies

Interior kernel
Packing kernel

Halo kernels 
t,z,y
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2x
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STRONG SCALING PROFILE
overlapping comms and compute

P2P copies
Interior kernel

Packing kernel Halo kernels 
        (fused)

164  local volume, 
half precision

D
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2x
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STRONG SCALING PROFILE
Latencies ate my scaling

P2P copies
Interior kernel

Packing kernel Halo kernels 
        (fused)

API 
Calls

164  local volume, 
half precision
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WHAT IS THE PROBLEM?

It’s not just data movement we need to minimize 

Task marshaling from a lower level of hierarchy (e.g., host) adds latency 
Data consistency requires synchronization between CPU and GPU 

Ideally: offload of task marshaling to GPU thread to have same locality as data
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NVSHMEM

NVSHMEM features 
Symmetric memory allocations in device memory 
Communication API calls on CPU (standard and stream-ordered) 
Kernel-side communication (API and LD/ST) between GPUs 

NVLink and PCIe support (intra-node) 
InfiniBand support (inter-node) 
Interoperability with MPI and OpenSHMEM libraries 

Implementation of OpenSHMEM1, a Partitioned Global Address Space (PGAS) library

1 SHMEM from Cray’s “shared memory” library, https://en.wikipedia.org/wiki/SHMEM

Available in NVIDIA HPC 
toolkit
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DSLASH ÜBER KERNEL

Packing Interior

pack_blocks interior_blocks = grid_dim - pack_blocks - exterior_blocks

nvshmem_signal 
for each 
direction

Exterior (Halo)

exterior_blocks

atomic wait for 
interior

nvshmem_wait_until

atomic flag set by last block

Mathias Wagner
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ÜBER KERNEL

` 164  local volume, 
half precision
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über kernel (packing + interior + exterior)

Mathias Wagner
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SELENE STRONG SCALING
Global volume 643x128

1.6x speedup

Mathias Wagner
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PARALLELISM ISN’T INFINITE…
Wilson stencil performance
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…UNLESS WE MAKE IT

 63

MULTIPLE RIGHT-HAND SIDES
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MULTIGRID

GPU requirements very different from CPU 

Each thread is slow, but O(10,000) threads per GPU 

Fine grids run very efficiently 

High parallel throughput problem 

Coarse grids are worst possible scenario 

More cores than degrees of freedom 

Increasingly serial and latency bound 

Little’s law (bytes = bandwidth * latency) 

Amdahl’s law limiter 

The optimal method for solving PDE-based linear systems
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MULTIGRID 
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FUTURE CHALLENGES
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QUDA NODE PERFORMANCE OVER TIME
Multiplicative speedup through software and hardware
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QUDA NODE PERFORMANCE OVER TIME
Multiplicative speedup through software and hardware

2022 2024

?
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EXASCALE IS ALMOST HERE 
BUT WILL WE GET TO 10 EXAFLOPS?
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WE WILL WITH AI
Pe
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FUTURE MACHINES WILL BE CHALLENGING

Matrix and tensor operations required to saturate the machine 

Low precision will go much faster 

Extreme parallelism required 

Hierarchy and Locality must be considered 

Rework the pipeline to expose algorithms in matrix-matrix form 
Maximize locality, parallelism for optimal mapping onto the GPU hierarchy
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TENSOR CORES FOR LQCD

Multigrid is a preconditioner 
16-bit precision is perfectly adequate 
No impact on convergence rate  

Majority of MG setup kernels now implemented 
1.5x-10x kernel speedups observed 

Next steps 
multi-RHS solver 
Eigen-vector orthogonalization

Initial first steps

Yhat kernel on Quadro GV100 
(32 null space vectors)
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single precision half precision tensor cores
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REWORKING THE LQCD PIPELINE

2 nucleon (2 baryon) and 2 hadron (ππ, Κπ)  and meson-baryon catering cross sections 

Goal is a single pipeline with no intermediate storage 

slaphnn collaboration 

AI ~ flops / bytes
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LQCD OUTLOOK

Reformulate vector-vector and matrix-vector problems as matrix-matrix 
Multi-RHS, Communication-Avoiding, block solvers 
Deploy using tensor cores where possible 

Keep data on chip and minimize hierarchy level jumping 
Use NVSHMEM to fuse across communication boundaries 

Follow trends towards future architectures and aim for super-linear scaling

Super Linear Scaling
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WHAT COULD LQCD DO WITH 100X MORE?

Can we get significantly more science with 100x more compute? 

Can we bludgeon our way past critical slowing down with HMC? 

Or solve it with an evolved approach (sMD, Fourier acceleration, etc.) 

Or do we need a completely different approach… 
That is a fundamental revolution in solving Lattice Field Theory? 
That can more naturally use all those AI flops that are coming?     

Getting nowhere even faster?




