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Reactor Neutrino Disappearance
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• Experiments only produce and detect �̅�e 
• Δm213 sets optimal distance, but we knew Δm223 
• Complete disappearance probability given by…

Daya Bay Focus is Precision Measurement of θ13
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A measurement of the energy dependence of antineutrino disappearance at the Daya Bay reactor
neutrino experiment is reported. Electron antineutrinos (ν̄e) from six 2.9 GWth reactors were detected with
six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground
experimental halls.Using217daysofdata, 41 589 (203 809and92 912) antineutrinocandidatesweredetected
in the far hall (near halls). An improvedmeasurement of the oscillation amplitude sin2 2θ13 ¼ 0.090þ0.008

−0.009 and
the first direct measurement of the ν̄e mass-squared difference jΔm2

eej ¼ ð2.59þ0.19
−0.20Þ × 10−3 eV2 is obtained

using theobserved ν̄e rates andenergy spectra in a three-neutrino framework.This value of jΔm2
eej is consistent

with jΔm2
μμj measured by muon neutrino disappearance, supporting the three-flavor oscillation model.

DOI: 10.1103/PhysRevLett.112.061801 PACS numbers: 14.60.Pq, 13.15.+g, 28.50.Hw, 29.40.Mc

Experimental measurements of neutrino oscillations
have clearly established that neutrinos have mass and that
the mass eigenstates mix [1]. The Daya Bay experiment
recently reported the discovery of the disappearance of
reactor antineutrinos over kilometer-long baselines, provid-
ing the most precise measurement of the mixing angle θ13
[2,3]. Other experiments have made consistent θ13 mea-
surements [4–7]. Precise knowledge of neutrino mixing
and mass differences enables experimental searches for CP
violation, tests of the neutrino mass hierarchy, and pre-
cision tests of oscillation theory. In particular, the relatively
large value of θ13 facilitates a rich program of future
neutrino oscillation research [8–10]. It also allows the
Daya Bay experiment to report in this Letter an indepen-
dent measurement of the neutrino mass splitting via the
distortion of the reactor antineutrino energy spectrum.
In the framework of three-flavor neutrino mixing in

vacuum, the probability that an ν̄e produced with energy E
is detected as an ν̄e at a distance L is given by

Pν̄e→ν̄e ¼ 1− cos4θ13sin22θ12sin2Δ21

− sin22θ13ðcos2θ12sin2Δ31þ sin2θ12sin2Δ32Þ; (1)

where Δji ≡ 1.267Δm2
jiðeV2Þ½LðmÞ=EðMeVÞ&, and Δm2

ji
is the difference between the mass squares of the mass
eigenstates νj and νi. Since Δm2

21 ≪ jΔm2
31j ≈ jΔm2

32j [1],
the short-distance (∼km) reactor ν̄e oscillation is due
primarily to the Δ3i terms and naturally leads to the
definition of the effective mass-squared difference
sin2 Δee ≡ cos2 θ12 sin2 Δ31 þ sin2 θ12 sin2 Δ32 [11].
The Daya Bay experiment previously determined

sin2 2θ13 using only the relative rates of ν̄e detected in
three antineutrino detectors (ADs) located near to and three
ADs located far from six nuclear reactor cores [2,3]. The
effective mass splitting jΔm2

μμj measured in νμ disappear-
ance [12] provided a good approximation of jΔm2

eej in the
rate-only measurement. This Letter presents a combined
analysis of the ν̄e rates and energy spectra measured for the
six detector data-taking period from 24 December 2011 to
28 July 2012. This represents a 48% increase in statistics
over the most recent result [3]. The sin2 2θ13 uncertainty is
reduced by inclusion of the spectral information and the
statistics of the complete six-AD data period. The spectral
distortion due to the sin2 Δee term provides a strong
confirmation that the observed ν̄e deficit is consistent with
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Detecting Inverse Beta Decay
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Antineutrino Detectors
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Water Shield
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Energy Spectrum
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compared to the previous analysis due to the increased
statistics. The rate-only analysis yields sin2 2θ13 ¼ 0.090"
0.010 with χ2=NDF ¼ 0.6=4, where NDF is the number of
degrees of freedom. The analysis has also been updated to
include spectral information by applying the energy non-
linearity correction to the positron spectrum and measuring
the spectral distribution of the five background sources.
The spectral uncertainties of the five backgrounds are
included as uncorrelated among energy bins in the χ2 fit
of the oscillation parameters, to allow all possible spectral
models consistent with the data. The combined rate and
spectral analysis yields sin2 2θ13 ¼ 0.092" 0.008 and
jΔm2

eej¼ð2.57þ0.20
−0.22Þ×10−3 eV2 with χ2=NDF¼166=171,

which are consistent with the results to be described in this
Letter.
ThisLetter presents the results of an analysis that is largely

independent of the analysis described in [2,3]. The two

analyses differ in terms of event reconstruction, energy
calibration, IBD selection, background estimation, and con-
struction of the χ2 used for determination of the oscillation
parameters. The selected IBD candidates differ by 3.7%
(11%) at the far (near) sites. A “blind analysis” strategy was
implemented by concealing the reactor history and thermal
power information for all cores for the new data period.
IBD candidates are selected with the criteria that follows.

First, events caused by PMT light emission are efficiently
removed using the techniques of [3]. Candidates are then
selected by requiring a promptlike signal (0.7–12 MeV) in
coincidencewith a delayedlike signal (6–12MeV) separated
by 1–200 μs. Candidate pairs are vetoed if their delayedlike
events occur (i) within a (−2 μs, 600 μs) time window with
respect to an IWS or OWS trigger with a PMT multiplicity
> 12, (ii) within a (−2 μs, 1400 μs) time window with
respect to triggers in the same AD with a total light yield
larger than 3000 photoelectrons, or (iii) within a (−2 μs,
0.4 s) time window with respect to triggers in the same AD
with a total light yield higher than 3 × 105 photoelectrons.
This targeted muon veto allows for efficient removal of
spurious triggers that follow a muon as well as most muon-
induced spallation products. Finally, a multiplicity cut is
applied to remove any ambiguities in the IBD pair selection.
This cut requires no additional promptlike signals 400 μs
before the delayed event, and no delayedlike signals 200 μs
after the delayed event. The muon veto efficiency (εμ)
and multiplicity cut efficiency (εm) are calculated directly
from data with negligible uncertainties for each AD. The
average values of εμ · εm are summarized in Table I.
A detailed treatment of the absolute and relative efficien-

cies, as well as their corresponding uncertainties, has been
reported in [3,13]. The uncertainties of the absolute effi-
ciencies are correlated amongADs and thus play a negligible
role in the extraction of the oscillation parameters. All
differences among ADs are treated as uncorrelated uncer-
tainties. In the rate-only analysis, the uncorrelated uncer-
tainties are dominated by the delayed-energy cut (0.12%)
and Gd capture fraction (< 0.1%). In the spectral analysis,
additional uncorrelated uncertainty comes from the relative
energy scale difference between ADs. Based upon the
relative response in all ADs to identified gamma and alpha
peaks from numerous sources that span the IBD positron
energy range, a 0.35% uncertainty is assigned.
Five sources of background are identified. The accidental

background, defined as any pair of otherwise uncorrelated
signals that happen to satisfy the IBD selection criteria, is
the largest background in the antineutrino sample. The rate
and energy spectra of this background can be accurately
determined by measuring the singles rates of prompt- and
delayedlike signals and then calculating the probability that
the two randomly satisfy the selection criteria. Alternative
estimation methods yield consistent results. The relative
uncertainty of this background is 0.3% and is dominated
by the statistics in the rate of delayedlike signals.

(a)

(b)

(c)

FIG. 1 (color online). (a) Ratio of the reconstructed to best-fit
energies of γ lines from calibration sources and singles spectra as
described in the text. The error bars represent the total uncertainty
on each ratio. The γ from the second-excited state of 16O in the
Pu-13C source is denoted 16O&. The n-56Fe1 and n-56Fe2 labels
denote the ∼6 MeV and ∼7.6 MeV γs, respectively, resulting
from the capture of neutrons from the AmC sources parked on top
of the AD. (b) Reconstructed energy spectrum (points) compared
to the sum (shaded area) of the 12B (solid line) and 12N (dashed
line) components of the best-fit energy response model. The error
bars represent the statistical uncertainties. (c) AD energy response
model for positrons.
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Rates and Reactor Power
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Results: θ13 and Δm2ee
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Results: Oscillation Probability
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Results: Delayed np Capture
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FIG. 1: (color online) (a) The prompt vs. delayed energy
of double coincidence events with a maximum 50 cm vertex
separation for all far-hall ADs, (b) the accidental background
sample (ABS) events and (c) the delayed energy distribution
after subtracting the accidentally coincident background for
the far hall (black) and the near halls (red), where the total
near site spectrum was normalized to the area of the far site
spectrum.

ADs. The procedure of accidental background subtrac-
tion was validated by checking the distribution of dis-
tance between the prompt and delayed vertices as shown
in Fig. 2. Simulation studies indicated IBD events rarely
occurred with the prompt and delay vertices separated
beyond 200 cm. Figure 2 shows a flat distribution con-
sistent with zero for the region beyond 200 cm. The
subtraction procedure was further validated from the
distribution of neutron capture time. The accidental-
background-subtracted spectra are consistent with no
events of coincidence time longer than 1.5 ms.
The procedures for evaluating the 9Li/8He, fast neu-

tron, and 241Am-13C backgrounds follow those in [3],
except for three different selection cuts: the delayed
energy cut, the distance cut, and an additional cut,
E > 3.5 MeV, on the prompt energy to suppress the
accidental background. The fast-neutron background is
significantly higher than in the nGd case because the LS
region is more accessible to the externally produced fast
neutrons. The other two backgrounds are also slightly
different due to detector geometry configuration. All
background rates are listed in Table I.
The number of predicted IBD events, N , summed over

various detector volumes v (GdLS, LS, and acrylic ves-
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FIG. 2: (color online) Distributions of the distance between
the prompt and the delayed vertices after the accidental back-
ground was subtracted for the near halls (blue) and the far
hall (red). The inset plot shows the distance distributions for
both the near halls double coincidence, DC, events (blue) and
the expected accidental background sample (black).

sels) is given as

N = φσεµεm

[

GdLS, LS, Acry.
∑

v

Np,vfvεep,vεed,vεt,v

]

εd,

(3)

where φ is the antineutrino flux, which was modeled as
in [6], and Np, σ and f are the number of protons, IBD
cross section and hydrogen capture fraction, respectively.
The efficiency εµ is the efficiency of the muon veto and εm
is the efficiency of the multiplicity cut for the DC selec-
tion [30]. The efficiency εep (εed) is the prompt (delayed)
energy cut efficiency, and εt (εd) refers to the efficiency
of the time (distance) cut.
The θ13 analysis is based on relative rates, as in [3, 5],

such that uncertainties that are correlated among ADs
largely cancel and the uncorrelated uncertainties give the
dominant contributions.
The central values of εep and εed were evaluated from

the simulation. The prompt energy cut at 1.5 MeV
caused about 5% inefficiency in εep for GdLS and LS
events and a much higher loss in the acrylic. The slight
variations in energy scale and resolution among differ-
ent ADs introduced an uncorrelated uncertainty of 0.1%.
For εed, the 3-σ energy cut around the nH capture peak
made the efficiency largely insensitive to the small varia-
tions of energy calibration and resolution. The efficiency
εed also included a small contribution from the low en-
ergy tail of nGd capture events. The uncertainty in εed
was determined by using a spallation neutron sample.
Since the spallation neutron fluxes for neighboring ADs
were nearly identical and the relative nGd acceptance in
the GdLS region was accurately measured [3, 5], a com-
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FIG. 3: (color online) The detected energy spectrum of the
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plot. In the inset is the ratio of the measured to the pre-
dicted rates in each AD vs. baseline, in which the AD4 (AD6)
baseline was shifted relative to that of AD 5 by 30 (−30) m.

tistical uncertainties considered in the nH fit, the un-
certainty of sin2 2θ13 is 0.015, about 70% of the total
uncertainty when uncertainties are added in quadrature,
which is the same for the nGd analysis. The dominant
systematic uncertainties are also independent of the nGd
analysis. For example, the delayed-energy cut is uncou-
pled (uncorrelated) because the impact of the relative
energy-scale difference on the fixed-energy threshold in
the nGd analysis [3, 5, 6] is avoided with the data-driven
3-σ cut. Further couplings are noted in the Table II.
With all uncoupled uncertainties included in the nH fit,
the uncertainty of sin2 2θ13 is 0.017 (90% of the total
uncertainty in quadrature). By conservatively taking all
coupled quantities to be fully coupled, the correlation
coefficient is about 0.05, indicating an essentially inde-
pendent measurement of θ13. The weighted average of
nH and nGd [6] results is 0.089 ± 0.008, improving the
nGd result precision by about 8%.

In summary, with an nH sample obtained in the six-
AD configuration, by comparing the rates of the reactor
antineutrinos at the far and near halls at Daya Bay, we
report an independent measurement of sin22θ13 which is
in good agreement with the one extracted from the min-
imally correlated nGd sample. By combining the results
of the nH and nGd samples, the precision of sin22θ13 is
improved. In general, with different systematic issues,

results derived from nH samples will be important when
the nGd systematic uncertainty becomes dominant in the
future. It is also expected that nH analysis will enable
other neutrino measurements [18, 22].
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A new measurement of the θ13 mixing angle has been obtained at the Daya Bay Reactor Neutrino
Experiment via the detection of inverse beta decays tagged by neutron capture on hydrogen. The
antineutrino events for hydrogen capture are distinct from those for gadolinium capture with largely
different systematic uncertainties, allowing a determination independent of the gadolinium-capture
result and an improvement on the precision of θ13 measurement. With a 217-day antineutrino data
set obtained with six antineutrino detectors and from six 2.9 GWth reactors, the rate deficit observed
at the far hall is interpreted as sin2 2θ13 =0.083± 0.018 in the three-flavor oscillation model. When
combined with the gadolinium-capture result from Daya Bay, we obtain sin2 2θ13=0.089± 0.008 as
the final result for the six-antineutrino-detector configuration of the Daya Bay experiment.

PACS numbers: 14.60.Pq, 29.40.Mc, 28.50.Hw, 13.15.+g
Keywords: neutrino oscillation, reactor, Daya Bay, hydrogen neutron capture

Neutrino oscillations are described by the three an-
gles (θ13, θ23, θ12) and phase (δ) of the PMNS ma-
trix [1, 2]. Recent results [3–7] have established that θ13
is non-zero, as had been indicated by accelerator- and
reactor-neutrino experiments [8–14]. Accurate and pre-
cise knowledge of θ13 is essential to forthcoming experi-
ments to determine the neutrino mass hierarchy and to
search for CP violation in the lepton sector [15]. Definite
θ13 results were obtained by measuring the changes of re-
actor antineutrino rates and spectra at multiple sites via
the inverse-beta decay (IBD) reaction, ν̄e+p → e++n, in
which the prompt e+ signal is tagged by the delayed ∼8
MeV γ-cascade signal from neutron capture on gadolin-
ium (nGd) [3–6]. In this Letter, with comparable statis-
tics as the nGd case, a new measurement obtained by
tagging the delayed 2.2 MeV γ from neutron capture on
hydrogen (nH) [14, 16, 17] at Daya Bay is presented. New
analysis approaches have been developed to meet the
challenges associated with the higher background, longer
neutron capture time (∼200 µs), and a lower energy γ ray
from neutron capture for nH IBD events. This nH anal-
ysis provides an independent measurement of sin2 2θ13,
and leads to an improved precision on the θ13 mixing an-
gle when combined with the nGd result obtained from
the same period of the six antineutrino detector (AD)
configuration [6]. The inclusion of nH capture results

will improve the ultimate precision of Daya Bay for both
θ13 and the ν̄e mass-squared difference |∆m2

ee| [6]. Op-
timization of the nH analysis method will be applicable
to future reactor neutrino experiments that address the
reactor-antineutrino anomaly [18–21] and determine the
neutrino mass hierarchy [22–25].

A detailed description of the Daya Bay experiment can
be found in [26, 27]. The ongoing experiment consists of
two near experimental halls, EH1 and EH2, and one far
hall, EH3. The power-weighted baselines to the six com-
mercial power reactors are ∼500 m and ∼1.6 km for the
near and far halls, respectively. In this analysis, EH1,
EH2 and EH3 have two, one and three ADs, respec-
tively. All ADs are submerged in water pools consist-
ing of optically separated inner (IWS) and outer water
shields (OWS), which also function as Cherenkov detec-
tors to tag cosmic-ray muons. All ADs utilize an identical
three-zone design with 20 tons of Gd-loaded liquid scin-
tillator (GdLS) in the innermost zone, 22 tons of liquid
scintillator (LS) in the middle zone to detect γ’s escaped
from GdLS, and 40 tons of mineral oil in the outermost
zone where photo-multiplier tubes (PMTs) are installed.
Unlike the nGd events, nH capture can occur both in the
LS and the GdLS regions, resulting in more nH than nGd
events before event selection. The trigger threshold for
each AD was set at ∼0.4 MeV based on the logical OR
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5

This distribution was obtained by fitting a large number of
simulated experiments that included statistical and system-
atic variations. To reduce the number of computations, the
simulated experiments were generated with a fixed value of
sin

2
2✓13 = 0.09 [45], after it was verified that the depen-

dency of ��2
c(⌘) on this parameter was negligible. The point

⌘ was then declared to be inside the ↵ C.L. acceptance region
if ��2

data(⌘) < ��2
c(⌘).
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FIG. 3. (color online) The exclusion contours for the neutrino os-
cillation parameters sin2 2✓14 and |�m2

41|. Normal mass hierarchy
is assumed for both �m2

31 and �m2
41. The red long-dashed curve

represents the 95% C.L. exclusion contour with Feldman-Cousins
method [54]. The black solid curve represents the 95% CLs exclu-
sion contour [55]. The parameter-space to the right side of the con-
tours are excluded. For comparison, Bugey’s [32] 90% C.L. limit on
⌫e disappearance is also shown as the green dashed curve.

The second method was the CLs statistical method [55] de-
scribed in detail in Ref. [56]. A two-hypothesis test was per-
formed in the (sin2 2✓14, |�m2

41|) phase space with the null
hypothesis H0 (3-⌫ model) and the alternative hypothesis H1

(3+1-⌫ model with fixed value of sin2 2✓14 and |�m2
41|). The

value of ✓13 was fixed with the best-fit value of the data for
each hypothesis. Since both hypotheses have fixed values of
sin

2
2✓14 and |�m2

41|, their �2 difference follows a Gaussian
distribution. The mean and variance of these Gaussian distri-
butions were calculated from Asimov datasets without statis-
tical or systematic fluctuations, which avoided massive com-
puting. The CLs value is defined by:

CLs =
1� p1
1� p0

, (3)

where p0 and p1 are the p-values for the 3-⌫ and 3+1-⌫ hy-
potheses models respectively. The condition of CLs  0.05
was required to set the 95% CLs exclusion regions.

The 95% confidence level contour from the Feldman-
Cousins method and the 95% CLs method exclusion con-
tour are shown in Fig. 3. The two methods gave compara-
ble results. The detailed structure is due to the finite statistics
of the data. The impact of varying the bin size of the IBD
prompt energy spectrum from 200 keV to 500 keV was negli-
gible. Moreover, the choice of mass ordering in both the three-
and four-neutrino scenarios had a marginal impact on the re-
sults. For comparison, Bugey’s 90% C.L. exclusion on ⌫e
disappearance obtained from their ratio of the positron energy
spectra measured at 40/15 m [32] is also shown. Our result
presently provides the most stringent limits on sterile neutrino
mixing at |�m2

41| < 0.1 eV

2 using the electron antineutrino
disappearance channel. This result is complementary to those
from the

(�)

⌫µ ! (�)

⌫e and
(�)

⌫µ ! (�)

⌫µ oscillation channels. While
the

(�)

⌫e appearance mode constrains the product of |Uµ4|2 and
|Ue4|2, the

(�)

⌫µ and
(�)

⌫e disappearance modes constrain |Uµ4|2
and |Ue4|2, respectively.

In summary, we report on a sterile neutrino search based
on a minimal extension of the Standard Model, the 3 (active)
+ 1 (sterile) neutrino mixing model, in the Daya Bay Reac-
tor Antineutrino Experiment using the electron-antineutrino
disappearance channel. The analysis used the relative event
rate and the spectral comparison of three far and three near
antineutrino detectors at different baselines from six nuclear
reactors. The data are in good agreement with the 3-neutrino
model. The current precision is dominated by statistics. With
at least three more years of additional data, the sensitivity to
sin

2
2✓14 is expected to improve by a factor of two for most

�m2
41 values. The current result already yields the world’s

most stringent limits on sin

2
2✓14 in the |�m41|2 < 0.1 eV2

region.
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tected as an ⌫e after traveling a distance L is given by

P⌫e!⌫e = 1� 4

3X

i=1

4X

j>i

|Uei|2|Uej |2 sin2 �ji. (1)

Here Uei is the element of the neutrino mixing matrix for
the flavor eigenstate ⌫e and the mass eigenstate ⌫i, �ji =

1.267�m2
ji(eV

2
)

L(m)
E(MeV) with �m2

ji = m2
j � m2

i being the
mass-squared difference between the mass eigenstates ⌫j and
⌫i. Using the parameterization of Ref. [34], Uei can be ex-
pressed in terms of the neutrino mixing angles ✓14, ✓13 and
✓12:

Ue1 = cos ✓14 cos ✓13 cos ✓12,

Ue2 = cos ✓14 cos ✓13 sin ✓12,

Ue3 = cos ✓14 sin ✓13,

Ue4 = sin ✓14. (2)

If ✓14 = 0, the probability returns to the expression for three-
neutrino oscillation.

The Daya Bay experiment has two near underground exper-
imental halls (EH1 and EH2) and one far hall (EH3). Each hall
houses functionally identical, three-zone antineutrino detec-
tors (ADs) submerged in pools of ultra-pure water segmented
into two optically decoupled regions. The water pools are in-
strumented with photomultiplier tubes (PMTs) to tag cosmic-
ray-induced interactions. Reactor antineutrinos were detected
via the inverse �-decay (IBD) reaction (⌫e+p ! e++n). The
coincidence of the prompt (e+ ionization and annihilation)
and delayed (n capture on Gd) signals efficiently suppressed
the backgrounds, which amounted to less than 2% (5%) of
the entire candidate samples in the near (far) halls [45]. The
prompt signal measured the ⌫e energy with an energy resolu-
tion �E/E ⇡ 8% at 1 MeV. More details on the reconstruc-
tion and detector performance can be found in Ref. [46]. A
summary of the IBD candidates used in this analysis, together
with the baselines of the three experimental halls to each pair
of reactors, is shown in Table I.

TABLE I. Total number of IBD candidates and baselines of the three
experimental halls to the reactor pairs.

Location IBD candidates Mean Distance to Reactor Core (m)
Daya Bay Ling Ao Ling Ao-II

EH1 203809 365 860 1310
EH2 92912 1345 479 528
EH3 41589 1908 1536 1541

The uncertainty in the absolute energy scale of positrons
was estimated to be about 1.5% through a combination of
the uncertainties of calibration data and various energy mod-
els [45]. This quantity had a negligible effect on the sensi-
tivity of the sterile neutrino search due to the relative nature
of the measurement with functionally identical detectors. The

uncertainty of the relative energy scale was determined from
the relative response of all ADs to various calibration sources
that spanned the IBD positron energy range, and was found to
be 0.35%. The predicted ⌫e flux took into account the daily
livetime-corrected thermal power, the fission fractions of each
isotope as provided by the reactor company, the fission ener-
gies, and the number of antineutrinos produced per fission per
isotope [47].

The precision of the measured baselines was about 2 cm
with both the GPS and Total Station [48]. The geometric ef-
fect due to the finite size of the reactor cores and the antineu-
trino detectors, whose dimensions are comparable to the os-
cillation length at |�m2| ⇠ eV

2, was assessed by assuming
that antineutrinos were produced and interacted uniformly in
these volumes. The impact was found to be unimportant in the
range of �m2 where Daya Bay is most sensitive (|�m2| <
0.3 eV2). Higher order effects, such as the non-uniform pro-
duction of antineutrinos inside the reactor cores due to a par-
ticular reactor fuel burning history, also had a negligible im-
pact on the final result.
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FIG. 1. (color online) Prompt energy spectra observed at EH2 (top)
and EH3 (bottom), divided by the prediction from the EH1 spectrum
with the three-neutrino best fit oscillation parameters from the previ-
ous Daya Bay analysis [45]. The gray band represents the uncertainty
of three-neutrino oscillation prediction, which includes the statistical
uncertainty of the EH1 data and all the systematic uncertainties. Pre-
dictions with sin2 2✓14 = 0.1 and two representative |�m2

41| values
are also shown as the dotted and dashed curves.

The greatest sensitivity to sin

2
2✓14 in the |�m2

41| <
0.3 eV2 region came from the relative measurements between
multiple EHs at different baselines. Figure 1 shows the ra-
tios of the observed prompt energy spectra at EH2 (EH3)
and the three-neutrino best fit prediction from the EH1 spec-
trum [45]. The data are compared with the 3+1 neutrino os-
cillation with sin

2
2✓14 = 0.1 and two representative |�m2

41|
values, illustrating that the sensitivity at |�m2

41| = 4 ⇥ 10

�2

(4 ⇥ 10

�3
) eV

2 came primarily from the relative spectral
shape comparison between EH1 and EH2 (EH3). Sensitiv-
ities for various combinations of the data sets from differ-

Normalize shape to EH1
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The “Bump” at 5 MeV
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Analysis of “The Bump”
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