Recent results and prospects of rare kaon decay measurements at LHCb

Carla Marin Benito on behalf of the LHCb collaboration

XIITH INTERNATIONAL CONFERENCE ON HEAVY QUARKS AND LEPTONS

Schloss Waldthausen, Mainz, Germany, 25-29 August 2014

Outline

• Introduction.

- Motivation
- LHCb detector for strange decays.
- LHCb trigger for strange decays.
- Published results: $K_s \rightarrow \mu \mu$.
- Prospects:
 - $K_s \rightarrow \mu \mu$
 - $K_s \rightarrow \pi^0 \mu \mu$
 - $K_s \rightarrow 4\ell$
 - ► K⁺ mass
 - $\blacktriangleright \ \Sigma^+ \to \rho \mu \mu$

Not covered in this talk:

• $K_S \rightarrow \pi \pi \mu \mu$

► K_L

- Strange mesons have played a major role in the history of particle physics.
 - K^0 decays motivated the GIM mechanism and prediction of *c* quark.
 - Charge-parity violation (CPV) first observed in a strange decay.
- They can still teach us many things:
 - Precision measurements of CP violation.
 - Search for new physics (NP) in rare strange decays: lepton-flavour violation (LFV) searches.
- Why strange?
 - Theoretically clean as few final states are allowed.
 - Copious production at LHC.
 - Large CKM suppression ($V_{ts}V_{td} \sim 10^{-4}$) \Rightarrow large sensitivity to NP.

イロト イポト イヨト イヨト

LHCb detector

Luminosity:

- μ is kept low to ease secondary vertex reconstruction.
- Current data:
 - ▶ 2011: 1 fb⁻¹ data.
 - ▶ 2012: 2 fb⁻¹ data.

Detector shape:

b quarks are produced very boosted.

< ロト < 同ト < ヨト < ヨト

Single arm forward spectrometer.

Carla Marin (carla.marin.benito@cern.ch)

Rare kaon decays at LHCb

HQL 2014

3 / 21

LHCb detector

- Excellent μ identification: μ ID \sim 97% for $1 3\% \pi \rightarrow \mu$ mis-ID.
- Good momentum resolution: $\Delta p/p \sim 0.4\%$ at 5 GeV/c to 0.6% at 100 GeV/c.

Carla Marin (carla.marin.benito@cern.ch)

LHCb detector for strange decays

LHCb is a kaon factory: $\sim 10^{13}~{\rm K_s/fb^{-1}}$ decay in LHCb acceptance. But, it is not optimized for the study of these decays: lower m, larger $\tau.$

Long tracks: Vertex Locator (VELO) + TT + T. Few of the K_S decays.

.

LHCb detector for strange decays

LHCb is a kaon factory: $\sim 10^{13}~{\rm K_s/fb^{-1}}$ decay in LHCb acceptance. But, it is not optimized for the study of these decays: lower m, larger $\tau.$

	m (MeV)	au (10 ⁻¹² s)
B _d	5300	1.5
Ks	500	90
KL	500	50000
K^{\pm}	490	10000
Σ^{\pm}	1190	80

Long tracks: Vertex Locator (VELO) + TT + T. Few of the K_S decays. **Downstream**: TT + T only. Sensitivity to larger flight distances but worse p resolution. Charged mothers (K^{\pm} , Σ^{\pm}) hits in the VELO can be matched to these tracks.

Carla Marin (carla.marin.benito@cern.ch)

HQL 2014 5 / 21

LHCb trigger for strange decays

- L0: calorimeters and muon chambers.
- HLT1: adds tracking and vertexing.
- HLT2: performs full event reconstruction.

LHCb trigger is not designed to select strange decays (larger τ , lower p_T) \Rightarrow they are selected as background in the underlying event!

- In 2011, 1/3 events contain a reconstructible $K_S \rightarrow \pi \pi$.
- In 2012, $m_{\mu\mu}$ range at HLT1 was extended to include m_{K_S} \Rightarrow x3 total efficiency.
- For Run2: studying improvements for $K_S \rightarrow \mu\mu$ reconstruction in the trigger.

イロト 不得下 イヨト イヨト 二日

$K_s \rightarrow \mu \mu$

$K_s ightarrow \mu \mu$ motivation

- No tree-level contribution in SM. FCNC sensitive to NP.
- 2 contributions to the amplitude: [Isidori and Unterdorfer, JHEP 01 (2004) 009] Long-distance (LD) Short-distance (SD)

- $K_S \rightarrow \mu\mu$ allows to access easily the SD component (unlike K_L), which is related to the CPV part of $s \rightarrow d\ell\ell$.
 - Very sensitive to new physics.
 - Poorly constrained so far.
- → In SM: BR($K_S \rightarrow \mu\mu$) = (5.1 ± 0.2) · 10⁻¹² [Ecker and Pich, Nucl. Phys. B366 (1991) 189].
- → Previous best measurement: BR($K_S \rightarrow \mu\mu$) < 3.1 · 10⁻⁷ in 1973!! [CERN PS, Phys.Lett. B 44 (1973) 217–220]

Carla Marin (carla.marin.benito@cern.ch)

Rare kaon decays at LHCb

HQL 2014 8 / 21

${\it K_s} ightarrow \mu \mu$ analysis strategy [JHEP 01 (2013) 090]

- Use 1 fb⁻¹ data at 7 TeV.
- Select muon pairs from the same vertex using LHCb excellent μ identification and vertex and momentum resolution.
- Control channel $K_S \rightarrow \pi\pi$ could be a dangerous bkg. Exploit the $\sigma_m \sim 4 \text{ MeV}$ to separate it from the signal.

$\mathcal{K}_s ightarrow \mu \mu$ analysis strategy [JHEP 01 (2013) 090]

- Boosted Decision Tree to reject combinatorial bkg.
 - Decay vertex position to reject material interaction bkg.
 - Train on data: side-bands for bkg, $K_S \rightarrow \pi\pi$ data for signal.
 - Samples are split in two: train on one, apply to the other.
 - Search is performed in 10 BDT bins.

The structure in the plot corresponds to the material of the VELO

${\cal K}_s ightarrow \mu \mu$ analysis strategy [JHEP 01 (2013) 090]

- Background is interpolated to the signal region from the side-bands.
 - Exponential component for combinatorial.
 - Empirical function (checked with MC) for the $K_S \rightarrow \pi\pi$ tails.
 - Other peaking bkg found to be negligible.

Observed yield compatible with background expectation.

Rare kaon decays at LHCb

$K_{s} ightarrow \mu \mu$ results [JHEP 01 (2013) 090]

• CLs method used to set an upper limit on the BR.

BR $(K_s
ightarrow \mu \mu) < 9(11) \cdot 10^{-9}$ at 90(95)% CL

30 times better than previous best!!

Carla Marin (carla.marin.benito@cern.ch)

Rare kaon decays at LHCb

HQL 2014 12 / 21

$\textit{K}_{\textit{s}} ightarrow \mu \mu$ prospects

- Most interesting region is below 10^{-10} .
- Only 1/3 of the available data (1 fb⁻¹) has been analyzed so far!

Expected sensitivity: the range takes into account the background

Rare kaon decays at LHCb

Direct extrapolation from last analysis Assuming 3 times trigger improvement

- Could reach the 10⁻¹⁰ level with the LHCb upgrade.
- Could have an extra gain using downstream tracks.

イロト イポト イヨト イヨト

HQL 2014

13 / 21

estimation uncertainty.

LHCb Preliminary

LHCb prospects for other rare strange decays

Carla Marin (carla.marin.benito@cern.ch)

Rare kaon decays at LHCb

HQL 2014 14 / 21

< ∃ > <

$K_S ightarrow \pi^0 \mu \mu$ prospects

- Motivation
 - $K_S \rightarrow \pi^0 \mu \mu$ measures the indirect CPV contribution of $K_L \rightarrow \pi^0 \mu \mu \Rightarrow$ extract the direct CPV component which is sensitive to CKM.
 - Study structure of $K \to \pi \gamma^*$ form factor.
- Previous measurement from NA48 [Phys. Lett. B 599: 197-211, 2004]: BR($K_S \rightarrow \pi^0 \mu \mu$) = $(2.9^{+1.5}_{-1.2} \pm 0.2) \cdot 10^{-9} \sim 50\%$ uncertainty!

$K_S ightarrow \pi^0 \mu \mu$ prospects

- Motivation
 - $K_S \rightarrow \pi^0 \mu \mu$ measures the indirect CPV contribution of $K_L \rightarrow \pi^0 \mu \mu \Rightarrow$ extract the direct CPV component which is sensitive to CKM.
 - Study structure of $K \to \pi \gamma^*$ form factor.
- Previous measurement from NA48 [Phys. Lett. B 599: 197-211, 2004]: BR($K_S \rightarrow \pi^0 \mu \mu$) = $(2.9^{+1.5}_{-1.2} \pm 0.2) \cdot 10^{-9} \sim 50\%$ uncertainty!
- $\pi^{\rm 0}$ reconstruction is challenging. Different options studied with MC:
 - $\pi^0 \rightarrow \gamma \gamma \rightarrow \text{Most feasible.}$
 - $\pi^0 \rightarrow ee\gamma$
 - ► No π⁰
- Ongoing sensitivity studies:
 - few events expected in 3 fb^{-1} .
 - could make a measurement in the upgrade (huge production of K_S).

イロト イポト イヨト イヨト

$K_S \rightarrow 4\ell$ prospects

- Recent publication of SM and NP contributions to $K_{L,S} \rightarrow 4\ell$. [D'Ambrosio, Greynat and Vulvert, arXiv:1309.5736v3]
 - ► BRs in SM are up to: $K_s \rightarrow eeee \sim 10^{-10}$ $K_s \rightarrow ee\mu\mu \sim 10^{-11}$ $K_s \rightarrow \mu\mu\mu\mu \sim 10^{-14}$
- No experimental results so far \Rightarrow worth looking at it!

イロト 不得下 イヨト イヨト

$K_S \rightarrow 4\ell$ prospects

- Recent publication of SM and NP contributions to $K_{L,S} \rightarrow 4\ell$. [D'Ambrosio, Greynat and Vulvert, arXiv:1309.5736v3]
 - ► BRs in SM are up to: $K_s \rightarrow eeee \sim 10^{-10}$ $K_s \rightarrow ee\mu\mu \sim 10^{-11}$ $K_s \rightarrow \mu\mu\mu\mu \sim 10^{-14}$
- No experimental results so far \Rightarrow worth looking at it!
- LHCb prospects for $K_S \rightarrow 4\ell$ with electrons:
 - *e* reconstruction is also challenging. From MC studies:

	Mass resolution	Single event sensitivity $(3fb^{-1})$
$K_s ightarrow eeee$	\sim 20 MeV	$\sim 10^{-6}$
${\it K_s} ightarrow {\it ee} \mu \mu$	$\sim 10{ m MeV}$	$\sim 10^{-7}$

- Mass peak displacement due to e energy loss.
- Both safe from main background: $K_S \rightarrow \pi \pi ee$.
- Ongoing work also with $K_S \rightarrow \mu \mu \mu \mu$.

イロト イポト イヨト イヨト 二日

K^+ mass prospects

Disagreement between most precise K^+ mass measurements:

• $K^+ \to \pi \pi \pi$ could give a competitive result.

LHCb approach:

・ロト ・ 同ト ・ ヨト ・ ヨ

Use long and downstream tracks.

Carla Marin (carla.marin.benito@cern.ch)

HQL 2014 17 / 21

K^+ mass prospects: VELO track matching

Without VELO track matching

With VELO track matching

 Matching the downstream tracks to K⁺ hits in the VELO cleans a lot of background with high signal efficiency.
 [A. Contu, CERN-LHCb-PUB-2014-032]

$\Sigma^+ ightarrow ho\mu\mu$ prospects

HyperCP (Tevatron) results [PRL 94 021801]:

- ▶ 3 signal events observed with 0 background.
- $\mathsf{BR}(\Sigma^+ \to p\mu\mu) = (8.6^{+6.6}_{-5.4} \pm 5.5) \cdot 10^{-8}$
- ► All 3 events have $m_{\mu\mu} \sim 214 \text{ MeV} \Rightarrow$ $\Sigma^+ \rightarrow pX^0(\rightarrow \mu\mu)$ with new X^0 state??

[Hyper CP results]

LHCb approach:

- Find evidence of the decay and study $m_{\mu\mu}$.
- Use long and downstream tracks.
- ► From MC studies:
 - \blacktriangleright very good mass resolution: ~ 2 MeV.
 - Single event sensitivity (3 fb⁻¹): O(10⁻⁹ − 10⁻⁸)

Carla Marin (carla.marin.benito@cern.ch)

Rare kaon decays at LHCb

- LHCb is not designed for strange physics but can contribute a lot in this field.
 - Copious production of strange hadrons at the LHC.
 - Exploit the possibility of analysing data that was triggered as background.
- Published result: BR($K_S \rightarrow \mu \mu$) < 9.0 \cdot 10⁻⁹, 30 times better than previous world best!
- Strange physics is a new area of interest for LHCb.
 - ▶ No other experiment will be looking at K⁰ decays in the near future!

(人間) トイヨト イヨト

- LHCb is not designed for strange physics but can contribute a lot in this field.
 - Copious production of strange hadrons at the LHC.
 - Exploit the possibility of analysing data that was triggered as background.
- Published result: BR($K_S \rightarrow \mu \mu$) < 9.0 \cdot 10⁻⁹, 30 times better than previous world best!
- Strange physics is a new area of interest for LHCb.
 - ▶ No other experiment will be looking at K⁰ decays in the near future!

Stay tuned!!

イロト 不得下 イヨト イヨト

THANK YOU!

Carla Marin (carla.marin.benito@cern.ch)

Rare kaon decays at LHCb

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

BACK-UP

Carla Marin (carla.marin.benito@cern.ch)

Rare kaon decays at LHCb

▲ 置 → 気 へ へ
HQL 2014 22 / 21

<ロ> (日) (日) (日) (日) (日)

\mathcal{K}^0 motivation for GIM mechanism and c quark

4 3 > 4 3

Different trigger categories:

- TOS (Trigger On Signal): the event is selected because the signal triggers it.
- TIS (Trigger Independent of Signal): the event is selected because some other particles in the event (not the signal ones) triggered it → the signal is selected as background in this case. Signal and normalization channel have same efficiency.

Two amplitude components:

- s-wave: CPC for K_L , CPV for K_S . Both LD and SD contribute.
- p-wave: CPV for K_L , CPC for K_S . Only LD contributes in SM.

Consequently:

- K_L : p-wave is CPV \rightarrow negligible.
- K_S : p-wave is CPC \rightarrow relevant. s-wave is CPV but has contribution from SD.

Moreover:

- LD contribution to K_S can be determined from chiral expansion $\sim 5 \cdot 10^{-12}$.
- Bounds of 10^{-11} on B($K_S \rightarrow \mu \mu$) \rightarrow bounds on CPV phase of $s \rightarrow d\ell \ell$

イロト イポト イヨト イヨト 二日

$K_S \rightarrow \mu \mu$ expected events

sample	bin	base model
А	bin 1	$2.05^{+1.31}_{-0.91}$
А	bin 2	$0.86\substack{+0.73\\-0.39}$
A	bin 3	$0.23\substack{+0.4\\-0.23}$
А	bin 4	$0.23_{-0.23}^{+0.5}$
А	bin 5	$0.35\substack{+0.53\\-0.35}$
А	bin 6	$0.28^{+0.45}_{-0.28}$
А	bin 7	$0.21\substack{+0.36\\-0.14}$
А	bin 8	$0.59_{-0.59}^{+0.8}$
А	bin 9	$0.00268\substack{+0.00045\\-0.00198}$
А	bin 10	$0.68^{+0.69}_{-0.43}$
В	bin 1	$1.66^{+1.1}_{-0.78}$
В	bin 2	$1.51^{+1.14}_{-0.75}$
В	bin 3	$0.39_{-0.39}^{+0.8}$
В	bin 4	$0.46^{+0.55}_{-0.21}$
В	bin 5	$0.3^{+0.45}_{-0.2}$
В	bin 6	$0.018^{+0.029}_{-0.012}$
В	bin 7	$0.027^{+0.264}_{-0.018}$
В	bin 8	$1.36_{-0.7}^{+0.88}$
В	bin 9	$0.0133^{+0.0034}_{-0.009}$
В	bin 10	$0.14_{-0.14}^{+0.37}$

Carla Marin (carla.marin.benito@cern.ch)

Rare kaon decays at LHCb

$K_S \rightarrow \mu \mu$ systematics

- Bkg expectation: different fit models and different ranges. Different for each bin.
- Ratio of reconstruction, selection and μ -ID: different MC reweighting techniques and comparing to MC. \sim 20% for the ratios and \sim 5% for the μ -ID.
- $B(K_S \to \pi^+\pi^-) = (69.20 \pm 0.05)\%$.
- \bullet Absolute TOS efficiency: comparison to MC. $\sim 15\%$ depending on the bin.
- Prescale factor of the MB sample: difference between the factor in the trigger system and the one measured in data. $s^{MB} = (2.70 \pm 0.76) \times 10^{-6}$.

Leading ones: TOS efficiency and s^{MB} for TOS and ratio of reconstruction and selection for TIS.

イロト 不得下 イヨト イヨト 二日

$K_S ightarrow \pi^0 \mu \mu$ backgrounds

- Combinatorial similar to $K_S \rightarrow \mu \mu \Rightarrow$ reasonably low.
 - Requiring 2 very detached muons, cleans a lot!
- K_S → ππ with π → μ misidentification + π⁰ from underlying event.
 π → μ moves the peak to the left.
 Adding π⁰ could move it back to the right!
 BR(K_S → ππ) × ε(π → μ)² ~ 0.69 × 0.01² ~ 7 · 10⁻⁴
- Similar for $K_S \rightarrow \pi \mu \nu$. $BR(K_S \rightarrow \pi \mu \nu_{\mu}) \times \epsilon(\pi \rightarrow \mu) \sim 4.7 \cdot 10^{-4} \times 0.01 \sim 5 \cdot 10^{-6}$
- Selection should be tightened to fight them.
- This could diminish the signal efficiency.

	$K_S ightarrow \pi \pi e e$ separation
$K_s ightarrow eeee$	\sim 300 MeV
${\it K_s} ightarrow {\it ee} \mu \mu$	\sim 70 MeV

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

$K_S \rightarrow 4\ell$: expected sensitivity

Normalization channel: $K_s
ightarrow e^+ e^- \pi^+ \pi^-$

Definition of single event sensitivity:

 $\alpha = \frac{\epsilon_{\text{norm}}^{\textit{accep}}}{\epsilon_{\text{phys}}^{\textit{accep}}} \cdot \frac{\epsilon_{\text{norm}}^{\textit{reco}|\textit{accep}}}{\epsilon_{\text{phys}}^{\textit{reco}|\textit{accep}}} \cdot \frac{\epsilon_{\text{norm}}^{\textit{sel/reco}}}{\epsilon_{\text{phys}}^{\textit{sel/reco}}} \cdot \frac{1}{(\epsilon^{\textit{PID}})^2} \cdot \frac{\epsilon_{\text{norm}}^{\textit{trig|sel}}}{\epsilon_{\text{phys}}^{\textit{trig|sel}}} \cdot \frac{\mathsf{BR}_{\text{norm}}}{N_{\text{norm}}}$

• e^{accep} very similar for both channels.

• Assume $\epsilon^{\textit{sel}|\textit{reco}}$ and $\epsilon^{\textit{trig}|\textit{sel}}$ are the same.

• $\epsilon_e^{reco|accep} \approx 9\%$, $\epsilon_{\mu}^{reco|accep} \approx 20\%$ and $\epsilon_{\pi}^{reco|accep} \approx 6 - 9\%$.

• $\epsilon_e^{PID} \approx 50\%$ and $\epsilon_\mu^{PID} \approx 90\%$ (from $B \to e\mu$ and $K_s \to \mu^+\mu^-$ analysis).

• BR($K_s \to e^+ e^- \pi^+ \pi^-$) = 4.79 · 10⁻⁵ from PDG.

Assuming $N_{K_s \rightarrow e^+ e^- \pi^+ \pi^-} \sim 50$ (very conservative!)

$$\begin{split} \mathcal{K}_s &\to e^+e^-e^+e^-: \ \alpha \sim 10^{-6} \\ \mathcal{K}_s &\to e^+e^-\mu^+\mu^-: \ \alpha \sim 10^{-7} \end{split}$$

Carla Marin (carla.marin.benito@cern.ch)

Rare kaon decays at LHCb

$K_S ightarrow 4\ell$: expected $N_{K_s ightarrow e^+e^-\pi^+\pi^-}$

$$N_{K_{s} \rightarrow e^{+}e^{-}\pi^{+}\pi^{-}}^{\mathsf{TIS}} = N_{K_{s} \rightarrow \pi^{+}\pi^{-}, 1\mathrm{fb}^{-1}}^{\mathsf{TIS}} \cdot N_{\mathrm{fb}^{-1}} \cdot \frac{\mathsf{BR}(K_{s} \rightarrow e^{+}e^{-}\pi^{+}\pi^{-})}{\mathsf{BR}(K_{s} \rightarrow \pi^{+}\pi^{-})} \cdot \frac{\epsilon_{K_{s} \rightarrow e^{+}e^{-}\pi^{+}\pi^{-}}}{\epsilon_{K_{s} \rightarrow \pi^{+}\pi^{-}}}$$

where:

•
$$N_{K_s o \pi^+ \pi^-}^{\text{TIS}} \sim 10^8$$
 from $K_s o \mu \mu$ analysis.

• We have in tape
$$N_{\text{fb}^{-1}} = 3$$
.

• BR(
$$K_s \rightarrow e^+e^-\pi^+\pi^-$$
) = 4.79 · 10⁻⁵ and
BR($K_s \rightarrow \pi^+\pi^-$) = 6.9 · 10⁻¹, from PDG.

•
$$\frac{\epsilon_{K_s \to e^+e^-\pi^+\pi^-}}{\epsilon_{K_s \to \pi^+\pi^-}} \sim \frac{\epsilon_{PIDe}^{2} \cdot \epsilon_{reco \pi}^{2} \cdot \epsilon_{reco e}^{2}}{\epsilon_{reco \pi}^{2}}$$
 is the ratio of efficiencies, computed with the values given in previous slide.

- $\bullet\,$ Very rough estimate for systematic uncertainty: $\sim 0.02~MeV/c^2.$
 - Could be improved with some effort.
- $\bullet\,$ To have a similar statistical error \sim 200K events are needed.
 - In 1 fb⁻¹ we observe \sim 2K events.
 - \blacktriangleright Dedicated selection $\sim \times 10$ statistics.
 - Dedicated trigger line could have a similar result, but only available from Run2.

$\Sigma^+ ightarrow ho\mu\mu$: expected sensitivity

Normalization channel: $\Sigma^+ \rightarrow p \pi^0 (\rightarrow e^+ e^- \gamma)$

Definition of single event sensitivity:

$$\alpha = \frac{\epsilon_{\mathsf{norm}}}{\epsilon_{\mathsf{phys}}} \cdot \frac{\mathsf{BR}_{\mathsf{norm}}}{N_{\mathsf{norm}}}$$

- Assuming same trigger effciency.
- The ratio of $\epsilon_{reco,selec}$ is \sim 0.04 due to the diffcult reconstruction of very soft electrons.
- BR $(\Sigma^+ \to p \pi^0 (\to e^+ e^- \gamma)) = 51.57\% \times 1.174\% \sim 6 \cdot 10^{-3}$ from PDG.
- Without optimisation of final selection.

With $N_{\Sigma^+ \to p\pi^0(\to e^+e^-\gamma)} = 45$ K observed in 3 fb⁻¹:

$$\alpha_{\Sigma^+ o p \pi^0 (o e^+ e^- \gamma)}$$
: $\sim 5 \cdot 10^{-9}$

Carla Marin (carla.marin.benito@cern.ch)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

- Could allow precise measurement of K^0 mass.
 - Low Q: $m_{K_S} (2 \cdot m_{\pi} + 2 \cdot m_{\mu}) \sim 10 \text{ MeV}/c^2$.
 - Minimize systematics due to momentum scale uncertainty.
- SM prediction:
 - BR($K_S \to \pi \pi \mu \mu$) = 4 · 10⁻¹⁴.
 - Good probe for NP.
- Starting preliminary studies at LHCb.

• • = • • = •

• K_L and K_S distinguishable by the decay time. But in LHCb acceptance:

The decay distributions will look like:

$$\begin{aligned} \epsilon(t) \sim e^{-\beta t} & \text{KS} \quad \mathbf{p}(t) \sim e^{-(\beta + \Gamma_S)t} = e^{-\Gamma_{S,eff}t} \\ \text{KL} \quad \mathbf{p}(t) \sim e^{-(\beta + \Gamma_L)t} = e^{-\Gamma_{L,eff}t} \end{aligned}$$

Using DD tracks, \sim 50% separation can be reached.

• The overall reconstruction efficiency is \sim 1000 times smaller than for the corresponding K_S decay.

(日) (同) (三) (三)