Recent KLOE results on Kaon Physics

12th International Conference on Heavy Quarks and Leptons

27 August 2014

Aleksander Gajos Jagiellonian University

for the KLOE and KLOE-2 Collaborations

- 1. The KLOE Detector and the DA Φ NE ϕ -factory
- 2. CPT and Lorentz invariance tests at KLOE
 - a. Prospects with upgraded KLOE-2
- 3. Measurement of the absolute ${\sf BR}({\sf K}^{\scriptscriptstyle +}{\rightarrow}\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}\pi^{\scriptscriptstyle +}(\gamma))$ at KLOE

The DA ϕ NE ϕ -factory

- ◆ 2005: 1256 pb⁻¹
- 2004: 734 pb⁻¹
- ◆ 2002: 320 pb⁻¹
- 2001: 172 pb⁻¹

- ~ 2.5 fb⁻¹
 - ~ 10¹⁰ Φ mesons

produced

400

200

0

2002

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2001

The KLOE Detector

27.08.2014

Kaon production at $DA\Phi NE$ and KLOE

- Φ mesons produced almost at rest (p_o ≈ 15MeV/c)
- neutral and charged kaons produced in pairs in Φ decays

Decay channel	branching ratio $[\%]$
$\phi \to \mathrm{K}^+\mathrm{K}^-$	$48.9 {\pm} 0.5$
$\phi \rightarrow K_S K_L$	$34.2{\pm}0.4$
$\phi \to \rho \pi^0, \phi \to \pi^+ \pi^- \pi^0$	$15.32{\pm}0.32$
$\phi o \eta \gamma$	$1.309 {\pm} 0.024$

Two unique features of the Φ -factory:

Quantum entanglement

 Neutral kaon pairs are produced in an entangled state

Tagging

- detection of a $K^+(K_L)$ guarantees the presence of a $K^-(K_s)$ and *vice-versa*
- \bullet momenta opposite in the Φ frame
- pure kaon beams are easily obtained

Interferometric studies

CPT and Lorentz symmetry test

A wide range of studies possible at KLOE

Branching ratio measurements for kaons

BR($K^{\scriptscriptstyle +} \rightarrow \pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}\pi^{\scriptscriptstyle +}(\gamma)$)

Neutral kaon interferometry

Neutral kaon pairs at KLOE are produced in an entangled quantum state:

$$|i\rangle = \frac{\mathcal{N}}{\sqrt{2}} \left(|\mathbf{K}_{S}(+\vec{p})\rangle |\mathbf{K}_{L}(-\vec{p})\rangle - |\mathbf{K}_{L}(+\vec{p})\rangle |\mathbf{K}_{S}(-\vec{p})\rangle \right)$$

Decay amplitude for $K_{S}K_{L}$ decaying into f_{1} and f_{2} final states in times t_{1} and t_{2} $I(f_{1}, t_{1}; f_{2}, t_{2}) = C_{12} \Big[|\eta_{1}|^{2} e^{-\Gamma_{L}t_{1} - \Gamma_{S}t_{2}} + |\eta_{2}|^{2} e^{-\Gamma_{S}t_{1} - \Gamma_{L}t_{2}} \qquad \Delta m = m_{L} - m_{S}$ $\left[-2|\eta_{1}||\eta_{2}|e^{\frac{\Gamma_{S} + \Gamma_{L}}{2}(t_{1} + t_{2})} \cos(\Delta m(t_{1} - t_{2}) + \varphi_{2} - \varphi_{1}) \right] \qquad \Delta m = m_{L} - m_{S}$

Interference term

Destructive quantum interference:

 Two kaon may not decay into the same final state at the same time

CPT and Lorentz symmetry test

Motivation:

Standard Model Extension (Kostelecky)

Anti-CPT theorem (Greenberg):

CPT violation should appear together with Lorentz Invariance breaking

> V. A. Kostelecký Phys. Rev. D 64, 076001 O. W. Greenberg Phys. Rev. Lett. 89, 231602

=> direction-dependent modulation of the δ CPT violation parameter:

$$\delta \simeq i \sin \phi_{SW} e^{i \phi_{SW}} \gamma_K (\Delta a_0 - \vec{\beta_K} \Delta \vec{a}) / \Delta m$$

where Δa_{μ} are coefficients of the SME Lagrangian part $\langle K | \delta H_{SME} | K \rangle \sim \beta_K^{\mu} \Delta a_{\mu}(K)$

δ can be extracted using interferometric studies with $\phi \to K_S K_L \to \pi^+ \pi^- \pi^+ \pi^-$

- + identical final states of both kaon decays ($\pi^+\pi^-$)
- kaons can only be ordered in time by direction of momentum w.r.t. a chosen direction
- decay amplitude:

$$I_{f_1} = \varepsilon_K - \delta(\vec{p}_{K^1})$$

$$I_{f_1 f_2}(\Delta \tau) \propto e^{-\Gamma |\Delta \tau|} \left[|\eta_1|^2 e^{\frac{\Delta \Gamma}{2} \Delta \tau} + |\eta_2|^2 e^{-\frac{\Delta \Gamma}{2}} - 2\Re e \left(\eta_1 \eta_2^* e^{-i\Delta m} \right) \right]$$

$$\eta_1 = \varepsilon_K - \delta(\vec{p}_{K^1})$$

$$\eta_2 = \varepsilon_K - \delta(\vec{p}_{K^2})$$

KLOE and terrestrial reference frames

 accounting for the sidereal time dependence due to the Earth rotation

 ϑ, ϕ – polar and azimuthal angles of K momentum in LAB frame

Analysis strategy

Event selection requirements:

- 2 reconstructed vertices with 2 tracks and:
 - $|M_{rec} m_K| < 5 \,\mathrm{MeV}$ (assuming charged pion mass hypothesis)
 - $\sqrt{E_{miss}^2 + |\vec{p}|_{miss}^2} < 10 \,\mathrm{MeV}$
 - $-50 \,\mathrm{MeV}^2 < M_{miss}^2 < 10 \,\mathrm{MeV}^2$
 - $|p_K^{rec}_{1,2} p_K^0| < 10 \,\mathrm{MeV}$
- $\Delta \tau \in [-12\tau_S; 12\tau_S]$ to avoid kaon regeneration on beam pipe

Before fit

After fit

Residual background contamination:

- kaon regeneration (2%)
- $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-$ (0.5%)

Resulting efficiency:

- almost flat except $\Delta \tau / \tau_s \sim 0$
- due to worse tracking and vertexing efficiency at $\Delta \tau / \tau_s \sim 0$

Analysis strategy

- kaons are ordered in time by their z momentum component
- dataset is divided into 2 samples
 - kaon with $\cos\theta > 0$ having: $p_{k}p_{\phi} > 0$
 - kaon with $\cos\theta > 0$ having: $p_k p_{\phi} < 0$

next, dataset is divided into 4 sidereal time bins

2 angular bins x 4 time bins = 8 samples

Simultaneous fit is performed to $\Delta \tau$ distributions of all 8 samples to extract the Δa_{μ} coefficients.

Time-dependent decay amplitudes fit

• χ²/ndf = 211/187 (P=10%)

Final Results of CPT and Lorentz invariance tests

$$\begin{split} &\Delta a_0 = (-6.0 \pm 7.7_{stat} \pm 3.1_{sys}) \ 10^{-18} \ \text{GeV} \\ &\Delta a_X = (\ 0.9 \pm 1.5_{stat} \pm 0.6_{sys}) \ 10^{-18} \ \text{GeV} \\ &\Delta a_Y = (-2.0 \pm 1.5_{stat} \pm 0.5_{sys}) \ 10^{-18} \ \text{GeV} \\ &\Delta a_Z = (\ 3.1 \pm 1.7_{stat} \pm 0.6_{sys}) \ 10^{-18} \ \text{GeV} \end{split}$$

KLOE-2 Collaboration Phys. Lett. B 730 (2014) 89

- reached the expected sensitivity in the SME kaon sector
- several orders of magnitude more precise than for other meson systems (O(10⁻¹³GeV) for B, D)
- presently the most precise measurements in the quark sector of the SME
- dominated by statistical uncertainties \rightarrow prospects for improvement with KLOE-2

Par.	Cut stability	Fit Range	Bkg. Subtr.	KLOE ref. frame	Total
Δa_0	1.1	24	1.3	1.0	3.1
Δa_{χ}	0.3	0.3	0.4	0.2	0.6
$\Delta a_{\rm Y}$	0.2	0.3	0.2	0.2	0.5
$\Delta a_{\rm Z}$	0.2	0.2	0.4	0.4	0.6

Systematic uncertainties:

KLOE upgrade to KLOE-2

NIMA 617 (2010),105

athode

Detector upgrades:

- QCALT sampling calorimeter to instrument the final focusing region
- CCALT LYSO calorimeter to increase acceptance for γ-s from IP NPB 197 (2009), 215

- new Inner Tracker
 - first cylindrical GEM detector ever built
 - 4 layers of triple GEM
 - increased acceptance for low- p_{T} tracks
 - Improved vertexing resolution near the IP

NIMA 628 (2011),194

KLOE-2 is starting operation with the goal to collect 5 fb⁻¹ in 2-3 years

Absolute BR(K⁺ $\rightarrow \pi^{+}\pi^{-}\pi^{+}(\gamma))$ measurement

Motivation:

 completes the program of precise and fully inclusive measurements of K[±] dominant branching ratios at KLOE

$K^{+} \rightarrow \mu \nu$	0.6366(18)	0.3%	PLB 632 (2006)
$K^+ \rightarrow \pi^+ \pi^0$	0.2065(9)	0.5%	PLB 666 (2008)
$K^{\pm} \rightarrow \pi^0 e^{\pm} v$	0.0497(5)	1.0%	JHEP 02 (2008)
$K^{\pm} \rightarrow \pi^{0} \mu^{\pm} \nu$	0.0324(4)	1.2%	JHEP 02 (2008)
$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$	0.0176(3)	1.7%	PLB 597 (2004)
τ±	12.347(30) ns	0.24%	JHEP 01 (2008)

- needed to perform a global fit to K[±] branching ratios
- this BR enters in the CUSP analysis to extract the $\pi\pi$ phase shift done by NA48 (PLB 633(2006))
- available measurement dates back to 1972 (no information on radiation cut-offs): I.H. Chiang, et al. : BR(K⁺ $\rightarrow \pi^{+}\pi^{-}\pi^{+}$) = (5.56 ± 0.20)% Δ BR/BR = 3.6x10⁻² (PRD 6 (1972), 1254)

KLOE fit 2008: $BR(K^+ \rightarrow \pi^+\pi^-\pi^+) = (5.68 \pm 0.22)\%$ $\Delta BR/BR = 3.8 \times 10^{-2}$ Flavianet fit 2010: $BR(K^+ \rightarrow \pi^+\pi^-\pi^+) = (5.73 \pm 0.16)\%$ $\Delta BR/BR = 2.7 \times 10^{-2}$ (EPJC 69 (2010) 399)

$BR(K^+ \rightarrow \pi^+\pi^-\pi^+(\gamma)) - analysis overview$

- using 174 pb⁻¹ KLOE data sample
- Using K⁺ rather than K⁻ (factor 10³ smaller nuclear cross-section for K⁺ at p≈100 MeV)
- triggering by $K^- \rightarrow \mu^- \nu$ or $K^- \rightarrow \pi^- \pi^0$ on one side
 - tag and signal hemispheres
- track of the tagging K backward extrapolated to the IP to obtain a virtual path of the signal kaon
- in the signal hemisphere we require two reconstructed tracks making a vertex along the signal K path in the fiducial volume before the DC inner wall (R^{DC}_{inner} = 25 cm)
- Number of signal events obtained from the missing mass spectrum of the 3rd pion

$BR(K^+ \rightarrow \pi^+\pi^-\pi^+(\gamma)) - signal selection$

sig path

Requirements for the two secondary tracks:

- no charge requirements
- DCA < 3 cm (track 1,2– signal K path)
- DCA₁₂ < 3cm (track 1 track 2)
- p^{*}_{mπ} < 190 MeV
- $|\cos \theta_{12}| < 0.9$
- $\rho_{xy} \leq 26 \text{ cm}$

Selected region of the missing mass distribution:

- 10 000 MeV² < m^2_{miss} < 30 000 MeV²
- S/B \thickapprox 88 for $\rm K_{\mu2}$ tag and 84 for $\rm K_{\pi2}$

Fit to missing mass spectrum

to extract number of signal events

- X^2 /ndf = 44.8/46 for $K_{\mu 2}$ tag
- X²/ndf = 42.9/45 for $K_{\pi 2}$ tag

Final Result of absolute BR(K⁺ $\rightarrow \pi^+\pi^-\pi^+(\gamma)$)

$$BR(K^+ \to \pi^+ \pi^- \pi^+) = \frac{N_{K \to 3\pi}}{N_{tag}} \times \frac{1}{\epsilon_{sel} C_{TB} C_f C_{crv}}$$

• sample tagged with $K_{\mu 2}$:

 $BR(K^+ \to \pi^+ \pi^- \pi^+ (\gamma)) = 0.05552 \pm 0.00034_{stat} \pm 0.00034_{syst}$

• sample tagged with $K_{\pi 2}$:

 $BR(K^+ \to \pi^+ \pi^- \pi^+ (\gamma)) = 0.05587 \pm 0.00053_{stat} \pm 0.00033_{syst}$

Combined result:

BR(K⁺ $\rightarrow \pi^{+}\pi^{-}\pi^{+}(\gamma)) = 0.05552 \pm 0.00034_{stat} \pm 0.00034_{syst}$

Fit of the six largest K[±] Correlation coefficients Parameter Value BRs using KLOE results $BR(K_{\mu 2}^{\pm})$ 0.6372(11)with Σ BR(K[±] \rightarrow f) = 1 $BR(K_{\pi 2}^{\pm})$ 0.2070(9)0.55 $\chi 2 / ndf = 0.24 / 1$ BR $(\pi^{\pm}\pi^{-}\pi^{+})$ 0.0558(4)-0.23-0.05(CL = 0.63) $BR(K_{e3}^{\pm})$ 0.0498(5)0.42-0.150.06 $BR(K_{\mu3}^{\pm})$ 0.0324(4)-0.390.14-0.05 $BR(\pi^{\pm}\pi^{0}\pi^{0})$ 0.01764(25)-0.13-0.020.05

 $\tau_{K^{\pm}}$ (ns)

KLOE-2 Collaboration

Submitted to Phys. Lett. B

Corrections:

 C_{TB} – tag bias

 ϵ_{sal} – selection efficiency

C, – machine bkg. Filter

C_{on} – cosmic ray veto

Recent KLOE results on Kaon Physics

0.20

0.19

-0.14

12.344(29)

-0.58

0.04

0.05

-0.04

-0.04 0.02

Summary

- Quantum interferometry with entangled kaon pairs at the DAΦNE Φ-factory is a powerful tool for testing the fundamental symmetries and searches for physics beyond the Standard Model
- KLOE has performed a test of CPT and Lorentz invariance reaching the sensitivity of O(10⁻¹⁸ GeV)
- KLOE has completed its programme of of precise and fully inclusive measurements of K[±] branching ratios
- A new measurement of BR(K⁺ $\rightarrow \pi^+\pi^-\pi^+(\gamma)$) was performed at KLOE with precision ~5 time better than than previous result
- Upgraded KLOE-2 is starting operation with a view to higher statistics and better precision

Backup Slides

Sun-centered reference frame

FIG. 1: Standard Sun-centered inertial reference frame [9].