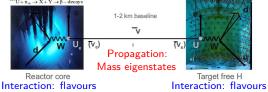
	Double Chooz Analysis and Results	RENO Results	Conclusion
000000000	00000000	000000	

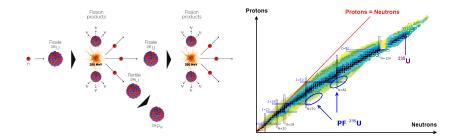
Reactor Antineutrino Experiments


Double Chooz and RENO

Antoine Collin

Max-Planck-Institut für Kernphysik, Heidelberg

August 26, 2014

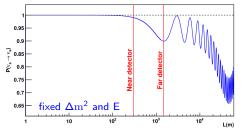

Neutrino mixing and oscillations:

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 \\ c_{23} \\ -s_{23} \end{pmatrix} \begin{pmatrix} c_{13} \\ e^{i\delta}s_{13} \\ -e^{i\delta}s_{13} \end{pmatrix} \begin{pmatrix} c_{12} \\ s_{12} \\ -s_{12} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

$$\Delta m_{32}^{2} \simeq \Delta m_{31}^{2} & 2A + 10^{-3} e^{V^{2}} & 7.6 \cdot 10^{-5} e^{V^{2}} \\ sin^{2} 2\theta_{23} \simeq 1 & sin^{2} 2\theta_{13} \simeq 0.1 \\ sin^{2} 2\theta_{12} \simeq 0.8 \\ stmospheric \gamma & accelerator+reactor \\ solar \gamma \end{pmatrix}$$

Introduction	Double Chooz Analysis and Results	RENO Results	Conclusion
00000000	00000000	000000	000

Reactor Antineutrinos

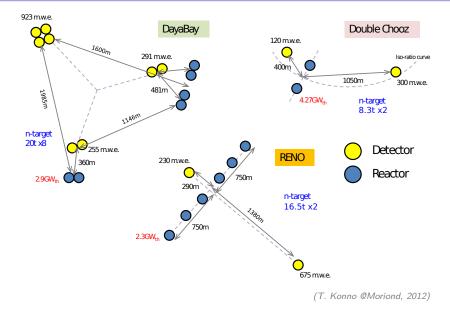


- Nuclear reactors rely on fission chain
- Fission products are neutron rich nuclei
- $\bullet~1~\text{fission} \rightarrow \sim 200~\text{MeV}$ and $6~\bar{\nu}_e$
- \bullet Pure and intense source of $\bar{\nu}_e$ through β^- decays
- $\bullet\,$ Energy up to $\sim 8\,\text{MeV}$

Introduction	Double Chooz Analysis and Results	RENO Results	Conclusion
000000000	00000000	000000	000
Reactor Neutr	ino Oscillations		

 $\bullet\,$ Reactor $\bar{\nu}_e$ disappearance is directly related to θ_{13}

$$P(ar{
u}_e
ightarrow ar{
u}_e) \simeq 1 - \sin^2\left(2 heta_{13}
ight) \sin^2\left(rac{\Delta m_{31}^2 L}{4E}
ight)$$


• Clean measurement: insensitive to $\delta\text{-CP}$ phase value

1

- Chooz experiment (1999): yielded an upper limit
- Current generation of experiments: relative measurement with two identical detectors (or more) to reduce systematics

Introduction	Double Chooz Analysis and Results	RENO Results	Conclusion
000000000	00000000	000000	000

Sites of the Different Experiments

Introduction	Double Chooz Analysis and Results	RENO Results	Conclusion
000000000	00000000	000000	000
Detection of Antine	eutrinos		

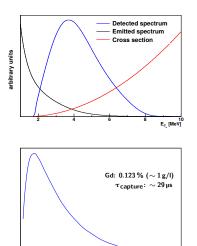
• $\overline{\nu}_e$ are detected through inverse β decay:

 $\overline{\nu}_e + H^+ \rightarrow n + e^+$

- Signal signature: time correlation
 - Prompt event: positron ionisation and annihilation

 $\mathsf{E}(\mathsf{e}^+)\simeq\mathsf{E}(\bar{\nu}_e)$ - 0.8 MeV

very localized energy deposition


- Delayed event: radiative neutron capture on Gd γ cascade

total energy $\sim 8\,\text{MeV}$

time correlation of the order of a few tens of μs (depending on the Gd concentration)

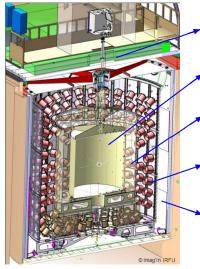
- Alternatively, delayed neutron capture on H $(\sim 2.2\,{\rm MeV})$

Introduction	Double Chooz Analysis and Results	RENO Results	Conclusion
00000000	00000000	000000	000
Detection of Ant	ineutrinos		

- $\overline{\nu}_e$ are detected through inverse β decay:
 - $\overline{\nu}_e + H^+ \rightarrow n + e^+$
- Signal signature: time correlation
 - Prompt event: positron ionisation and annihilation

 $E(e^+) \simeq E(\bar{\nu}_e)$ - 0.8 MeV very localized energy deposition

- Delayed event: radiative neutron capture on Gd γ cascade total energy ~ 8 MeV


time correlation of the order of a few tens of μs (depending on the Gd concentration)

- Alternatively, delayed neutron capture on H $(\sim 2.2\,{\rm MeV})$

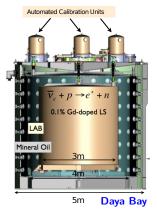
Neutron capture time [us]

Detectory De	uhla Chaaz		
000000000	00000000	000000	000
Introduction	Double Chooz Analysis and Results	RENO Results	Conclusion

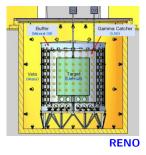
Detectors: Double Chooz

· Outer Veto : plastic scintillator strips

v-Target: 10.3 m^3 liquid scintillator doped with 1 g/l of Gd in an acrylic vessel (8 mm)


Gamma-catcher: \sim 60 cm thick, 22.6 m³ LS in an acrylic vessel (12 mm)

Buffer: \sim 95 cm thick, 110 m³ of mineral oil in a stainless steel vessel (3 mm) viewed by 390 PMTs (10 inches)


Inner Veto: 90 m^3 liquid scintillator in a steel vessel (10 mm) equipped with 78 PMTs (8 inches) + steel shielding

Introduction	Double Chooz Analysis and Results	RENO Results	Conclusion
0000000000	00000000	000000	000

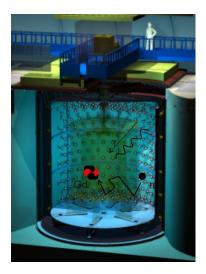
Detectors: Daya Bay and RENO Features

- 8 × 20 t detectors
- $\bullet~\sim 50\,cm$ thick buffer
- no PMTs on top and bottom (reflective panels instead)
- muon veto: water pools

- $2 \times 16.5 t$ detectors
- $\bullet~\sim 70\,cm$ thick buffer
- muon veto: water

Introduction
00000000000

Double Chooz Analysis and Results


RENO Results

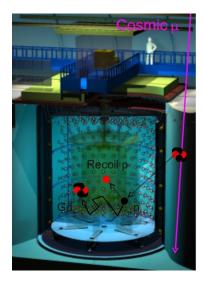
Conclusion 000

Accidental Background

Coincidence of two unrelated events

- Prompt signal: γ (natural radioactivity: materials, PMTs, rock, etc.)
- Delayed Signal: neutron capture (produced by cosmic muons, thermalised in the detector) or high energy γ

Introduction	Double Chooz Analysis and Results	RENO Results	Conclusion
0000000000	00000000	000000	000


Correlated Backgrounds

Fast neutrons and stopping muons

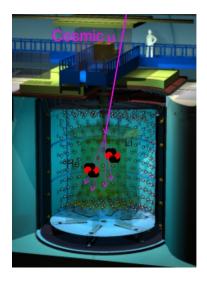
- Fast neutrons induced by reactions of spallation by muons on surrounding nuclei
 - Prompt signal: proton recoil due to neutron collision
 - Delayed signal: capture of the same neutron on gadolinium

• Muons decaying in the inner detector

- Prompt signal: energy deposited along the muon track
- Delayed signal: electron emitted by muon decay
- Multiple neutron captures

Introduction
•00000000

Double Chooz Analysis and Results

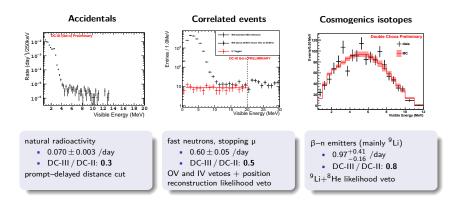

RENO Results

Conclusion 000

Correlated Backgrounds

Cosmogenic isotopes: ⁹Li and ⁸He

- β n emitters produced by reactions of spallation by muons on ^{12}C
- Lifetime of 178 and 119 ms respectively


	Double Chooz Analysis and Results	RENO Results	Conclusion
000000000	00000000	000000	

Double Chooz Latest Analysis and Results

	Double Chooz Analysis and Results	RENO Results	Conclusion
000000000	00000000	000000	000
Selection of N	eutrino Candidates		

- Muon veto
 - 1 ms after each muon
 - events in coincidence with Outer Veto and Inner Veto triggers are discarded
- Additional background rejection
 - "Light Noise": based on inhomogeneous charge and PMT hit times distributions
 - Stopping muons: based on poor position reconstruction
- Coincidence selection
 - Prompt event: [0.5; 20] MeV
 - Delayed event: [4; 10] MeV
 - Time coincidence: ΔT within [0.5; 150] μs
 - Prompt–delayed distance: $\Delta R < 1 \text{ m}$
 - Multiplicity cut: no extra valid trigger within [-200; 600] µs from prompt

	Double Chooz Analysis and Results	RENO Results	Conclusion
000000000	0000000	000000	000
Backgrounds			

- Two reactor off measurement: 7 events observed when $12.9^{+3.1}_{-1.4}$ were expected
- $N_{\rm BG}({\rm OFF}) < \sum N_{\rm BG}({\rm ON})$ with compatibility of 9 % (1.7 σ)
- constraint on possible unaccounted backgrounds

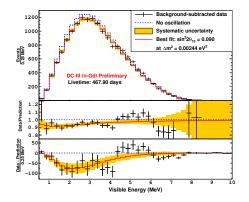
DC-II: 2012 DC-III: 2014

0000000000

Double Chooz Analysis and Results

RENO Results

New Analysis Improvements



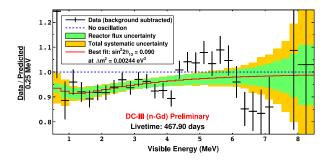
- benefits from improved active background rejection
 - wide selection cuts \Rightarrow detection systematics reduction
 - increased S/B (15.6 ightarrow 22)

	Double Chooz Analysis and Results	RENO Results	Conclusion
000000000	00000000	000000	000
Summary of Unce	rtainties		

Source		Uncertainty	w.r.t. signal
Statistics		8.0	3%
	Bugey4 measurement	1.4 %	
	Fuel composition	0.8%	
Reactor	Thermal power	0.5 %	1.7%
Reactor	Energy per fission	0.2 %	1.7 70
	IBD cross-section	0.2 %	
	Baseline	< 0.1 %	
	Vetoes	0.1 %	
	IBD selection	0.2 %	
Detector	Gd fraction	0.4 %	0.6 %
Detector	Spill in/out	0.3%	0.0 %
	Trigger efficiency	< 0.1 %	
	Target H	0.3%	
Backgrounds	Accidental	< 0.1 %	
	Fast neutron	0.1 %	+1.1% / $-0.4%$
	⁹ Li + ⁸ He	+1.1% / $-0.4%$	

$Rate \perp Shane$	θ_{12} measurement ("Gd Analy	veie")	
	00000000		
Introduction	Double Chooz Analysis and Results	RENO Results	Conclusion

- Other innovations compared to DC-II
 - range from 0.5–20 MeV (0.25 MeV bins)
 - measured ²³⁸U spectrum in prediction
 - Δm² from MINOS 2013 (T2K confirmed)
 - extra bin from 2 reactor off measurement


 $\left. \begin{array}{c} \sin^2(2\,\theta_{13}) = 0.090^{+0.032}_{-0.029} \,\, (\text{stat.+ syst.}) \right| \quad \text{ arX} \end{array} \right. \label{eq:sin2}$

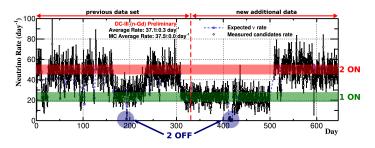
arXiv:1406.7763

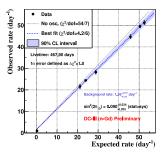
$$\chi^2_{min}/dof = 52.2/40~(p \,{=}\, 9.4\,\%)$$
 background rate after fit: $1.38\pm0.14\,day^{-1}$

	Double Chooz Analysis and Results	RENO Results	Conclusion
000000000	000000000	000000	000
Evenes in the	Noutrino Croatrura at E MaV/		

Excess in the Neutrino Spectrum at 5 MeV

- Spectral distortion above 4 MeV observed
- Several crosschecks have shown
 - θ₁₃ measurement is not affected
 - energy scale at E > 4 MeV tested (e.g. n- 12 C) and as cause disfavored
 - correlation with reactor power: unknown background disfavored

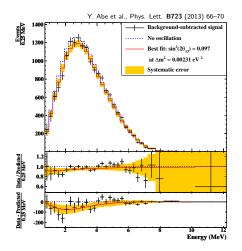

0000000000


Double Chooz Analysis and Results

RENO Results

Conclusion 000

Reactor Rate Modulation Analysis (RRM)



- Measure of θ_{13} (slope) and of the background rate (intercept) at the same time
 - background model independent θ_{13} analysis possible
 - unique to DC: additional reactor off data point
- Results:

 $\sin^2 2\theta_{13} = 0.090^{+0.034}_{-0.035}~({\rm stat+sys})$ and $B = 1.56^{+0.18}_{-0.16}~{\rm day}^{-1}$

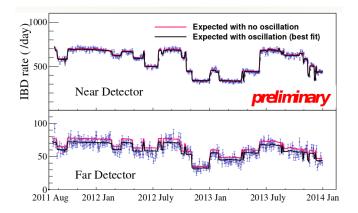
• Without background rate constraint: $\sin^2 2\theta_{13} = 0.060 \pm 0.039 \, (\text{stat+sys}) \text{ and } B = 0.93^{+0.43}_{-0.36} \, \text{day}^{-1}$

- Identifying $\bar{\nu}_e$ by radiative neutron capture on H (and not Gd)
 - Different event sample
 - Different background contribution and systematics
- Using the whole volume filled with liquid scintillator – Gd-doped and un-doped – (target & γ-catcher)
 - Fiducial volume increased by a factor three
 - Increase of statistics
- Made possible by two factors:
 - θ₁₃ is rather high
 - Background is lower than in our proposal

 $\sin^2(2\,\theta_{13}) = 0.097 \pm 0.048$ (stat.+ syst.)

Dublications of the F	Double Chaos collaboration () and havand	
000000000	00000000	000000	000
	Double Chooz Analysis and Results	RENO Results	Conclusion

Publications of the Double Chooz collaboration: θ_{13} and beyond


- θ₁₃ measurement ("Gd Analysis")
 - Indication for the disappearance of reactor electron antineutrinos in the Double Chooz experiment, Y. Abe *et al.*, Phys. Rev. Lett. 108 (2012) 131801
 - Reactor electron antineutrino disappearance in the Double Chooz experiment, Y. Abe et al., Phys. Rev. D86 (2012) 052008
 - Improved measurement of the neutrino mixing angle θ_{13} with the Double Chooz detector, Y. Abe *et al.*, arXiv:1406.7763 (submitted to JHEP)
- Other θ₁₃ measurement techniques
 - First Measurement of θ_{13} from Delayed Neutron Capture on Hydrogen in the Double Chooz Experiment, Y. Abe *et al.*, Phys. Lett. B723 (2013) 66-70
 - Background-independent measurement of θ_{13} in Double Chooz, Y. Abe et al., Phys.Lett. B735 (2014) 51–56
- In site background measurement during reactor off-off periods
 - Direct Measurement of Backgrounds using Reactor-Off Data in Double Chooz, Y. Abe *et al.*, Phys. Rev. D87 (2013) 011102
- Beyond θ₁₃
 - First Test of Lorentz Violation with a Reactor-based Antineutrino Experiment, Y. Abe et al., Phys. Rev. D86 (2012) 112009
 - Precision Muon Reconstruction in Double Chooz, Y. Abe et al., arXiv:1405.6627 (submitted to NIM A)
 - Ortho-positronium observation in the Double Chooz Experiment, Y. Abe *et al.*, arXiv:1407.6913 (submitted to JHEP)

	Double Chooz Analysis and Results	RENO Results	Conclusion
000000000	00000000	00000	000

RENO Results

Introduction 0000000000	Double Chooz Analysis and Results	RENO Results	Conclusion
			000

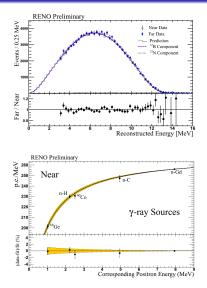
Latest RENO Release at Neutrino 2014: Daily IBD Rate

Latest RENO Rel	ease at Neutrino 2014: Ra	ate only results	
000000000	00000000	000000	000
Introduction	Double Chooz Analysis and Results	RENO Results	Conclusion

C data set (~800 days)

BKG: 2.2%

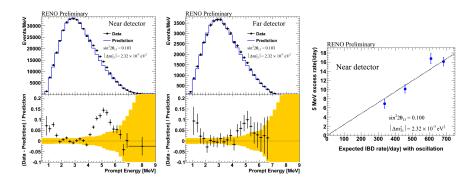
BKG: 7.2%


Near Live Rme = 761.11 days #of IBD candidate = 433,196 #of background = 9499 (2.2 %) Far Live Rme = 794.72 days #of IBD candidate = 50,750 #of background = 3672 (7.2 %)

Rate per day	Near	Far
IBD candidates	569.16	63.86
Accidentals	1.82 ± 0.11	0.36 ± 0.01
Fast neutrons	2.09 ± 0.06	0.44 ± 0.02
⁹ Li / ⁸ He	8.28 ± 0.66	1.85 ± 0.20
²⁵² Cf contamination	0.28 ± 0.05	1.98 ± 0.27

$\sin^2(2\, heta_{13}) = 0.101 \pm 0.008\,(\text{stat.}) \pm 0.010\,(\text{sys.})$

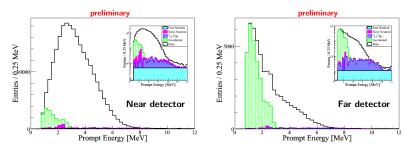
Progress Report on Shape Analysis


In progress

Stay tuned for Δm_{13}^2 measurement

(courtesy of Soo-Bong Kim)

Excess in the Neutrino Spectrum at 5 MeV



• Fraction of 5 MeV excess to expected flux (Mueller + Huber 2011)

- Near: 2.314 ± 0.401 (experimental) ± 0.492 (expected shape error)
- Far: 1.862 ± 0.708 (experimental) ± 0.486 (expected shape error)
- Excess follows the reactor power: not background related

(courtesy of Soo-Bong Kim)

	Double Chooz Analysis and Results	RENO Results	Conclusion
000000000	00000000	00000	000
"Hydrogen Analysis"	' Release at Neutrino 2014 (Rate only)	

Rate per day	Near	Far
IBD candidates	646.05	144.47
Accidentals	40.87 ± 1.74	72.69 ± 0.83
Fast neutrons	5.63 ± 0.09	1.28 ± 0.10
⁹ Li / ⁸ He	7.24 ± 0.92	3.17 ± 0.35
Soft neutrons	6.42 ± 0.35	1.04 ± 0.47

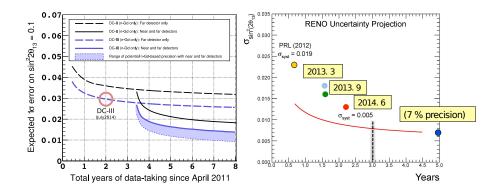
 $\sin^2(2\,\theta_{13}) = 0.095 \pm 0.015\,(\text{stat.}) \pm 0.025\,(\text{sys.})$

	Double Chooz Analysis and Results	RENO Results	Conclusion
000000000	00000000	000000	000

Conclusion

Summary	00000000	000000	000
000000000	00000000	000000	000

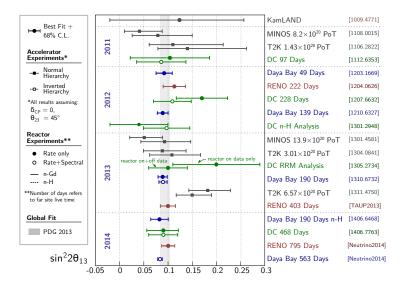
- New generation reactor antineutrino experiments gave a clear demonstration of the oscillation effect
- \bullet A precision measurement of θ_{13} is already reached
- Consistent results between
 - different experiments
 - different analysis methods
 - different neutrino samples (Gd/H)
- Latest results


Double Chooz R+S:
$$\sin^2(2\theta_{13}) = 0.090^{+0.032}_{-0.029}$$
 arXiv:1406.7763

RENO Rate only: s

$$\sin^2(2\, heta_{13})=0.101\pm 0.013$$
 Ne

Neutrino2014


Introduction	Double Chooz Analysis and Results	RENO Results	Conclusion
0000000000	00000000	000000	000
Future Sensitiv	ties		

- Double Chooz Near Detector will start data taking this fall
 - Aims for 10–15 % precision within three years
- RENO aims for 7 % precision with two more years

Calconatia Com	Dec		
000000000	00000000	000000	000
	Double Chooz Analysis and Results	RENO Results	Conclusion

Schematic Summary of Current θ_{13} Results

