Experimental searches on sterile neutrinos

XIIth International Conference on Heavy Quarks and Leptons Waldthausen Castle, Mainz, August 25-29, 2014

Michael Wurm JGU Mainz

Outline

Motivation for experimental sterile neutrino searches on eV mass scale

Experimental approaches:

- disappearance searches at nuclear reactors
- disappearance searches with radioactive v sources
- appearance/disappearance with accelerator beams
- search for distortion
 of β-decay end-point

Experimental hints for sterile neutrinos

Several experiments see unexpected signals at $\sim 3\sigma$ level:

- Accelerator anomaly (3.8σ)
 LSND and MiniBOONE results for ν_µ neutrino beam observed excess in low-energy ν_e-like events
- → appearance signal at new (short) baseline?
- Gallium anomaly (2.8σ)

Calibration runs with radioactive neutrino sources at solar radiochemical experiments Gallex/SAGE \rightarrow deficit in the detected v_e rate: R = 0.76 ± 0.09

 Reactor antineutrino anomaly (~2.5σ) re-evaluation of reactor neutrino spectra results
 rate deficit in all short-baseline (L=10-100m) reactor neutrino experiments: R = 0.927 ± 0.23 LSND Collaboration, Phys.Rev.D 64 (2001) 112007 MiniBooNE Collaboration, PRL 110 (2013) 161801

e.g. C. Giunti and M. Laveder Phys.Rev.C 83 (2011) 065504

G.Mention et al., Phys.Rev.D83 (2011) 073006 A.Mueller et al., Phys.Rev.C 83 (2011) 054615

 \rightarrow disappearance of electron into sterile neutrinos $v_e \rightarrow v_s$?

Mixing of active with sterile neutrinos

Additional **light** (m_z <45 GeV) **sterile neutrinos** will not couple to Z⁰ (LEP), but might mix with the three active neutrino flavors.

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \\ \nu_{s1} \\ \vdots \end{pmatrix} = \begin{pmatrix} U_{11} & U_{12} & U_{13} \\ U_{21} & U_{22} & U_{23} \\ U_{31} & U_{32} & U_{33} \\ U_{41} & U_{42} & U_{43} \\ \vdots & \vdots & \vdots \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \\ U_{44} & \cdots \\ \vdots & \ddots \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \\ \nu_{4} \\ \vdots \end{pmatrix}$$

+ additional $\Delta m^{2'}$ s: $\Delta m_{21}^{2}, \ \Delta m_{31}^{2}, \ \Delta m_{32}^{2}, \ \Delta m_{41}^{2} \cdots$

Flavor mixing allows for new **active** *sterile* and **active** *active scillations*

e.g.

$$P(\nu_{e} \rightarrow \nu_{s}) = \sin^{2} 2\theta_{ee} \sin^{2} \left(\frac{\Delta m_{41}^{2}L}{4E}\right); \qquad \sin^{2} 2\theta_{ee} = 4|U_{e4}|^{2}(1-|U_{e4}|^{2})$$

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2} 2\theta_{e\mu} \sin^{2} \left(\frac{\Delta m_{41}^{2}L}{4E}\right); \qquad \sin^{2} 2\theta_{e\mu} = 4|U_{e4}|^{2}|U_{\mu4}|^{2}$$

$$\Rightarrow new oscillation baselines! \qquad \Rightarrow new mixing amplitudes!$$

Michael Wurm (JGU Mainz/PRISMA)

Experimental searches on sterile neutrinos

Global oscillation data in a (3+1) scenario

- → Possible value of new Δm² limited to ~1eV² regime (in some conflict with cosmological limits on total v mass)
- \rightarrow Sterile neutrino hypothesis is not reflected by v_µ disappearance data

New disappearance searches at nuclear reactors

New disappearance searches at nuclear reactors

New disappearance searches at nuclear reactors

Planned reactor neutrino experiments

courtesy of D. Lhuillier (Neutrino 2014)

STEREO at ILL Grenoble

- 15 mwe overburden
- high level of reactor background

Experimental searches on sterile neutrinos

Outer crown filled with LS to reduce edge

effects and tag external backgrounds

19

.5 T

Acrylic buffer

STEREO – Expected sensitivity

Experimental parameters

- 300 days, L₀ = 10 m
- E_{prompt}>2 MeV, E_{delayed}>5 MeV
- $\sim 410v_e/day$

•
$$\delta E_{scale} = 2\%$$

- All syst. of predicted spectra
- S/B = 1.5, 1/E+flat model
- Norm 4%
- Start data taking in 2015

from D. Lhuillier's talk @ Neutrino 2014

New searches with radioactive (\overline{v}_e) sources

Gallex/SAGE results

- integral rate deficit
- no spectral/spatial information

- → search for distance /energy dependence induced by $v_e \rightarrow v_s$ oscillation pattern
- ightarrow use as well antineutrino sources

Experimental requirements

- large source intensity: ~1MCi and target mass
- Iow threshold: ~1MeV
- Iow radioactive/cosmic background

Proposed experiments

- segmented Ga detector
- source inside or very close to existing large liquid-scintillator detectors
- bolometers for coherent neutrino-nucleus scattering

Source neutrino experiments

Projects mostly related to existing/up-coming liquid-scintillator detectors:

courtesy of B. Caccianiga (Neutrino 2014)

SOX: Short-distance v_e Oscillations with boreXino

SOX Pit

CrSOX: Electron neutrinos from ⁵¹Cr

Source	⁵¹ Cr
Production	n-activation of ⁵⁰ Cr at reactor
Decay mode	EC
Neutrino energy	747 keV
Initial activity	2-4 x 10 ¹⁷ Bq (5-10 MCi)
Half life	28 d
Exposure	100-180 d
Fiducial mass	130 tons
Events (180 d)	1.1 x 10 ⁴
Oscillation length $(\Delta m^2 = 2 eV^2)$	0.9 m
Generated heat	190 W/MCi

- \rightarrow emission of mono-energetic v_e's
- → low-energy γ-ray in 10% of decays (shielding/activity measurement)
- → short half-life: Fast transport (~1 week) to LNGS is crucial

CeSOX: Electron antineutrinos from ¹⁴⁴Ce/Pr

Source	¹⁴⁴ Ce/Pr
Production	extraction from spent nuclear fuel
Decay mode	β⁻
Neutrino spectrum	< 3.0 MeV
Initial activity	4 x 10 ¹⁵ Bq (100 kCi)
Half life	285 d
Exposure	1-1.5 yrs
Fiducial mass	240 tons
Oscillation length $(\Delta m^2 = 2 eV^2)$	< 3.6 m
Events (1.5yrs)	104
Generated heat	7.6 W/kCi

- → tests also energy dependence, but knowledge on spectral shape needed
- → long half life: more time for transport, longer exposure
- → less background for detection
 but maybe source-intrinsic γ's/n's

SOX Source Design: Cerium

Source diameter: 15 cmShielding diameter: 54cm Stainless-steel top flange

Tungsten shielding (width of 19 cm)

Stainless steel container \rightarrow contains CeO₂

Determining factors for design

- production: sealing/manipulation
- high activity: appropriate radiation shielding and transportation
- decay heat: sufficient cooling
- mechanics: dimensions of the tunnel/ calorimeter for heat measurement

Expected signal for CrSOX

Expected distance distribution:

- geometry x 1/r² dependent flux
- oscillations shown for best-fit values → waves discernible
- spatial resolution: ~20 cm

Expected signal for CrSOX

Expected distance distribution:

- geometry x 1/r² dependent flux
- oscillations shown for best-fit values → waves discernible
- spatial resolution: ~20 cm

Expected signal for CeSOX

Extended energy spectrum

IBD coincidence signature
 → almost background-free

Expected signal for CeSOX

Projected sensitivity of CrSOX/CeSOX

CrSOX

Activity: 10 MCi Fiducial radius: 3.3 m 1% source error 1% FV error 1% background error

CeSOX

Activity: 100 kCi Fiducial ra dius: 4 m 1% source error 1% FV error no relevant background

→ SOX could discover/exclude best fit value at ~5σ → 95% C.L. region of anomalies can be covered

Future neutrino beam experiments

electron-like excess at low energies

How to improve?

- better knowledge of beam spectrum, cross-sections, energy scale ...
 - ightarrow addition of near detector
- better control of backgrounds
 → Liquid-Argon TPCs
- better sensitivity
 → stronger beams/larger detectors

What projects are discussed?

- MicroBooNE running at Fermilab
 → too small for sterile v search
- Addition of LAr1 as near detector or ICARUS T-600 as far detector

Spectroscopy of beta-decay end point

Measuring the v_e mass

- Effect of mass is a shift of the endpoint/spectral deformation
- 3 known mass eigenstates could in principle be resolved but mass differences very small Δm₃₁ < 50 meV

Spectroscopy of beta-decay end point

Measuring the v_e mass

- Effect of mass is a shift of the endpoint/spectral deformation
- 3 known mass eigenstates could in principle be resolved but mass differences very small Δm₃₁ < 50 meV
- sterile mass splitting much larger
 Δm₄₁ ~ 1eV
 → observable in tritium decay?
- size of effect depends on size of sterile neutrino mixing

J. A. Formaggio, J. Barret, PLB 706 (2011) 68 Spectral deformation of tritium decay spectrum (3-year measurement in KATRIN) Sterile v parameters: $\Delta m^2 = 2 eV^2$, $|U_s|^2 = 0.067$

First sensitivity estimates for KATRIN

Conclusions

- Several experimental hints for sterile neutrinos not conclusive → for sure worth testing
- New generation of oscillation experiments is sensitive to spectral deformation and distance dependence
 much more conclusive results expected
- When to expect new data?
 STEREO and SOX will start data taking in 2015
- KATRIN has the potential to provide complementary data from tritium decay endpoint measurement

Backup Slides

Neutron activation to ⁵¹Cr @ Oak Ridge NL

Optimized configuration for irradiation material

Source Material

- 36 kg in chips
- ⁵¹Cr: 38%

Chromium rods

→ reduced self-shielding of material

Irradiation

2 cycles of 24 days w/ 8 days down-time

Expected activity >5 MCi

Cerium: Abundant fission product

Composition	Before	After	
²³⁵ U	3.2 %	0.7%	90 100 130 140 7% Sr ^{Zr} Te
²³⁸ U	96.8 %	94.2%	U-233 Pu-239 6%
²³⁹ Pu		0.95%	5% 65%U U-235 35%Pu
²³⁷ Np		0.05%	4%
Fission products		3.7%	3% ·**1 2%
Ce		0.22%	1% 89 90 0 120 15 160

→ Main cerium isotopes in spent nuclear fuel:

 \rightarrow after 4 years:

SOX – Sterile neutrino searches in Borexino

Michael Wurm (JGU Mainz/PRISMA)

Experimental hints for sterile neutrinos

Source calibration runs at Ga radiochemical detectors:

$$\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-$$

→ observed signal rates
 below expectation (2.8σ)

[1204.5379]

Ехр	Source	Ratio (Exp/Th)*
Gallex	⁵¹ Cr	0.95 ± 0.11
	⁵¹ Cr	0.81 +0.10 -0.11
SAGE	⁵¹ Cr	0.95 ± 0.12
	²⁷ Ar	0.79 ± 0.08
total		0.86 ± 0.05

* cross-sections as calculated by J. Bahcall

Reactor antineutrino anomaly

Re-evaluation of the β -decay spectra of fission products measured in ILL experiment (*Schreckenbach et al.*)

- \rightarrow shift of spectrum to higher energies
- → increase of expected event rates by ~4.5% in reactor v experiments

Global fit to sterile neutrino data

→ Best fit values: $\sin^2 2\theta_{14} \approx 0.16$, $\Delta m_{41}^2 \approx 2 \text{ eV}^2$

Source enriched in ⁵⁰Cr (GALLEX)

Envisaged CrSOX Source Design

Ce Source production @ FUSE PA Mayak

→ based on 10 ton of specially selected fuel from KOLA Nuclear Plant → Radiochemical extraction: 7.8 kg CeO₂ → 31.4 g ¹⁴⁴Ce → ~100 kCi

Transport from Mayak to LNGS

CrSOX: Electron Recoil Signal

 $\nu_e + e \rightarrow e + \nu_e$

Greater level of radioactive backgrounds

Analysis extrapolates background levels based on current data (including further decay of ²¹⁰Po)

 \rightarrow Detector operations (calibration, purification) might affect purity levels

CeSOX Antineutrino Spectrum

CeSOX Backgrounds

IBD: Coincidence signature

- → greatly reduced background: single events suppresses
- → larger fiducial volume ($r_{FV} \approx 4m \rightarrow 240t$)

CeSOX source: y Activity and Shielding

Michael Wurm (JGU Mainz/PRISMA)

CeSOX: Accidental Coincidences

CrSOX: Likelihood-based analysis

Profile likelihood based on

- energy spectrum
- distance from source
- time profile

Nuisance parameters:

signal/bg normalizations
 → prior knowledge included via pull terms

Impact of Cr-rate normalization uncertainty

Present analysis uses estimate on expected event rate

- Uncertainty on fiducial volume: ~1%
- Uncertainty on source activity: ~1%

from interal source calibration

Cr-source calorimetry

¹⁴⁴Ce/Pr decay spectrum

- \rightarrow ¹⁴⁴Ce below IBD threshold
- \rightarrow ¹⁴⁴Pr: complicated decay spectrum
 - 9 relevant transitions (2 above IBD threshold)
 - several %-level corrections to be applied to the spectrum
- \rightarrow needs detailed calculations + lab measurements of β -spectrum

500

1000

1500

Neutrinos kinetic energy

2000

2500

3000

Calorimetric measurement of source power

Thermal power output

- CrSOX: γ-rays (E≈320keV, BR≈10%)
- CeSOX: β+γ's
- → power deposited mostly inside the source

Measurement principle

- Isolate source from environment
- Heat transfer to water serpentine in jacket attached to W-shielding
- Measurement of H₂O mass flux and temperature increase
 → power emitted by source

Calorimeter for source power measurement

TUM design (to go into SOX-Pit)

