New ways to search for right-handed current in $B \rightarrow \rho \ell \bar{\nu}$ decay

Sascha Turczyk

University of Mainz Work in collaboration with F. Bernlochner and Z. Ligeti [arXiv:1408.2516]

Heavy Quarks & Leptons 2014 Schloss Waldthausen, August 25th 2014

Sascha Turczyk

Observables and Non-Perturbative Uncertainties

Numerical Results and Discussion

Introduction

Observables and Non-Perturbative Uncertainties Numerical Results and Discussion

Unitarity Triangle and $|V_{ub}|$ Measurements

$$V_{\mathsf{ub}}^* V_{\mathsf{ud}} + V_{\mathsf{tb}}^* V_{\mathsf{td}} + V_{\mathsf{cb}}^* V_{\mathsf{cd}} = 0$$

Beyond Standard Model Contribution to Ease Tension

• Assumption in the following:

Additional right-handed admixture [0807.0896,0907.2461,1003.4022,1105.3679]

Effective Lagrangian Ansatz

$$\begin{split} \mathcal{L}^{(\text{Eff.})} &= -\frac{4G_F}{\sqrt{2}} \left[V_{ub}^L \right] \ \bar{\nu}_{\ell} \gamma^{\mu} \frac{1-\gamma^5}{2} \ell \\ &\times \frac{1}{2} \left[(1+\epsilon_R) \ \bar{u} \gamma_{\mu} b - (1-\epsilon_R) \ \bar{u} \gamma_{\mu} \gamma^5 b \right] + \text{h.c.} \end{split}$$

Typical Observables

- (Partially) integrated branching fraction
- Differential rate as $q^2 \rightarrow q_0^2$
- \Rightarrow All diluted by extracting $|V_{ub}^L \epsilon_R|$

Beyond Standard Model Contribution to Ease Tension

• Assumption in the following:

Additional right-handed admixture [0807.0896,0907.2461,1003.4022,1105.3679]

Effective Lagrangian Ansatz

$$\mathcal{L}^{(\text{Eff.})} = -\frac{4G_F}{\sqrt{2}} \left[\mathbf{V}_{ub}^L \right] \quad \bar{\nu}_{\ell} \gamma^{\mu} \frac{1 - \gamma^5}{2} \ell \\ \times \frac{1}{2} \left[(1 + \epsilon_R) \, \bar{u} \gamma_{\mu} b - (1 - \epsilon_R) \, \bar{u} \gamma_{\mu} \gamma^5 b \right] + \text{h.c.}$$

Typical Observables

- (Partially) integrated branching fraction
- Differential rate as $q^2 \rightarrow q_0^2$
- \Rightarrow All diluted by extracting $|V_{ub}^L \epsilon_R|$

Combined Fit for New Physics Parameter

- Current bounds weak
- Strong correlation

$$V_{ub} - \epsilon_R$$

• Can we derive an "orthogonal" bound?

Combined Fit for New Physics Parameter

- Current bounds weak
- Strong correlation

$$V_{ub} - \epsilon_R$$

• Can we derive an "orthogonal" bound?

The Angular Distribution

- *q*²: Momentum transfer
- θ_V: Angle between π in ρ restframe and moving direction of ρ in B restframe
- θ_l: Angle between ℓ in W(≡ ρ) restframe and moving direction of W in B restframe
- χ : Angle of decay planes

Possible Observables

- Consider 1D and 2D Asymmetries
- Full Angular Analysis
 - Very difficult
 - ⇒ Consider asymmetries in three angles

The Angular Distribution

- *q*²: Momentum transfer
- θ_V: Angle between π in ρ restframe and moving direction of ρ in B restframe
- θ_l: Angle between ℓ in W(≡ ρ) restframe and moving direction of W in B restframe
- χ : Angle of decay planes

Possible Observables

- Consider 1D and 2D Asymmetries
- Full Angular Analysis
 - Very difficult
 - $\Rightarrow~$ Consider asymmetries in three angles

Decay Distribution (Analogy to $B \to K^* \ell^+ \ell^-$)

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2\,\mathrm{d}\cos\theta_V\,\mathrm{d}\cos\theta_\ell\,\mathrm{d}\chi} = \frac{G_F^2 |V_{ub}^L|^2 m_B^3}{2\pi^4}$$

$$\times \left\{ J_{1s}\sin^2\theta_V + J_{1c}\cos^2\theta_V + (J_{2s}\sin^2\theta_V + J_{2c}\cos^2\theta_V)\cos2\theta_\ell + J_3\sin^2\theta_V\sin^2\theta_\ell\cos2\chi + J_4\sin2\theta_V\sin2\theta_\ell\cos\chi + J_5\sin2\theta_V\sin\theta_\ell\cos\chi + (J_{6s}\sin^2\theta_V + J_{6c}\cos^2\theta_V)\cos\theta_\ell \right\}$$

 $+ J_7 \sin 2\theta_V \sin \theta_\ell \sin \chi + J_8 \sin 2\theta_V \sin 2\theta_\ell \sin \chi + J_9 \sin^2 \theta_V \sin^2 \theta_\ell \sin 2\chi \Big\} .$

Simplifications

- $J_{1s} = 3J_{2s}$, $J_{1c} = 3J_{2c}$, $J_{6c} = J_7 = 0$
- For real ϵ_R we have $J_8 = J_9 = 0$
- Full angular analysis currently(?) not possible

• Balance between theo. uncertainty and statistics: $0 \le q^2 \le 12 \text{ GeV}^2$

Angular Distributions

One- and generalized two-dimensional asymmetries

Sensitivities

- Antisymmetric in $\cos \theta_{\ell}$
- Symmetric in $\cos \theta_V$ and χ
- \Rightarrow Best sensitivity by integrating out χ

Forward Backward Asymmetry

$$A_{\rm FB} = \frac{\int_{-1}^{0} d\cos\theta_{\ell} (d\Gamma/d\cos\theta_{\ell}) - \int_{0}^{1} d\cos\theta_{\ell} (d\Gamma/d\cos\theta_{\ell})}{\int_{-1}^{1} d\cos\theta_{\ell} (d\Gamma/d\cos\theta_{\ell})}$$

Generalized Two Dimensional Asymmetries

• Optimize sensitivity to ϵ_R by defining two regions [A, B] in the $(\cos \theta_\ell, \cos \theta_V)$ regions

$$S = \frac{A - B}{A + B}$$

Sascha Turczyk

One- and generalized two-dimensional asymmetries

Sensitivities

- Antisymmetric in $\cos \theta_{\ell}$
- Symmetric in $\cos \theta_V$ and χ
- \Rightarrow Best sensitivity by integrating out χ

Forward Backward Asymmetry

$$A_{\rm FB} = \frac{\int_{-1}^{0} d\cos\theta_{\ell} (d\Gamma/d\cos\theta_{\ell}) - \int_{0}^{1} d\cos\theta_{\ell} (d\Gamma/d\cos\theta_{\ell})}{\int_{-1}^{1} d\cos\theta_{\ell} (d\Gamma/d\cos\theta_{\ell})}$$

Generalized Two Dimensional Asymmetries

• Optimize sensitivity to ϵ_R by defining two regions [A, B] in the $(\cos \theta_\ell, \cos \theta_V)$ regions

$$S = \frac{A - B}{A + B}$$

One- and generalized two-dimensional asymmetries

Sensitivities

- Antisymmetric in $\cos \theta_{\ell}$
- Symmetric in $\cos \theta_V$ and χ
- \Rightarrow Best sensitivity by integrating out χ

Forward Backward Asymmetry

$$A_{\rm FB} = \frac{\int_{-1}^{0} d\cos\theta_{\ell} (d\Gamma/d\cos\theta_{\ell}) - \int_{0}^{1} d\cos\theta_{\ell} (d\Gamma/d\cos\theta_{\ell})}{\int_{-1}^{1} d\cos\theta_{\ell} (d\Gamma/d\cos\theta_{\ell})}$$

Generalized Two Dimensional Asymmetries

• Optimize sensitivity to ϵ_R by defining two regions [A, B] in the $(\cos \theta_{\ell}, \cos \theta_V)$ regions

$$S = \frac{A - B}{A + B}$$

Binned Measurement of the J_i

Ji	η_i^{\star}	$\eta_i^{\circ_\ell}$	$\eta_i^{\circ v}$	normalization N _i						
J_{1s}	{+}	$\{+, a, a, +\}$	{−, <i>c</i> , <i>c</i> , −}	$2\pi(1)2$						
J_{1c}	$\{+\}$	$\{+, a, a, +\}$	$\{+, d, d, +\}$	$2\pi(1)(2/5)$						
J_{2s}	$\{+\}$	{−, b, b, −}	{−, <i>c</i> , <i>c</i> , −}	$2\pi(-2/3)2$						
J_{2c}	$\{+\}$	{−, b, b, −}	$\{+, d, d, +\}$	$2\pi(-2/3)(2/5)$						
J_3	$\{+, -, -, +, +, -, -, +\}$	{+}	$\{+\}$	4(4/3) ²						
J_4	$\{+,+,-,-,-,-,+,+\}$	$\{+,+,-,-\}$	$\{+,+,-,-\}$	$4(4/3)^2$						
J_5	$\{+,+,-,-,-,-,+,+\}$	{+}	$\{+,+,-,-\}$	$4(\pi/2)(4/3)$						
J_{6s}	$\{+\}$	$\{+,+,-,-\}$	{−, <i>c</i> , <i>c</i> , −}	$2\pi(1)2$						
J _{6c}	$\{+\}$	$\{+,+,-,-\}$	$\{+, d, d, +\}$	$2\pi(1)(2/5)$						
J_7	$\{+,+,+,+,-,-,-,-,-\}$	$\{+\}$	$\{+,+,-,-\}$	$4(\pi/2)(4/3)$						
J_8	$\{+,+,+,+,-,-,-,-,-\}$	$\{+,+,-,-\}$	$\{+,+,-,-\}$	4(4/3) ²						
J_9	$\{+,+,-,-,+,+,-,-\}$	$\{+\}$	{+}	$4(4/3)^2$						
$a = 1 - 1/\sqrt{2}$, $b = a\sqrt{2}$, $c = 2\sqrt{2} - 1$, and $d = 1 - 4\sqrt{2}/5$										
$J_i = rac{1}{N_i} \sum_{i=1}^8 \sum_{k,l=1}^4 \eta^{\chi}_{i,j} \eta^{ heta_\ell}_{i,k} \eta^{ heta_V}_{i,l} \Big[\chi^{(j)} \otimes heta^{(j)}_\ell \otimes heta^{(k)}_V \Big]$										

Simple Observables I

Analogy to "clean observables" in $B \to K^* \ell^+ \ell^-$

$$\langle P_1 \rangle_{\text{bin}} = \frac{1}{2} \frac{\int_{\Delta q^2} dq^2 J_3}{\int_{\Delta q^2} dq^2 J_{2s}} \langle P'_4 \rangle_{\text{bin}} = \frac{\int_{\Delta q^2} dq^2 J_4}{\sqrt{-\int_{\Delta q^2} dq^2 J_{2s}} \int_{\Delta q^2} dq^2 J_{2c}} \langle P'_5 \rangle_{\text{bin}} = \frac{1}{2} \frac{\int_{\Delta q^2} dq^2 J_5}{\sqrt{-\int_{\Delta q^2} dq^2 J_{2s}} \int_{\Delta q^2} dq^2 J_{2c}}$$

Simple Observables II

Simple Ratios

$$\langle P_{i,j} \rangle_{\text{bin}} = \frac{\int_{\Delta q^2} \mathrm{d}q^2 J_i}{\int_{\Delta q^2} \mathrm{d}q^2 J_j}$$

Sensitivity to Real Part

• Best sensitivity for $\langle P_{3,4} \rangle$, $\langle P_{3,5} \rangle$, and $\langle P_{5,4} \rangle$

Sensitivity to Imaginary Part

• Starting linear in $\operatorname{Im} \epsilon_R$ and quadratic in $\operatorname{Re} \epsilon_R$

$$\langle P_{8,5}
angle$$
 , $\langle P_{9,5}
angle$

• Linear in Im ϵ_R and Re ϵ_R , but large slope with respect to ϵ_R $\langle P_{\circ,2} \rangle$

Sascha Turczyk

Simple Observables II

Simple Ratios

$$\langle P_{i,j} \rangle_{\text{bin}} = \frac{\int_{\Delta q^2} \mathrm{d}q^2 J_i}{\int_{\Delta q^2} \mathrm{d}q^2 J_j}$$

Sensitivity to Real Part

• Best sensitivity for $\langle P_{3,4} \rangle$, $\langle P_{3,5} \rangle$, and $\langle P_{5,4} \rangle$

Sensitivity to Imaginary Part

• Starting linear in $\operatorname{Im} \epsilon_R$ and quadratic in $\operatorname{Re} \epsilon_R$

$$\langle P_{8,5}
angle$$
 , $\langle P_{9,5}
angle$

• Linear in Im ϵ_R and Re ϵ_R , but large slope with respect to ϵ_R

Simple Observables II

Simple Ratios

$$\langle P_{i,j} \rangle_{\text{bin}} = rac{\int_{\Delta q^2} \mathrm{d}q^2 J_i}{\int_{\Delta q^2} \mathrm{d}q^2 J_j}$$

Sensitivity to Real Part

• Best sensitivity for $\langle P_{3,4} \rangle$, $\langle P_{3,5} \rangle$, and $\langle P_{5,4} \rangle$

Sensitivity to Imaginary Part

• Starting linear in $\operatorname{Im} \epsilon_R$ and quadratic in $\operatorname{Re} \epsilon_R$

$$\langle P_{8,5}
angle$$
 , $\langle P_{9,5}
angle$

• Linear in $\text{Im} \epsilon_R$ and $\text{Re} \epsilon_R$, but large slope with respect to ϵ_R

 $\langle P_{8,3} \rangle$

The Strategy for the J_i Integration

Our Input

- List of form factor values und uncertainties
 - Light-Cone Sum Rules for small q^2
 - 2 Lattice QCD not (yet) reliable for high q^2
- 2 Use correlation between points at different q^2
- Ise correlation matrix between different form factors (Estimate!)

Our Fit to obtain Form factors

- Assume *z* parametrisation (Series Expansion)
- Perform combined fit to all form factor points
- Resulting Output

 - Uncertainty for each of these parameters
 - Correlation matrix between all parameters

[hep-ph/0412079]

[hep-lat/0402023]

[1004.3249]

The Strategy for the J_i Integration

Our Input

- List of form factor values und uncertainties
 - Light-Cone Sum Rules for small q^2
 - 2 Lattice QCD not (yet) reliable for high q^2 [hep-lat/0402023]
- 2 Use correlation between points at different q^2
- Solution Use correlation matrix between different form factors (Estimate!)

Our Fit to obtain Form factors

- Assume z parametrisation (Series Expansion)
- Perform combined fit to all form factor points
- Resulting Output

 - Output of the parameters
 - Orrelation matrix between all parameters

[hep-ph/0412079]

[1004.3249]

Observables and Non-Perturbative Uncertainties

Numerical Results and Discussion

New ways to search for right-handed current in $B \rightarrow \rho \ell \bar{\nu}$ decay

Forward Backward Asymmetry

- Assumes full correlation of experimental systematic uncertainties in disjoint regions of phase-space [1306.2781]
- Improvement of factor 3 for systematic uncertainties at 50 ab^{-1} , motivated by $B \rightarrow X_u \ell \bar{\nu}$ [1002.5012]

Define the Two Regions for the 2D Asymmetry

Preliminaries

- **1** Differential rate behaves smoothly $\Rightarrow d\Gamma_{SM} = \kappa d\Gamma_{NP}^{(1)}$
- **2** SM and NP are separately symmetric in $\cos \theta_V$
- SM and NP are asymmetric in $\cos \theta_L$ to each other

Generalized 2D Asymmetry Result

• Same experimental assumptions than for A_{FB}

Sascha Turczyk

Simple Ratio Observables for Real Part

• Same assumptions for systematic experimental uncertainties

- Statistical correlations between bins are estimated using Monte Carlo Methods
- Background influence neglected

Simple Ratio Observables for Real Part

Simple Ratio Observables for Real Part

Simple Ratio Observables for Imaginary Part

Simple Ratio Observables for Imaginary Part

Simple Ratio Observables for Imaginary Part

Global demo fit for $|V_{ub}^L|$ and ϵ_R with A_{FB}

• Fixed SM $V_{ub} = 4.2 \cdot 10^{-3}$ for extrapolation

• Est. uncert. $\Delta \left(\left| V_{ub}^L \right| \times 10^3, \Delta \epsilon_R \right) = (0.18, 0.061)$ and (0.06, 0.016)

• Expected relative reduction of the uncertainties

1 ab^{-1}:
$$\delta\left(\left|V_{ub}^{L}\right|\right) = -0.3\%$$
 $\delta(\epsilon_{R}) = -5\%$ 50 ab^{-1}: $\delta\left(\left|V_{ub}^{L}\right|\right) = -0.4\%$ $\delta(\epsilon_{R}) = -2\%$

Global demo fit for $|V_{ub}^L|$ and ϵ_R with S

• Fixed SM $V_{ub} = 4.2 \cdot 10^{-3}$ for extrapolation

• Est. uncert. $\Delta \left(\left| V_{ub}^L \right| \times 10^3, \Delta \epsilon_R \right) = (0.18, 0.061)$ and (0.06, 0.016)

• Expected relative reduction of the uncertainties

1 ab^{-1}:
$$\delta\left(\left|V_{ub}^{L}\right|\right) = -0.5\%$$
 $\delta\left(\epsilon_{R}\right) = -9\%$ 50 ab^{-1}: $\delta\left(\left|V_{ub}^{L}\right|\right) = -0.5\%$ $\delta\left(\epsilon_{R}\right) = -2\%$

Global demo fit for $|V_{ub}^L|$ and ϵ_R with $P_{5,4}$

• Fixed SM $V_{ub} = 4.2 \cdot 10^{-3}$ for extrapolation

• Est. uncert. $\Delta \left(\left| V_{ub}^L \right| \times 10^3, \Delta \epsilon_R \right) = (0.18, 0.061)$ and (0.06, 0.016)

• Expected relative reduction of the uncertainties

1 ab^{-1}:
$$\delta\left(\left|V_{ub}^{L}\right|\right) = -0.5\%$$
 $\delta\left(\epsilon_{R}\right) = -8\%$ 50 ab^{-1}: $\delta\left(\left|V_{ub}^{L}\right|\right) = -3\%$ $\delta\left(\epsilon_{R}\right) = -10\%$

Summary and Comments

Summary

- Considered 1D,2D and 3D Asymmetries to constrain right-handed currents in $B \rightarrow \rho \ell \bar{\nu}_{\ell}$
 - Independent of $|V_{ub}|$
 - Best observable need to be determined: Balance between experimental and theoretical uncertainties
 - Sensitivity estimate
- Binned analysis of "clean observables" also possible in $B \to K^* \ell^+ \ell^$ to cross-check angular folding technique
- Fit program for form factor parametrisations
 - Capable of LCSR and Lattice simultaneous input
 - Inputs: Uncertainties, correlations among FF and different q^2 points

Summary and Comments

Summary

- Considered 1D,2D and 3D Asymmetries to constrain right-handed currents in $B \rightarrow \rho \ell \bar{\nu}_{\ell}$
 - Independent of $|V_{ub}|$
 - Best observable need to be determined: Balance between experimental and theoretical uncertainties
 - Sensitivity estimate
- Binned analysis of "clean observables" also possible in B → K^{*}ℓ⁺ℓ⁻ to cross-check angular folding technique
- Fit program for form factor parametrisations
 - Capable of LCSR and Lattice simultaneous input
 - Inputs: Uncertainties, correlations among FF and different q^2 points

Summary and Comments

Summary

- Considered 1D,2D and 3D Asymmetries to constrain right-handed currents in $B \rightarrow \rho \ell \bar{\nu}_{\ell}$
 - Independent of $|V_{ub}|$
 - Best observable need to be determined: Balance between experimental and theoretical uncertainties
 - Sensitivity estimate
- Binned analysis of "clean observables" also possible in B → K^{*}ℓ⁺ℓ⁻ to cross-check angular folding technique
- Fit program for form factor parametrisations
 - Capable of LCSR and Lattice simultaneous input
 - 2 Inputs: Uncertainties, correlations among FF and different q^2 points

Wish List from Theory

- Form factor input: Correlation matrix!
- Lattice QCD for high q^2
- \Rightarrow Reliable full q^2 spectrum fit
- \Rightarrow Consistency Checks

Wish List for Experiment

- Try to measure S with current data
- \Rightarrow Give a Limit on ϵ_R (Might give hint where to look first)
 - In Future: Attempt to obtain full information and determine best and consistent variable
 - Possible to do at LHCb?
 - Much better statistics?
 - ⇒ But reconstruction of neutrino momentum unambigiously possible?

Backup Slides

Hadronic Part: Form Factors

Form Factor definitions

$$\begin{split} \langle V(p_V) | \bar{q} \gamma_\mu b | \mathcal{B}(p_B) \rangle &= \epsilon_{\mu\nu\rho\sigma} \epsilon^{*,\nu} p_B^\rho p_V^\sigma \frac{2V(q^2)}{m_B + m_V} \\ \langle V(p_V) | \bar{q} \gamma_\mu \gamma_5 b | \mathcal{B}(p_B) \rangle &= i \epsilon_\mu^* (m_B + m_V) \mathcal{A}_1(q^2) - i(p_B + p_V)_\mu (\epsilon^* \cdot q) \frac{\mathcal{A}_2(q^2)}{m_B + m_V} \\ -iq_\mu (\epsilon^* q) \frac{2m_V}{q^2} \left(\frac{m_B + m_V}{2m_V} \mathcal{A}_1(q^2) - \frac{m_B - m_V}{2m_V} \mathcal{A}_2(q^2) - \mathcal{A}_0(q^2) \right) \end{split}$$

• Include new physics corresponds to the replacement

$$V
ightarrow (1+\epsilon_R) V, \qquad A_i
ightarrow (1-\epsilon_R) A_i$$

Several Possible Parametrisations of q^2 dependence

- Pole parametrisation
- Here: Make use of unitarity \Rightarrow Series Expansion
- Compute values by non-perturbative methods
- \Rightarrow Combined fit to parametrisation

Analytic Parametrisation: The Series Expansion

• Map
$$t \equiv q^2 \rightarrow z(t, t_0), t_{\pm} = (m_B \pm m_{\rho})^2$$

$$z(t, t_0) = \frac{\sqrt{t_+ - t} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - t} + \sqrt{t_+ - t_0}}$$

• *t*₀: Minimize in physical region

$$t_0 = t_+ \left(1 - \sqrt{1 - \frac{t_-}{t_+}}\right)$$

• Unitarity constraints
$$\Rightarrow \Phi_F(t)$$

• Expand in residual dependence

• Blaschke factor

 $B_F(t) \equiv \sum_R z(t, M_{R_F}^2)$

$$F(t) = rac{1}{B_F(t)\Phi_F(t)}\sum_{k=0}^K \alpha_k^F z(t)^k$$

Analytic Parametrisation: The Series Expansion

• Map
$$t \equiv q^2 \rightarrow z(t, t_0), t_{\pm} = (m_B \pm m_{\rho})$$

$$z(t, t_0) = \frac{\sqrt{t_+ - t} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - t} + \sqrt{t_+ - t_0}}$$

• *t*₀: Minimize in physical region

$$t_0 = t_+ \left(1 - \sqrt{1 - \frac{t_-}{t_+}}\right)$$

- Unitarity constraints $\Rightarrow \Phi_F(t)$
- Expand in residual dependence

$$F(t) = \frac{1}{B_F(t)\Phi_F(t)}\sum_{k=0}^{K} \alpha_k^F z(t)^k$$

Sascha Turczyk

Sources of Uncertainties

Uncertainties in the Calculation \equiv Input Uncertainties

- Used input: not under our control
- Value for each form factor at several values of q^2
- For each value we have only a combined uncertainty
- No information on correlation

Parametrisation Uncertainties \equiv Fit Uncertainties

- Shape constraints
 - Remnant expansion: Small uncertainty
 - **2** Resonances with $t_{-} < M_R^2 < t_{+} \Rightarrow$ Blaschke factors
- Assumptions on derivation are obstructed by
 - Branch cuts below threshold of light hadrons: see next slides
 - **2** Broad width of ρ ? Experimental identification of ρ ?

Light Cone Sum Rules Input [low q^2]

• Input given by LCSR

Form Factor F	$F(q^2 = 0)$	Δ_{7P}	Δ_{m_b}	Δ_L	Δ_T
V(0)	0.323	0.025	0.007	0.005	0.013
$A_0(0)$	0.303	0.026	0.004	0.009	0.006
$A_1(0)$	0.242	0.020	0.007	0.004	0.010
$A_2(0)$	0.221	0.018	0.008	0.002	0.011

• Extract values $q^2 > 0$ from plot and add $\sim 1\%$ uncertainty

Lattice QCD Input [high q^2]

Huge uncertainties and two inconsistent(?) sets

- \bullet Recent discussion: Timescale for reliable uncertainties: $\gtrsim 5$ yrs
- Desired to do simultaneous fit to LCSR and Lattice data

Belle 2 timeline!

New ways to search for right-handed current in $B \rightarrow \rho \ell \bar{\nu}$ decay

[hep-ph/0412079]

[hep-lat/0402023]

Estimating Correlation between Form Factors

Uncertainty Sources (RP) of [hep-ph/0412079]

- Δ_{mb} : Variation due to m_b , s_0 and M according to table 4
- Δ_{7p} : combination of 7 parameters, described in the text on page 24
- \bigcirc Δ_1 : variation due to vector coupling in table 3
- Δ_{τ} : variation due to tensor coupling in table 3

(Conservative) Postulate, see also [hep-ph/0412079,0811.1214,1308.4379]

Correlation among Axialvector form factors

$$\{\rho_{7P}^{A_i}, \rho_{m_b}^{A_i}, \rho_L^{A_i}, \rho_T^{A_i}\} = \{0.6, 1., 1., 1.\}$$

- Correlation between Axialvector and Vector Form Factors $\{\rho_{\tau P}^{V,A_i}, \rho_{m_i}^{V,A_i}, \rho_{I}^{V,A_i}, \rho_{\tau}^{V,A_i}\} = \{0.6, 1., 1., 1.\}$
- Resulting form

Estimating Correlation between Form Factors

Uncertainty Sources (RP) of [hep-ph/0412079]

- Δ_{mb} : Variation due to m_b , s_0 and M according to table 4
- Δ_{7p} : combination of 7 parameters, described in the text on page 24
- \bigcirc Δ_1 : variation due to vector coupling in table 3
- Δ_{τ} : variation due to tensor coupling in table 3

(Conservative) Postulate, see also [hep-ph/0412079,0811.1214,1308.4379]

Correlation among Axialvector form factors

$$\{\rho_{7P}^{A_i}, \rho_{m_b}^{A_i}, \rho_L^{A_i}, \rho_T^{A_i}\} = \{0.6, 1., 1., 1.\}$$

- Correlation between Axialvector and Vector Form Factors $\{\rho_{\tau P}^{V,A_i}, \rho_{m_i}^{V,A_i}, \rho_{I}^{V,A_i}, \rho_{\tau}^{V,A_i}\} = \{0.6, 1., 1., 1.\}$
- Resulting form

Estimating Correlation between Form Factors

Uncertainty Sources (RP) of [hep-ph/0412079]

- Δ_{mb} : Variation due to m_b , s_0 and M according to table 4
- (2) Δ_{7p} : combination of 7 parameters, described in the text on page 24
- **(a)** Δ_1 : variation due to vector coupling in table 3
- Δ_{τ} : variation due to tensor coupling in table 3

(Conservative) Postulate, see also [hep-ph/0412079,0811.1214,1308.4379]

Correlation among Axialvector form factors

$$\{\rho_{7P}^{A_i}, \rho_{m_b}^{A_i}, \rho_L^{A_i}, \rho_T^{A_i}\} = \{0.6, 1., 1., 1.\}$$

- Correlation between Axialvector and Vector Form Factors $\{\rho_{7P}^{V,A_i}, \rho_{m_i}^{V,A_i}, \rho_{I}^{V,A_i}, \rho_{T}^{V,A_i}\} = \{0.6, 1., 1., 1.\}$
- Resulting form

$$C = C_{7P} + C_{m_b} + C_L + C_T$$

For each uncertainty parameter the correlation matrix is given as

$$C_{i} = \begin{pmatrix} \left(\Delta_{j}^{V}\right)^{2} & \rho_{j}^{V,A_{i}}\Delta_{j}^{V}\Delta_{j}^{A_{0}} & \rho_{j}^{V,A_{i}}\Delta_{j}^{V}\Delta_{j}^{A_{1}} & \rho_{j}^{V,A_{i}}\Delta_{j}^{V}\Delta_{j}^{A_{2}} \\ \rho_{j}^{V,A_{i}}\Delta_{j}^{V}\Delta_{j}^{A_{0}} & \left(\Delta_{j}^{A_{0}}\right)^{2} & \rho_{j}^{A_{i}}\Delta_{j}^{A_{0}}\Delta_{j}^{A_{1}} & \rho_{j}^{A_{i}}\Delta_{j}^{A_{0}}\Delta_{j}^{A_{2}} \\ \rho_{j}^{V,A_{i}}\Delta_{j}^{V}\Delta_{j}^{A_{1}} & \rho_{j}^{A_{i}}\Delta_{j}^{A_{0}}\Delta_{j}^{A_{1}} & \left(\Delta_{j}^{A_{1}}\right)^{2} & \rho_{j}^{A_{i}}\Delta_{j}^{A_{0}}\Delta_{j}^{A_{2}} \\ \rho_{j}^{V,A_{i}}\Delta_{j}^{V}\Delta_{j}^{A_{2}} & \rho_{j}^{A_{i}}\Delta_{j}^{A_{0}}\Delta_{j}^{A_{2}} & \rho_{j}^{A_{i}}\Delta_{j}^{A_{1}}\Delta_{j}^{A_{2}} & \left(\Delta_{j}^{A_{2}}\right)^{2} \end{pmatrix}$$

Resulting correlation matrix

$$C = \begin{pmatrix} 1. & 0.65 & 0.71 & 0.72 \\ 0.65 & 1. & 0.64 & 0.62 \\ 0.71 & 0.64 & 1. & 0.72 \\ 0.72 & 0.62 & 0.72 & 1. \end{pmatrix}$$

Sascha Turczyk

Verification Test of the Fit

Fit procedure

• Simultaneous χ^2 fit to all points and form factors

$$\chi^2 = (\mathbf{x}_{\mathsf{Theo}} - \mathbf{x}_{\mathsf{LCSR}})\mathsf{Cov}^{-1}(\mathbf{x}_{\mathsf{Theo}} - \mathbf{x}_{\mathsf{LCSR}})$$

- Validation of the results through ensamble of pseudo-experiments
 - Errors
 - 2 Correlations
 - Central values

Fitted Form Factors: SE linear expansion

Sascha Turczyk

FF	Param.	Value	Uncertainty
A_0	<i>a</i> 0	$-0.351 \cdot 10^{-3}$	$0.032 \cdot 10^{-3}$
	a ₁	$1.250 \cdot 10^{-3}$	$0.147 \cdot 10^{-3}$
A_1	a ₀	$-0.111 \cdot 10^{-3}$	$0.010 \cdot 10^{-3}$
	a ₁	$-0.208 \cdot 10^{-3}$	$0.042 \cdot 10^{-3}$
A_2	a ₀	$-0.138 \cdot 10^{-3}$	$0.014 \cdot 10^{-3}$
	a ₁	$0.170 \cdot 10^{-3}$	$0.049 \cdot 10^{-3}$
V	a ₀	$-0.366 \cdot 10^{-3}$	$0.034 \cdot 10^{-3}$
	a_1	$1.148 \cdot 10^{-3}$	$0.145 \cdot 10^{-3}$

Comments to three parameter fit

- Each a₀ and a₁ compatible within uncertainty
- Fitted *a*₂ compatible with zero within uncertainty

Sascha Turczyk

FF	Param.	Value	Uncertainty
A_0	a ₀	$-0.351 \cdot 10^{-3}$	0.032 · 10 ⁻³
	a ₁	$1.250 \cdot 10^{-3}$	$0.147 \cdot 10^{-3}$
A_1	a ₀	$-0.111 \cdot 10^{-3}$	$0.010 \cdot 10^{-3}$
	a ₁	$-0.208 \cdot 10^{-3}$	$0.042 \cdot 10^{-3}$
A_2	a ₀	$-0.138 \cdot 10^{-3}$	$0.014 \cdot 10^{-3}$
	a ₁	$0.170 \cdot 10^{-3}$	$0.049 \cdot 10^{-3}$
V	a ₀	$-0.366 \cdot 10^{-3}$	$0.034 \cdot 10^{-3}$
	a_1	$1.148 \cdot 10^{-3}$	$0.145 \cdot 10^{-3}$

Comments to three parameter fit

- Each *a*₀ and *a*₁ compatible within uncertainty
- Fitted *a*₂ compatible with zero within uncertainty

Sascha Turczyk

 $\operatorname{corr}(A_0, A_1, A_2, V) \approx$

(1.00	-0.86	0.77	0.35	0.74	-0.26	0.78	-0.57
-0.86	1.00	-0.60	-0.27	-0.58	0.20	-0.61	0.44
0.77	-0.60	1.00	0.31	0.86	-0.31	0.85	-0.62
0.35	-0.27	0.31	1.00	0.39	-0.14	0.39	-0.28
0.74	-0.58	0.86	0.39	1.00	-0.49	0.86	-0.63
-0.26	0.20	-0.31	-0.14	-0.49	1.00	-0.31	0.22
0.78	-0.61	0.85	0.39	0.86	-0.31	1.00	-0.82
0.57	0.44	-0.62	-0.28	-0.63	0.22	-0.82	1.00 /

Comments to three parameter fit

- Correlations between *a*₀ and *a*₁ same sign
- Value is shifted \rightarrow OK

 $\operatorname{corr}(A_0, A_1, A_2, V) \approx$

(1.00	-0.86	0.77	0.35	0.74	-0.26	0.78	-0.57
-0.86	1.00	-0.60	-0.27	-0.58	0.20	-0.61	0.44
0.77	-0.60	1.00	0.31	0.86	-0.31	0.85	-0.62
0.35	-0.27	0.31	1.00	0.39	-0.14	0.39	-0.28
0.74	-0.58	0.86	0.39	1.00	-0.49	0.86	-0.63
-0.26	0.20	-0.31	-0.14	-0.49	1.00	-0.31	0.22
0.78	-0.61	0.85	0.39	0.86	-0.31	1.00	-0.82
-0.57	0.44	-0.62	-0.28	-0.63	0.22	-0.82	1.00 /

Comments to three parameter fit

- Correlations between a₀ and a₁ same sign
- Value is shifted \rightarrow OK

 $\operatorname{corr}(J_i) \approx$

(100.	71.6	100.	-71.6	-34.5	88.6	94.2	100. \
71.6	100.	71.6	-100.	-68.	95.	89.8	70.5
100.	71.6	100.	-71.6	-34.5	88.6	94.2	100.
-71.6	-100.	-71.6	100.	68.	-95.	-89.8	-70.5
-34.5	-68.	-34.5	68.	100.	-65.3	-46.2	-32.3
88.6	95.	88.6	-95.	-65.3	100.	97.3	87.7
94.2	89.8	94.2	-89.8	-46.2	97.3	100.	93.9
100.	70.5	100.	-70.5	-32.3	87.7	93.9	100. /

•
$$0 \le q^2 \le 12 \text{ GeV}^2$$

- $\epsilon_R \equiv 0$
- Only J_{1s} to J_{6s}