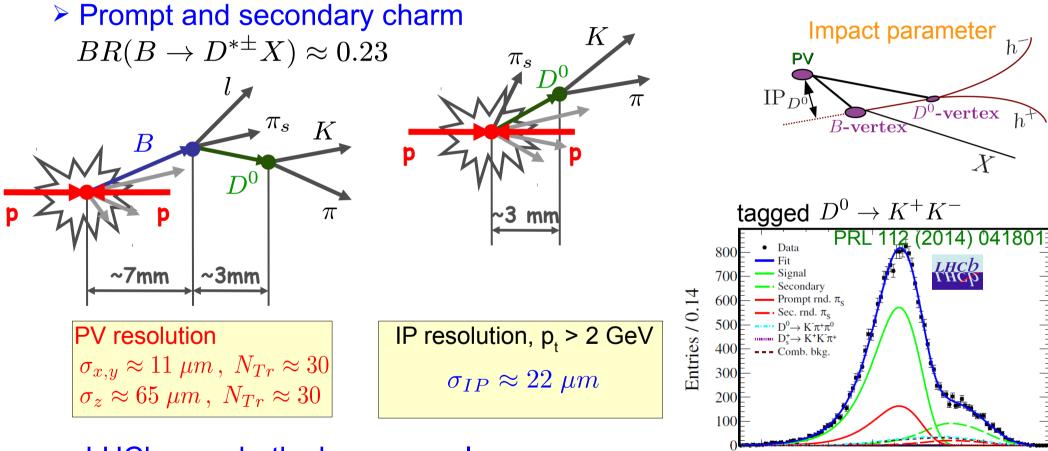
Heavy Quarks & Leptons 2014, Mainz

August 26th, 2014

Measurements of CPV and Mixing in Charm Decays

Jörg Marks, Heidelberg University on behalf of the LHCb collaboration

LHCb – Charm Physics


- Search for evidence of physics beyond the Standard Model in CP violation and rare decays of charm and beauty hadrons
 - Indirect search, probe large mass scales via the study of virtual quantum loops of new particles
- Of all LHCb physics results focus here on mixing and CPV in Charm
 - Spectroscopy, production and charmed baryon states (D cross section (arXiv:1302.2864), X(3872) (arXiv:1112.5310), D mass (arXiv:1304.6865), J/ψ Pairs (arXiv:1407.4973), D_j decays (arXiv:1307.4556), D_{sj} decays (arXiv:1207.6016), Ξ_{cc}^{++} baryon (arXiv:1310.2538), D^+ production asymmetry (arXiv:1208.3355), $D_s^+ - D_s^-$ production asymmetry (arXiv:1205.0897))
 - Rare decays $(D^0 \to \mu^+ \mu^- \text{ (arXiv:1305.5059)}, D^0 \to \pi^+ \pi^- \mu^+ \mu^- \text{ (arXiv:1310.2535)}, D^+_{(s)} \to \pi^+ \mu^+ \mu^-, D^+_{(s)} \to \pi^- \mu^+ \mu^+ \text{ (arXiv:1303.2614)})$

LHCb physics results are available in 209 papers submitted to journals and 118 conference notes. https://cds.cern.ch/collection/LHCb%20Papers?In=en https://cds.cern.ch/collection/LHCb%20Conference%20Contributions?In=en

Charm Production at Hadron Colliders

The large cross section for charm production at hadron colliders leads to $10^{12}c\bar{c}/fb^{-1}$ events within LHCb acceptance \rightarrow world's largest c sample

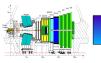
LHCb uses both charm samples

Mixing Formalism

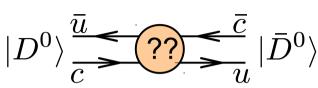
Neutral D⁰ mesons are created as flavour eigenstates of the strong interaction. They can mix through weak interactions.

The time evolution is obtained by

$$i\frac{\partial}{\partial t} \begin{pmatrix} D^0(t) \\ \bar{D}^0(t) \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} M_{11} & M_{12} \\ M_{12}^* & M_{22} \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma_{22} \end{pmatrix} \end{bmatrix} \begin{pmatrix} D^0(t) \\ \bar{D}^0(t) \end{pmatrix}$$


 \succ The physical eigenstates are D₁ and D₂:

$$\begin{split} |D_{1,2}\rangle &= p |D^0\rangle \pm q |\bar{D}^0\rangle & D_1: \ \text{CP even} \\ |D_{1,2}(t)\rangle &= e^{-i(M_{1,2} - i\Gamma_{1,2}/2)t} |D_{1,2}(t=0)\rangle & D_2: \ \text{CP odd} \end{split}$$

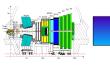

 \succ Define mass and lifetime differences of D₁ and D₂:

$$x = \frac{\Delta M}{\Gamma} = \frac{M_1 - M_2}{\Gamma}$$
 $y = \frac{\Delta \Gamma}{2\Gamma} = \frac{\Gamma_1 - \Gamma_2}{2\Gamma}$

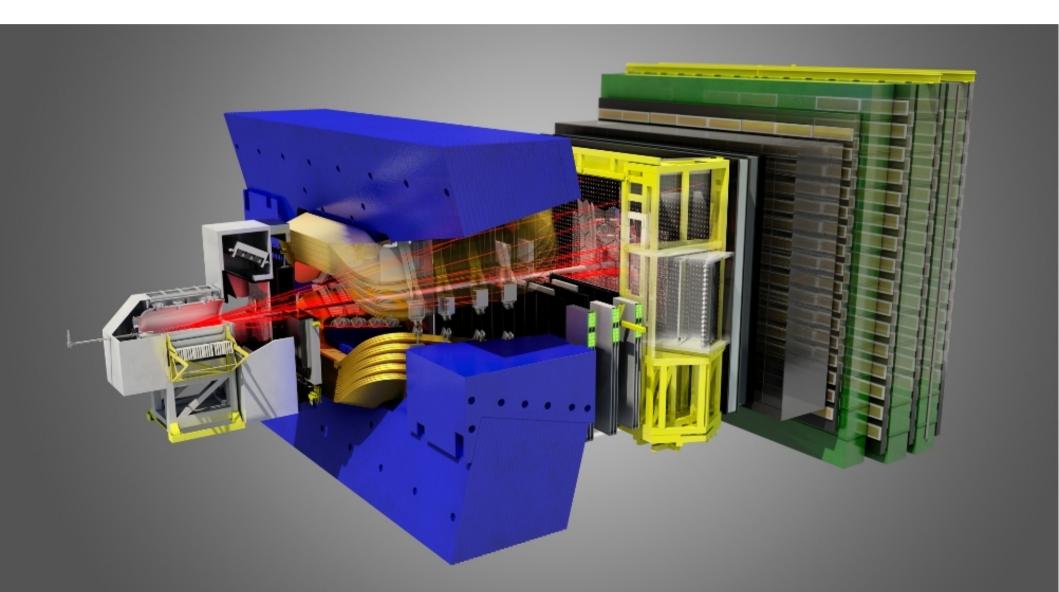
$$\Gamma = \frac{\Gamma_1 + \Gamma_2}{2}$$

Jörg Marks

CP Violation in the *D* System

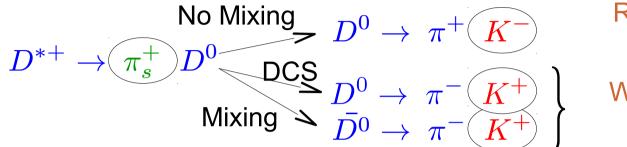

The only source of CP violation in SM is a single complex phase in the CKM matrix. CPV well established in Kaon and B meson systems.

For D mesons CP violating effects are predicted to be small ($\sim 10^{-3}$), therefore sizeable measurements of CPV hint for Physics beyond SM.


- ➤ CP violation in decay (direct CPV) $\Gamma(P \to f) \neq \Gamma(\bar{P} \to \bar{f}) \qquad |A_f| \neq |\bar{A}_f|$
- ➤ CP violation in mixing (indirect CPV) $q/p = r_m \cdot e^{i\phi_M} \neq 1 , \qquad r_M \equiv |q/p| \quad \phi_M \equiv arg(q/p)$
- CP violation in interference of mixing and decay (indirect CPV)

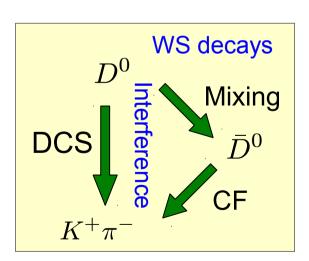
$$\phi_f \equiv \arg\left[\frac{q}{p}\frac{\bar{\mathcal{A}}_f}{\mathcal{A}_f}\right] \neq 0$$

Jörg Marks



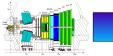
$D^0 - \overline{D}^0$ Mixing

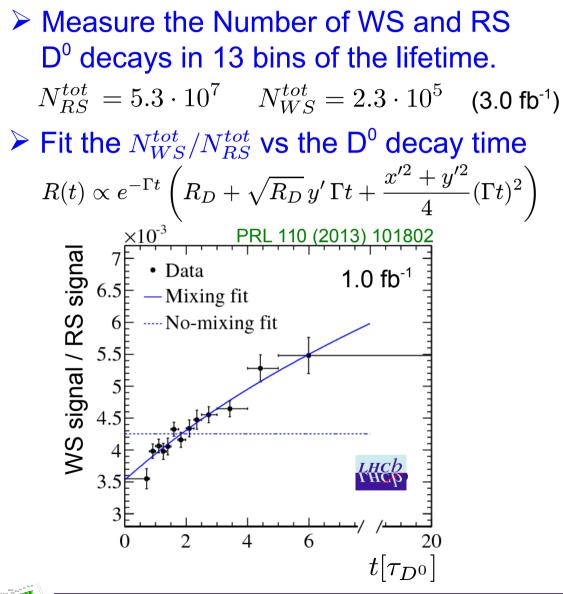
Mixing in $D^0 \to K\pi$ Decays


Event classes - flavour tagging at production and decay time

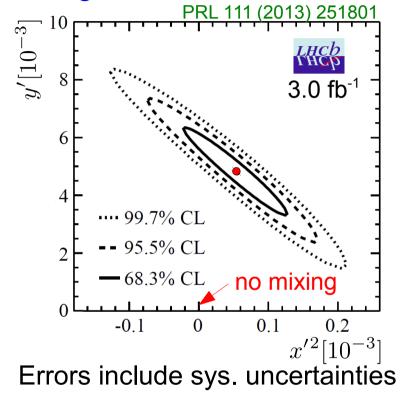
Right Sign Decay (RS) no D⁰ Mixing

Wrong Sign Decay (WS) D⁰ Mixing + DCS

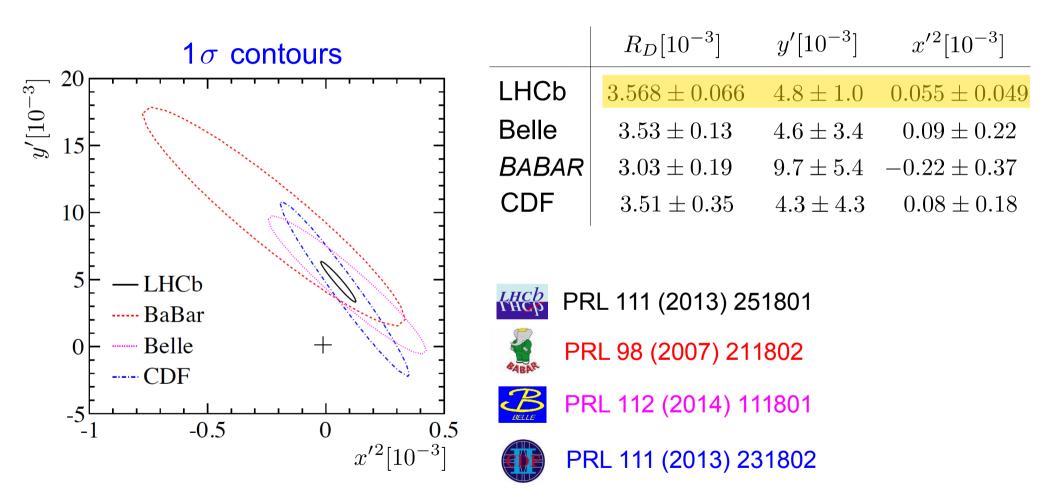

Time evolution of the WS decay rate

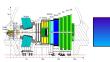

Jörg Marks

• assume CP conservation and
$$|x| \ll 1$$
; $|y| \ll 1$
 $T_{WS}(t) \propto e^{-\Gamma t} \left(\underbrace{R_D}_{KD} + \underbrace{\sqrt{R_D} y' \Gamma t}_{4} + \underbrace{\frac{x'^2 + y'^2}{4} (\Gamma t)^2}_{4} \right)$
DCS Interference Mixing
• $\delta_{K\pi}$ is the strong phase between CF and DCS amplitudes ($D^0 \rightarrow K\pi$)


 $\begin{aligned} x' &= x \cos \delta_{K\pi} + y \sin \delta_{K\pi} \\ y' &= -x \sin \delta_{K\pi} + y \cos \delta_{K\pi} \end{aligned} \qquad y'^2 + x'^2 = x^2 + y^2 \end{aligned}$

LHCb - t-dependent WS $D^0 \to K\pi$


Mixing Parameter



 $R_D = (0.3568 \pm 0.0058 \pm 0.0033)\%$ $y' = (0.48 \pm 0.08 \pm 0.05)\%$ $x'^2 = (0.55 \pm 0.42 \pm 0.26)\%$

WS $D^0 \to K\pi$ Mixing - Results

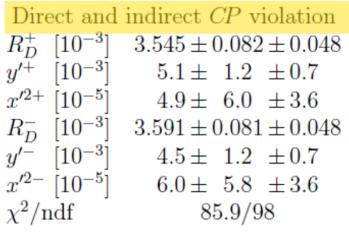
Comparison of recent mixing parameter measurements

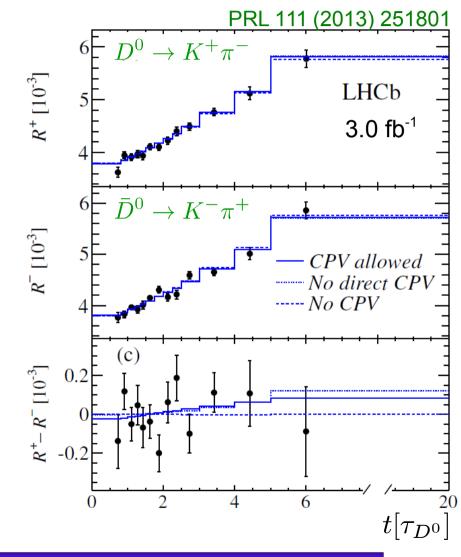
CPV in WS
$$D^0 \to K\pi$$

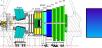
A determination of mixing parameters for D^0 and \overline{D}^0 gives access to CPV

Time dependent WS / RS rate for CPV

$$R^{\pm}(t) \propto e^{-\Gamma t} \left(R_D^{\pm} + \sqrt{R_D^{\pm}} y'^{\pm} \Gamma t + \frac{x'^{2\pm} + y'^{2\pm}}{4} |\frac{q}{p}|^2 (\Gamma t)^2 \right)$$
$$y'^{\pm} = |\frac{q}{p}|^{\pm 1} [y \cos(\delta \pm \phi) \mp x \sin(\delta \pm \phi)]$$
$$x'^{\pm} = |\frac{q}{p}|^{\pm 1} [x \cos(\delta \pm \phi) \pm y \sin(\delta \pm \phi)]$$
$$R_D^{\pm} = R_D (1 \pm A_D)$$




PRL 111 (2013) 251801


CPV in WS $D^0 \to K\pi$

A determination of mixing parameters for D^0 and \bar{D}^0 gives access to CPV

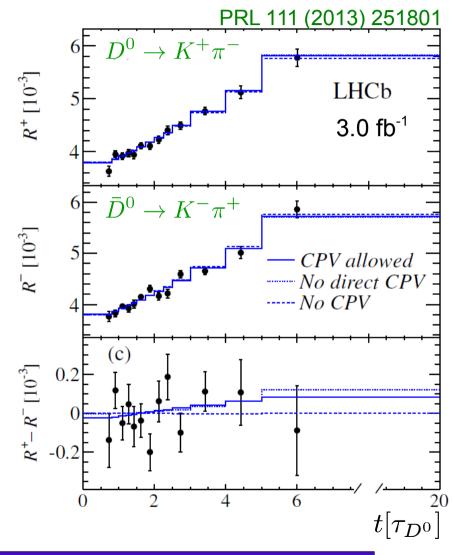
Fit results

CPV in WS $D^0 \to K\pi$

A determination of mixing parameters for D^0 and \overline{D}^0 gives access to CPV

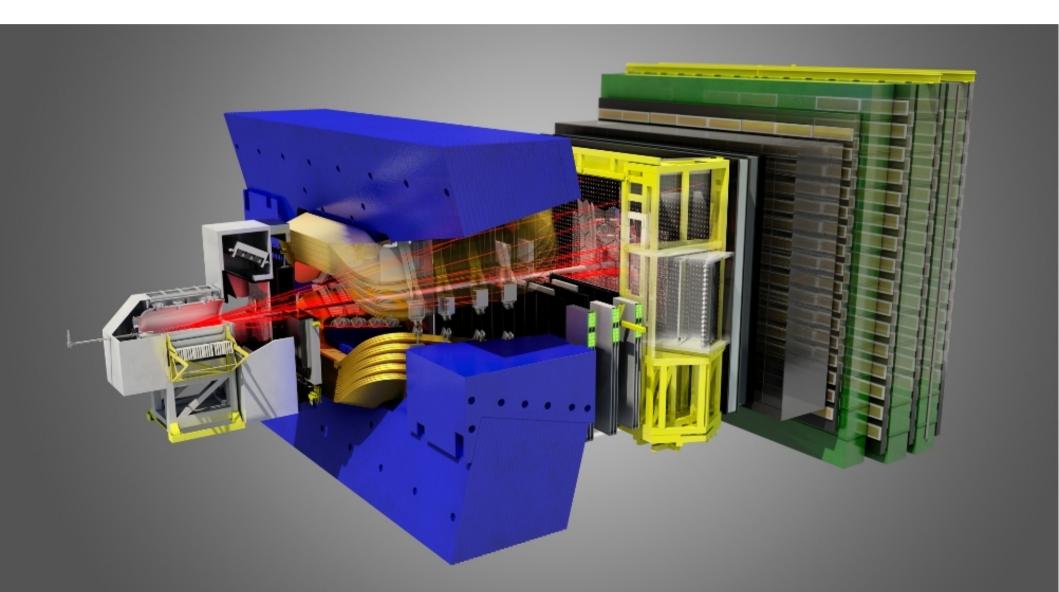
Fit parameter

Direct and indirect CP violation $R_{\rm D}^+$ $[10^{-3}]$ $3.545 \pm 0.082 \pm 0.048$ $[10^{-3}]$ $5.1 \pm 1.2 \pm 0.7$ $u^{\prime+}$ x'^{2+} [10⁻⁵] $4.9 \pm 6.0 \pm 3.6$ $R_{\rm D}^ [10^{-3}]$ 3.591 ± 0.081 ± 0.048 $[10^{-3}]$ $4.5 \pm 1.2 \pm 0.7$ $[10^{-5}]$ $6.0 \pm 5.8 \pm 3.6$ χ^2/ndf 85.9/98


- CP violation parameters
 - CPV in mixing

0.75 < |q/p| < 1.24 @ 68.3% CL

direct CPV of DCS component


$$A_D = \frac{R^+ - R^-}{R^+ + R^-} = (-0.7 \pm 1.9)\%$$

No indication for direct or indirect CPV

y_{CP} and $A_{\!\Gamma}$

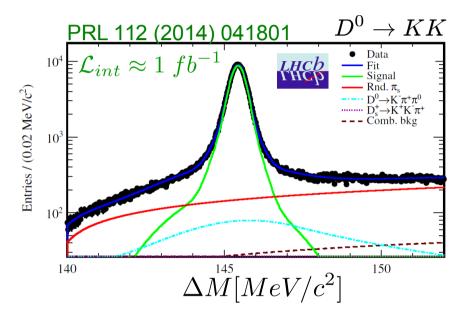
y_{CP} and A_{Γ} - Introduction

 \succ Decay time of D⁰'s is exponential with modifications due to mixing

$$au^{\pm} = rac{ au^0}{1 + |q/p|(y\cos\phi_f \mp x\sin\phi_f)}$$
 $au^{\pm}: \text{ lifetime of } \mathsf{D}^0 \ (\overline{\mathsf{D}}^0) \to \ \mathsf{CP+ eigenstates}$
 $au^0: \text{ lifetime of } \mathsf{D}^0 \to \mathsf{CP} \text{ mixed (CF)}$

A lifetime difference between CP+ and CP mixed states gives
access to mixing
$$y_{CP} = \frac{\tau^0}{\tau} - 1 = \frac{\tau(K^-\pi^+)}{\tau(K^-K^+)} - 1 = |q/p|(y\cos\phi_f - x\sin\phi_f)$$

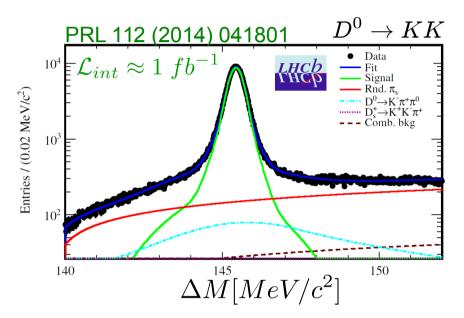
 $y_{CP} \neq 0 \Rightarrow D^0 - \overline{D}^0$ mixing
LHCb measurement for tagged $D^0 \rightarrow KK$ in 28 pb⁻¹: JHEP 04 (2012) 129
 $y_{cp} = (5.5 \pm 6.3 (stat) \pm 4.1 (sys)) \cdot 10^{-3}$
Test of CP violation


$$A_{\Gamma} = \frac{\tau^{-} - \tau^{+}}{\tau^{-} + \tau^{+}} \approx \frac{1}{2} \left[\left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) y \cos \phi_{f} - \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) x \sin \phi_{f} \right] \quad \begin{array}{l} A_{\Gamma} \neq 0 \quad \Rightarrow \\ \text{indirect CPV} \end{array}$$

Jörg Marks

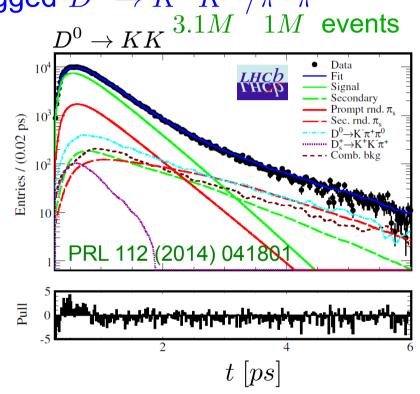
LHCb - A_{Γ} Measurement

► Measure lifetime asymmetry A_{Γ} with tagged $D^0 \rightarrow K^+ K^- / \pi^+ \pi^ 3.1M \quad 1M$ events


Knowledge of the proper time acceptance dependence on the trigger and selection is needed.

- Recreate trigger decision while moving the PV along the D⁰ momentum. JHEP 04 (2012) 129
- Separation between prompt and secondary in $\chi^2(IP_D)$

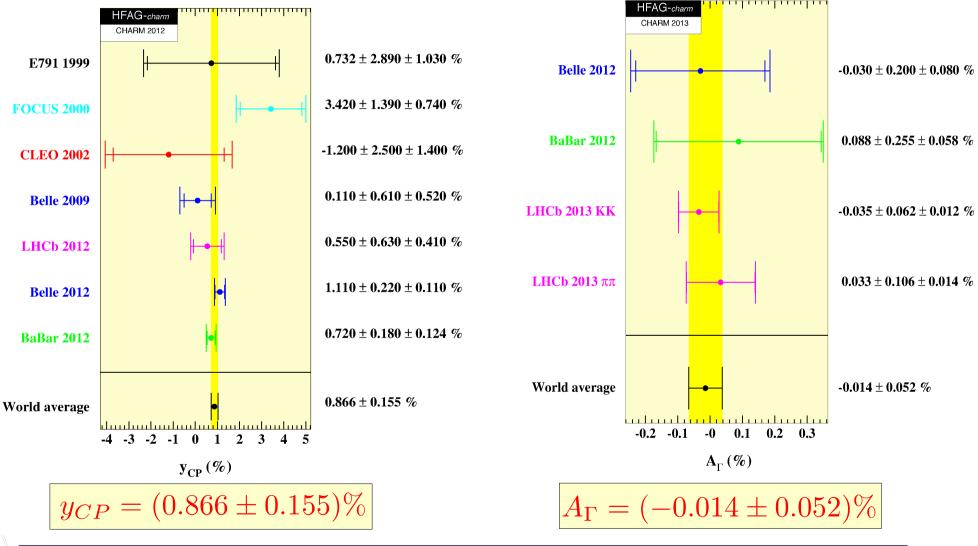
LHCb - A_{Γ} Measurement


 \blacktriangleright Measure lifetime asymmetry A_{Γ} with tagged $D^0 \rightarrow K^+ K^- / \pi^+ \pi^-$

• World best measurement using $\mathcal{L}_{int} \approx 1 \ fb^{-1}$

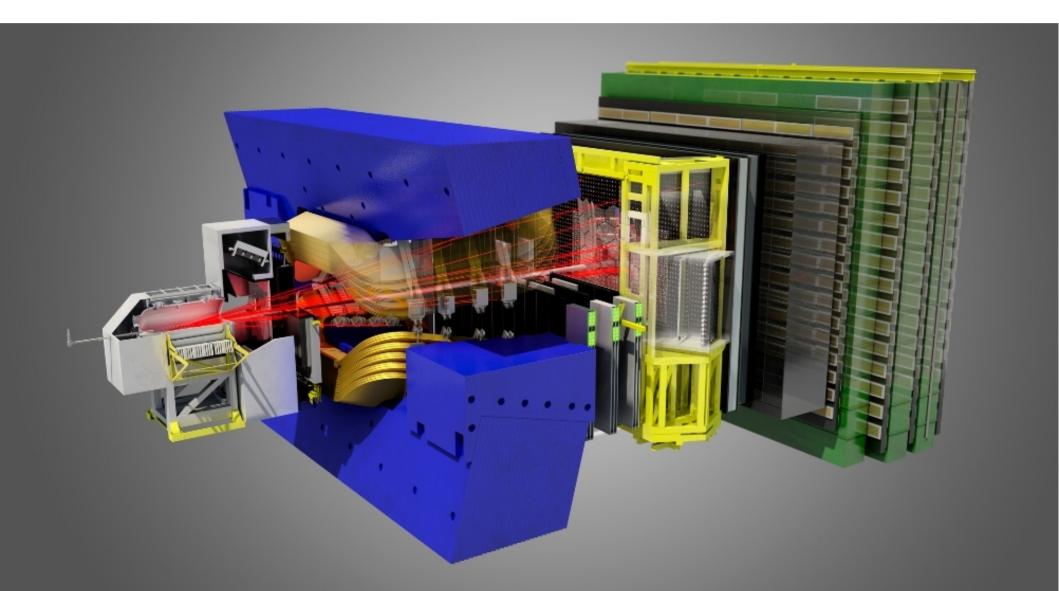
 $A_{\Gamma}(K^{+}K^{-}) = (-0.35 \pm 0.62 \pm 0.12) \cdot 10^{-3}$ $A_{\Gamma}(\pi^{+}\pi^{-}) = (0.33 \pm 1.06 \pm 0.14) \cdot 10^{-3}$

No indirect CPV at the level of 0.1%



- Lifetime fit to obtain A_{Γ}
- Binned method, similar result

$$R(t) \approx \frac{N_{\bar{D}^0}}{N_{D^0}} \left(1 + \frac{2A_{\Gamma}}{\tau_{KK}}t\right) \frac{1 - e^{-\Delta t/\tau_{\bar{D}^0}}}{1 - e^{-\Delta t/\tau_{D^0}}}$$


Experimental Results – y_{CP} and A_{Γ}

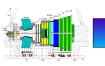
\succ Combined y_{CP} and $A_{\Gamma}\,$ as averaged by the charm subgroup of HFAG

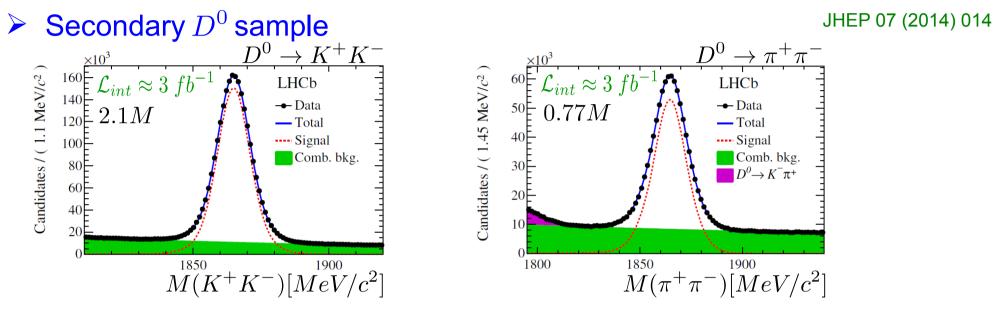
Jö

CP Asymmetries in twobody D Decays

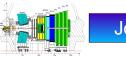
t-integrated CPV in
$$D^0 \to K^+ K^- / \pi^+ \pi^-$$

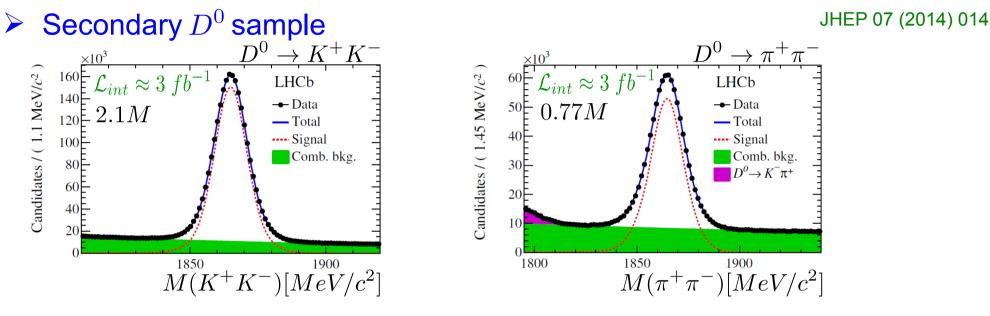
Use SCS 2-body D^0 decays to measure time integrated CP violating effects

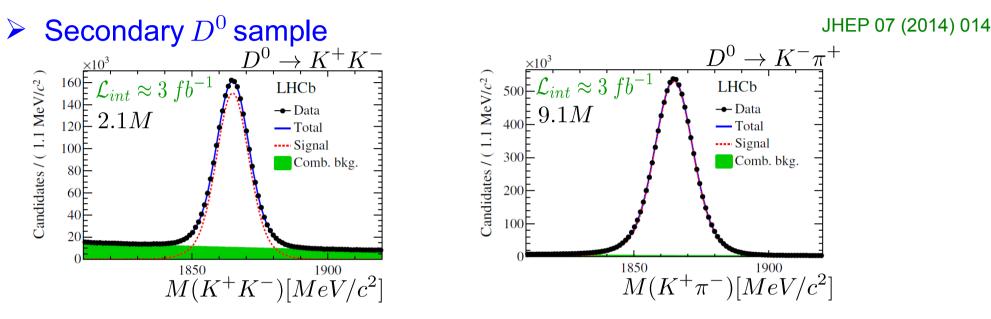

- Access CP violation through asymmetry measurements $A_{CP}(f;t) \equiv \frac{\Gamma(D^{0}(t) \to f) - \Gamma(\bar{D}^{0}(t) \to f)}{\Gamma(D^{0}(t) \to f) + \Gamma(\bar{D}^{0}(t) \to f)} = \underbrace{a_{CP}^{dir}(f)}_{\mathsf{CPV in decay}} + \underbrace{\frac{t}{\tau}a_{CP}^{ind}}_{\mathsf{CPV in mixing + interfer.}}$
- $\begin{aligned} &\blacktriangleright \text{ Measure time integrated } A_{CP} \text{ difference for } f = K^+K^- \text{ and } f = \pi^+\pi^- \\ &\Delta A_{CP} = A_{CP}^{raw}(K^+K^-) A_{CP}^{raw}(\pi^+\pi^-) \\ &\approx [a_{CP}^{dir}(K^+K^-) a_{CP}^{dir}(\pi^+\pi^-)] + \frac{\Delta < t >}{-} a_{CP}^{ind} \end{aligned}$


• Measurement of ΔA_{CP} with 2 independent data samples

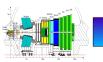
- $D^{*+} \rightarrow D^0 \pi^+$ decays: published, $\int \mathcal{L} = 0.6 f b^{-1}$: PRL 108 (2012) 111602 preliminary, $\int \mathcal{L} = 1 f b^{-1}$: LHCb-CONF-2013-003

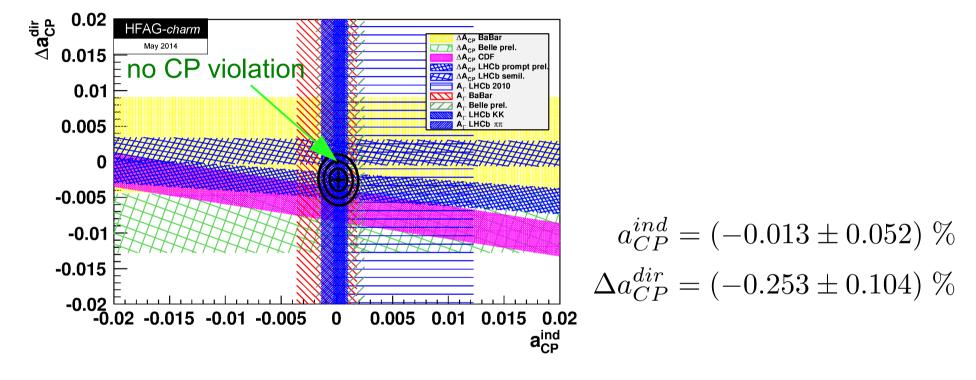

- $B \rightarrow D^0 \mu^- \nu_\mu X$ decays: recently published, $\int \mathcal{L} = 3fb^{-1}$: JHEP 07 (2014) 014


► Measure time integrated $A_{CP}(K^+K^-)$ with secondary D^0 sample $A_{CP}(K^+K^-) = A_{CP}^{raw}(K^+K^-) - A_{CP}^{raw}(K^-\pi^+) + A_D(K^-\pi^+)$


• $\Delta A_{CP} = (+0.14 \pm 0.16 \, (stat) \pm 0.08 \, (sys)) \%$

- $\Delta A_{CP} = (+0.14 \pm 0.16 \, (stat) \pm 0.08 \, (sys)) \%$
- To determine $A_{CP}(K^+K^-)$ need $A_D(K^-\pi^+)$ $A_{CP}(K^+K^-) = A_{CP}^{raw}(K^+K^-) - A_{CP}^{raw}(K^-\pi^+) + A_D(K^-\pi^+)$ $A_D(K^-\pi^+) = A_{CP}^{raw}(D^+ \to K^-\pi^+\pi^+) - A_{CP}^{raw}(D^+ \to \bar{K}^0\pi^+) - A_{K^0}$ $(0.054 \pm 0.014)\%$

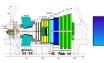


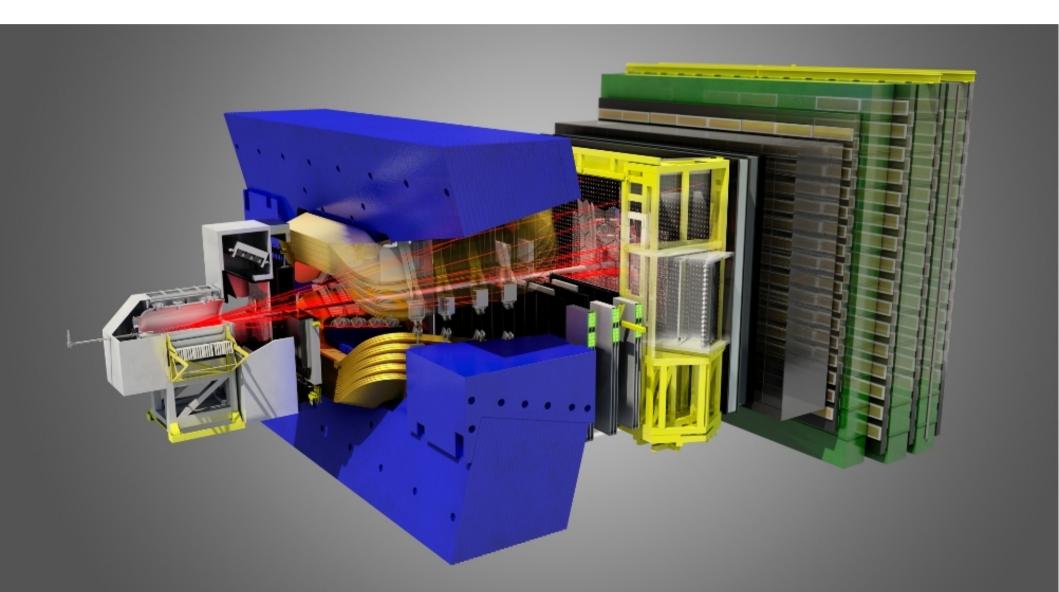

- $\Delta A_{CP} = (+0.14 \pm 0.16 \, (stat) \pm 0.08 \, (sys)) \%$
- $A_{CP}(K^+K^-) = (-0.06 \pm 0.15 (stat) \pm 0.10 (sys)) \%$ $A_{CP}(\pi^+\pi^-) = (-0.20 \pm 0.19 (stat) \pm 0.10 (sys)) \%$ Most precise time integrated CP asymmetry measurements to date
- \succ D^* -tagged sample (preliminary)
 - $\Delta A_{CP} = (-0.34 \pm 0.15 \, (stat) \pm 0.10 \, (sys)) \%$

LHCb-CONF-2013-003

Consistent with no CP violation hypothesis

HFAG averages




Direct CPV in $D^+ \to K^0_s K^+$, $D^+_s \to K^0_s \pi^+$

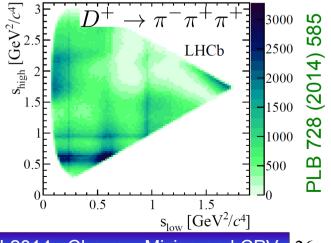
arXiv:1406.2624

- $> \text{ Search for direct CP asymmetry in SCS decays } D^{\pm}_{(s)} \to K^0_s h^{\pm} , \quad (h = K, \pi)$ $A^{D^{\pm}_{(s)} \to K^0_s h^{\pm}}_{CP} \equiv \frac{\Gamma(D^+_{(s)} \to K^0_s h^+) \Gamma(D^-_{(s)} \to K^0_s h^-)}{\Gamma(D^+_{(s)} \to K^0_s h^+) + \Gamma(D^-_{(s)} \to K^0_s h^-)}$
 - Measured raw asymmetries contain pollution asymmetries $A_{CP}^{raw} \approx A_{CP} - A_D(h) + A_P(D_{(s)}^+) + A_{K^0}$ mixing / CPV of K^0 and detection asymmetry K^0 : $A_{K^0} = (+0.07 \pm 0.02)\%$ use CF modes $D^+ \rightarrow K_s^0 \pi^+$, $D_s^+ \rightarrow K_s^0 K^+$ arXiv:1405.2797
 - Construct double difference to cancel detection and production asymmetries
 $$\begin{split} A_{CP}^{DD} &\approx [A_{CP}^{raw}(D_s^+ \to K_s^0 \pi^+) - A_{CP}^{raw}(D_s^+ \to K_s^0 K^+)] - \\ & [A_{CP}^{raw}(D^+ \to K_s^0 \pi^+) - A_{CP}^{raw}(D^+ \to K_s^0 K^+)] - 2A_{K^0} = A_{CP}^{D^{\pm} \to K_s^0 K^{\pm}} + A_{CP}^{D_s^{\pm} \to K_s^0 \pi^{\pm}} \\ \hline A_{CP}^{D^{\pm} \to K_s^0 K^{\pm}} + A_{CP}^{D_s^{\pm} \to K_s^0 \pi^{\pm}} = (0.41 \pm 0.49 \pm 0.26)\% \quad \mathcal{L}_{int} \approx 3 \ fb^{-1} \end{split}$$
 - Combine with CF $D_s^+ \to \phi \pi^+$ to get CP asymmetries: $A_{CP}^{D^{\pm} \to K_s^0 K^{\pm}} = (+0.03 \pm 0.17 \pm 0.14) \%$ $A_{CP}^{D^{\pm}_{(s)} \to K_s^0 \pi^{\pm}} = (+0.38 \pm 0.46 \pm 0.17) \%$ no CPV

CP Violation in Multibody D Decays

CPV in multibody SCS Decays

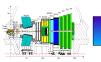
- Single Cabbibo suppressed charm decays (SCS)
 - SCS decays are sensitive to CPV in $c \rightarrow uq\bar{q}$ transitions Contributions due to supersymmetric $\Delta C = 1$ QCD penguins could enter.

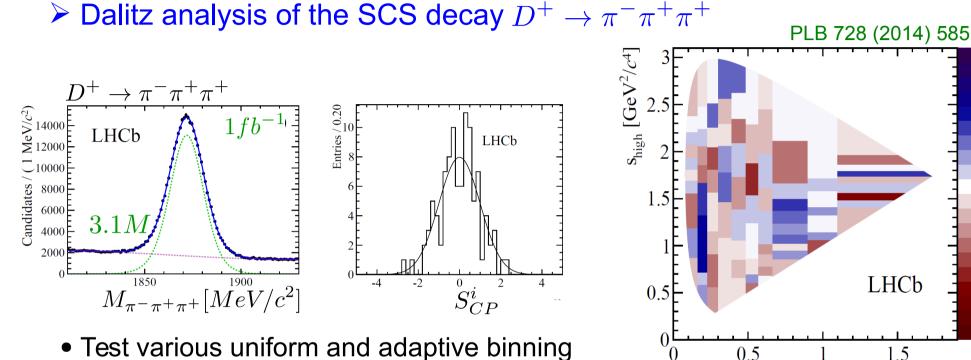

 \rightarrow measurement of large CPV would be a sign of NP

- Search for CPV in SCS $D^+ \to \pi^+\pi^-\pi^+$, $D^0 \to \pi^-\pi^+\pi^-\pi^+$, $D^0 \to K^-K^+\pi^-\pi^+$
- Decays from many resonances show strong phase variations in Phase Space \rightarrow search for asymmetries in D and \overline{D} in local areas of Phase Space
- Model independent Dalitz Plot analysis to look for local CP asymmetries

Significance of difference between corresponding Dalitz plot bins (a.k.a. Miranda method) Phys. Rev. D80 096006 (2009)

$$S_{CP}^{i} = \frac{N(i) - \bar{N}(i)}{\sqrt{\alpha(N(i) + \bar{N}(i))}} , \ \alpha \equiv \frac{\sum N(i)}{\sum \bar{N}(i)}$$


• CPV if S_{CP}^i distribution nongaussian


Y. Grossman et al.

Phys. Rev. D75 036008 (2007)

d.s.t

CPV in $D^+ \to \pi^- \pi^+ \pi^+$ Decays

- Test various uniform and adaptive binning schemes
- Sⁱ_{CP} distributions agree with normal gaussian distribution (p-values 50 – 99 %)
- ➢ For SCS decays $D^0 → \pi^- \pi^+ \pi^- \pi^+$, $D^0 → K^- K^+ \pi^- \pi^+$ also no CP asymmetry found
 PLB 726 (2013) 623, not discussed here

S

+3

+2

+1

-2

-3

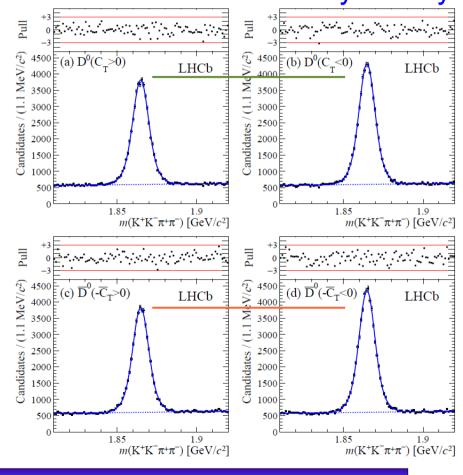
 $s_{low} [GeV^2/c^4]$

CPV with T-odd Correlations

Search for CPV using T-odd correlations assuming CPT invariance

A. Datta and D. London Triple Products in $D \rightarrow VV$ are odd under T reversal Int.J.Mod.Phys. A19 2505 (2004)

- $A_T = \frac{\Gamma_D(\vec{v}_1 \cdot (\vec{v}_2 \times \vec{v}_3 > 0) \Gamma_D(\vec{v}_1 \cdot (\vec{v}_2 \times \vec{v}_3 < 0))}{\Gamma_D(\vec{v}_1 \cdot (\vec{v}_2 \times \vec{v}_3 > 0) + \Gamma_D(\vec{v}_1 \cdot (\vec{v}_2 \times \vec{v}_3 < 0))} \qquad \vec{v}_i = \{\vec{s}, \, \vec{p}\}$
- But FSI can produce $A_T \neq 0$
- BABAR: PRD-RC 81 111103 (2010) Measure CPV observable $a_{CP}^{T-odd} = 1/2(A_T - \bar{A}_T)$ using triple products of final state particle momenta in $D^0 \to K^+ K^- \pi^+ \pi^-$ decays in $D^0 c.m.s.$
 - $D^0: C_T \equiv \vec{p}_{K^+} \cdot (\vec{p}_{\pi^+} \times \vec{p}_{\pi^-}) \qquad A_T \equiv \frac{\Gamma_{D^0}(C_T > 0) \Gamma_{D^0}(C_T < 0)}{\Gamma_{D^0}(C_T > 0) + \Gamma_{D^0}(C_T < 0)}$
 - $\bar{D}^0: \ \bar{C}_T \equiv \vec{p}_{K^-} \cdot (\vec{p}_{\pi^-} \times \vec{p}_{\pi^+}) \qquad \bar{A}_T \equiv \frac{\Gamma_{\bar{D}^0}(-C_T > 0) \Gamma_{\bar{D}^0}(-C_T < 0)}{\Gamma_{\bar{D}^0}(-\bar{C}_T > 0) + \Gamma_{\bar{D}^0}(-\bar{C}_T < 0)}$
 - Effective CPV differs depending on strong phase difference of the two interfering amplitudes $(\delta_1 - \delta_2)$ weak phases strong phases $\mathcal{A}_{CP} \propto sin(\phi_1 - \phi_2) \cdot \frac{sin(\delta_1 - \delta_2)}{sin(\delta_1 - \delta_2)}$ $a_{CP}^{T-odd} \propto sin(\phi_1 - \phi_2) \cdot \frac{cos(\delta_1 - \delta_2)}{cos(\delta_1 - \delta_2)}$

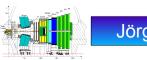


CPV - **T-odd Cor.** in $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$

LHCb searches for CPV in 171 k secondary $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ decays using T-odd correlations with $3fb^{-1}$ of data arXiv:1408.1299

Measure phase space integrated T-odd observables and CP asymmetry

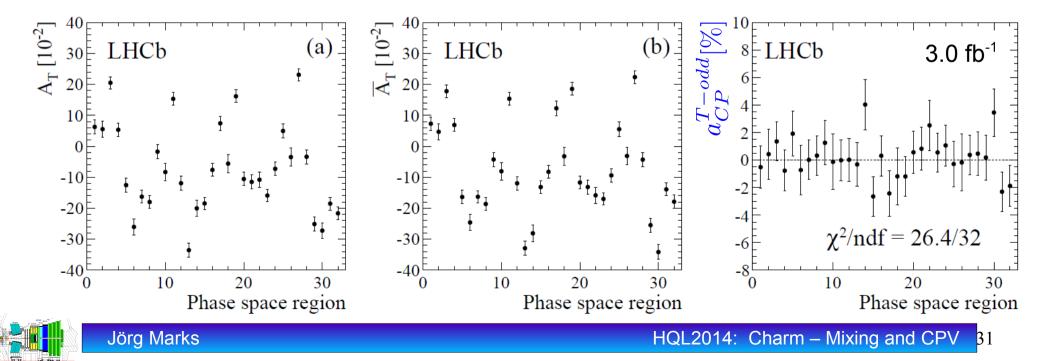
 D^0 : $A_T = (-7.18 \pm 0.41 \pm 0.13)\%$ \bar{D}^0 : $\bar{A}_T = (-7.55 \pm 0.41 \pm 0.12)\%$


CPV - T-odd Cor. in $D^0 \to K^+ K^- \pi^+ \pi^-$

LHCb searches for CPV in 171 k secondary $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ decays using T-odd correlations with $3fb^{-1}$ of data arXiv:1408.1299

Measure phase space integrated T-odd observables and CP asymmetry

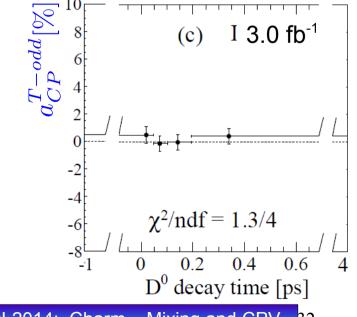
- D^0 : $A_T = (-7.18 \pm 0.41 \pm 0.13)\%$
- \bar{D}^0 : $\bar{A}_T = (-7.55 \pm 0.41 \pm 0.12)\%$

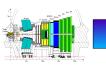

 $a_{CP}^{T-odd} = (0.18 \pm 0.29 \pm 0.04)\%$

CPV - **T-odd Cor.** in $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$

LHCb searches for CPV in 171 k secondary $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ decays using T-odd correlations with $3fb^{-1}$ of data arXiv:1408.1299

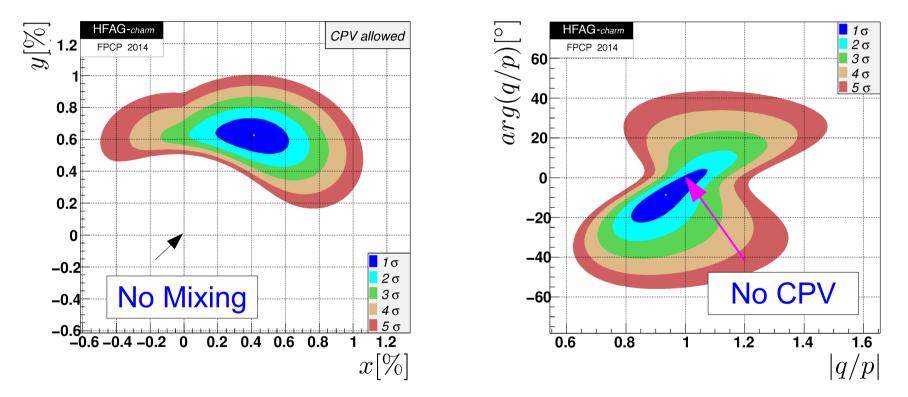
> Variations of T-odd variable with phase space cancelling in a_{CP}^{T-odd}

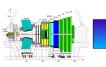



CPV - **T-odd Cor.** in $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$

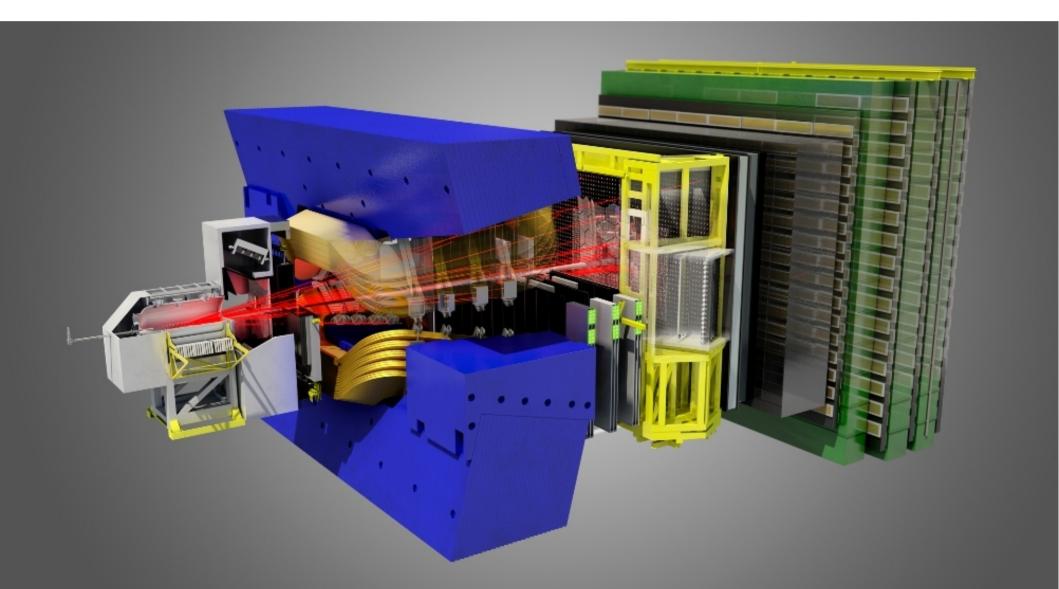
LHCb searches for CPV in 171 k secondary $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ decays using T-odd correlations with $3fb^{-1}$ of data arXiv:1408.1299

- > Variations of T-odd variable with phase space cancelling in a_{CP}^{T-odd}
- > No variations with τ_{D^0} which excludes effects of indirect CPV
- Precision on a_{CP}^{T-odd} significantly improved

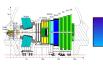

No evidence of CP asymmetry

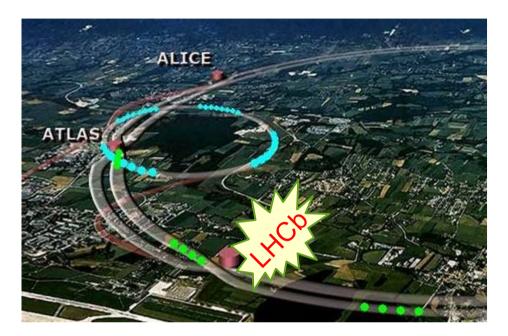


Summary

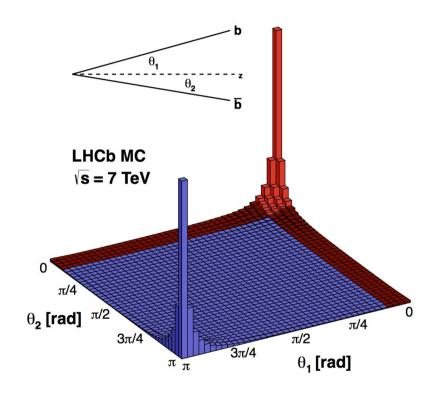

LHCb takes the fine results of the B factories and Tevatron in charm physics to an even higher precision to allow for comparison with SM predictions.

LHCb is still analyzing data of Run I with Run II lurking at the doorstep, thus more exciting results are to be expected.

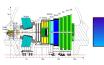

Back up


LHC – b and c Quark Production

The LHC is also a heavy flavour factory $\sigma(\sqrt{s} = 7 \, TeV, \, pp \rightarrow c\bar{c}X) \approx 6 \, mb$ Phys. Lett. B 694, 209 (2010) $\sigma(\sqrt{s} = 7 \, TeV, \, pp \rightarrow b\bar{b}X) \approx 0.3 \, mb$ Nucl. Phys. B 871, (2013)



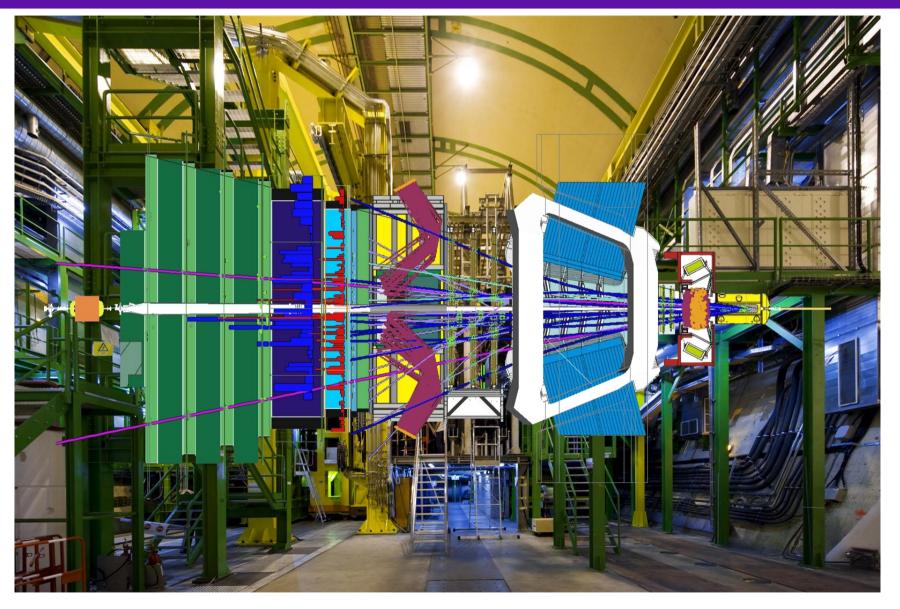
LHC – b and c Quark Production



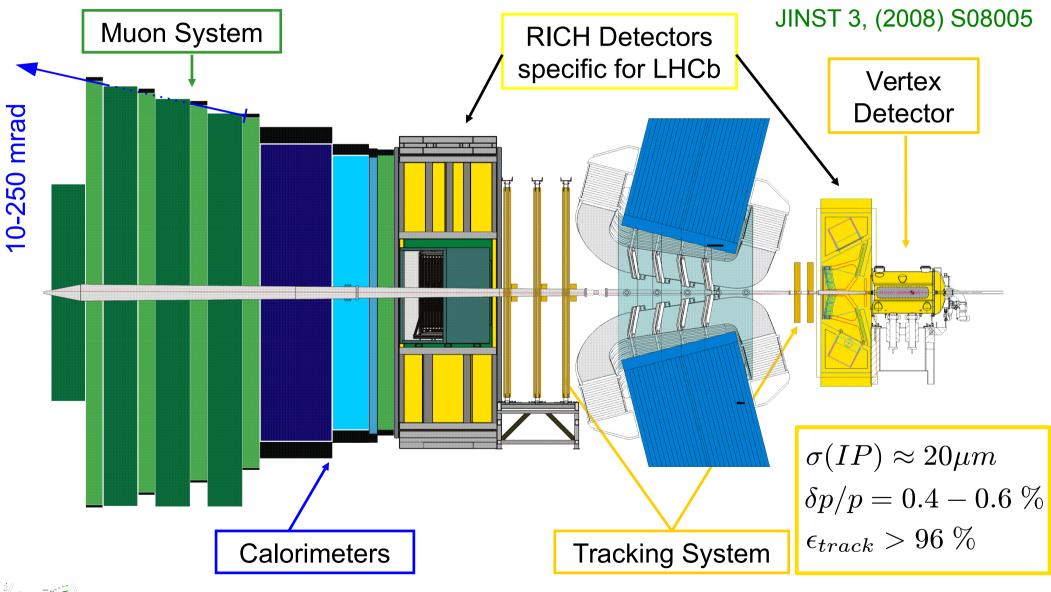
The LHC is also a heavy flavour factory $\sigma(\sqrt{s} = 7 \, TeV, \, pp \rightarrow c\bar{c}X) \approx 6 \, mb$ Phys. Lett. B 694, 209 (2010) $\sigma(\sqrt{s} = 7 \, TeV, \, pp \rightarrow b\bar{b}X) \approx 0.3 \, mb$ Nucl. Phys. B 871, (2013)

• $b\overline{b} / c\overline{c}$ pairs are mainly produced in forward / backward direction

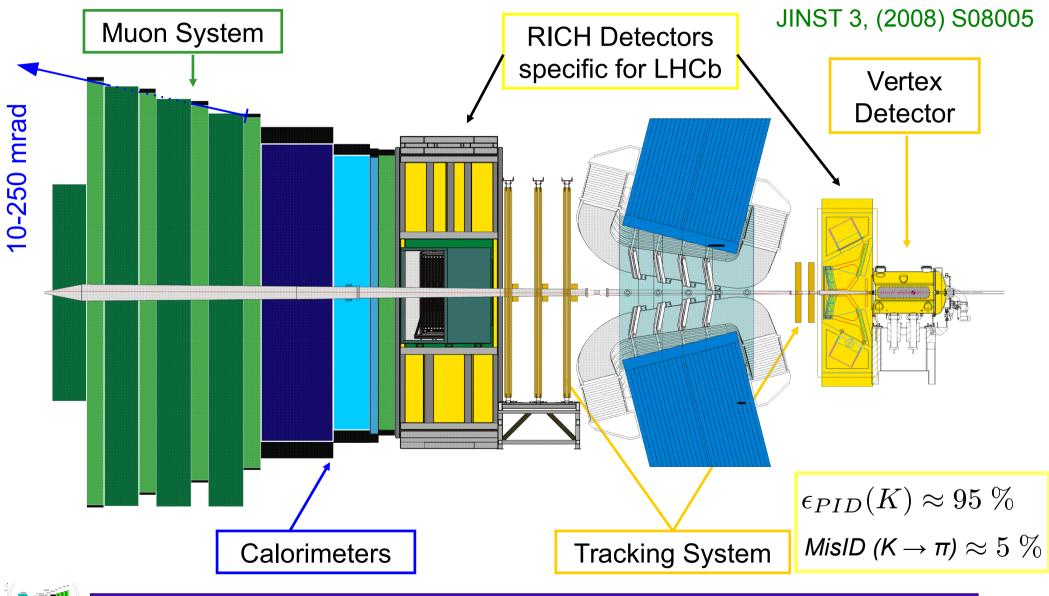
LHCb \rightarrow forward spectrometer

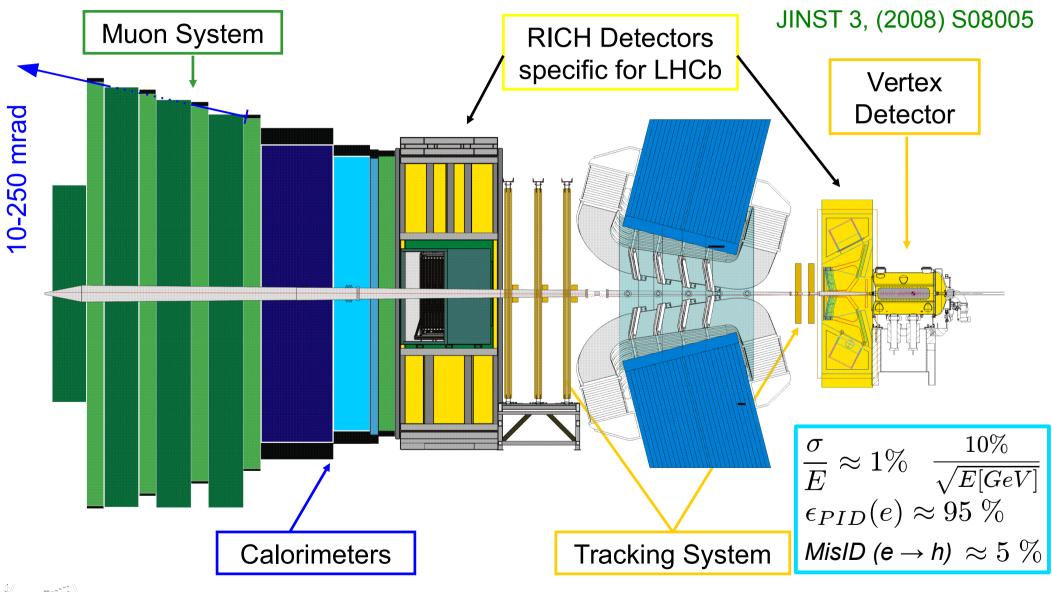


LHCb Detector



LHCb Detector



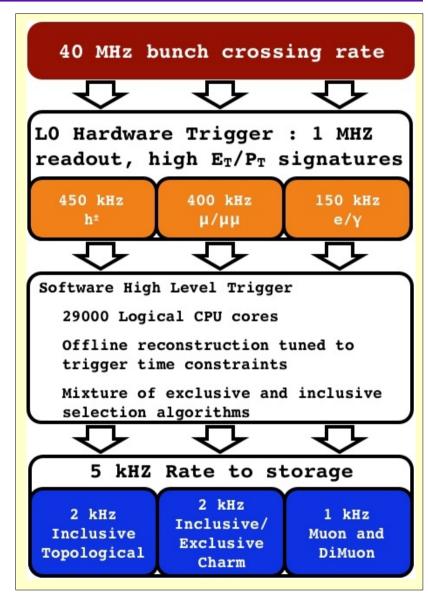


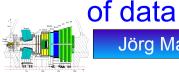
HQL2014: Charm – Mixing and CPV

39



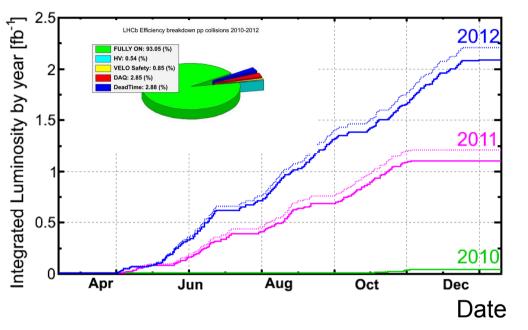
Jörg Marks

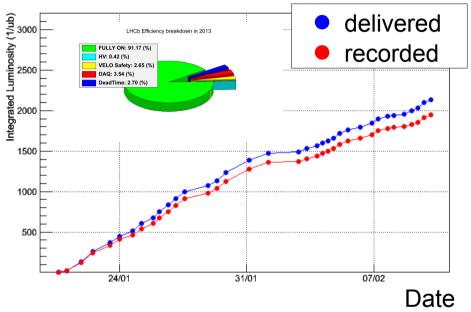




LHCb - Trigger Overview

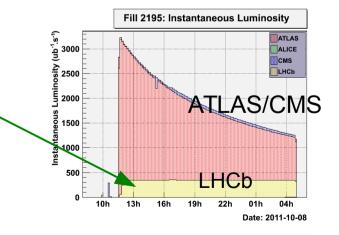
Hardware Trigger based on VELO, **Calorimeter- and Muonsystem**


- Select on p_T objects: $h, \mu, \mu\mu, e^{\pm}, \gamma, \pi^0$
- Obtain p-p interaction and multiplicity info
- Two level software trigger based on partly / fully reconstructed objects with all detector information
 - Confirm L0 trigger using reconstr. and combined detector info
 - Select on a single track with high p_{τ} and displaced vertices using VELO
 - Use reconstructed objects for exclusive and inclusive selections with clear signature
- In 2012 wrote 5 kHz to storage thanks to deferred trigger processing of up to 25%



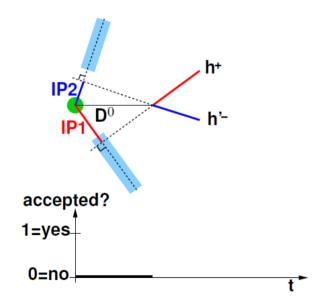
Operations in 2011 / 2012

➢ p-p at 3.5 / 4 TeV


▶ p-Pb at $\sqrt{s_{NN}} = 5$ TeV in 2013

- LHCb operates with high efficiency
- Take data at constant instantaneous luminosity rate: $\mathcal{L} \approx 4 \times 10^{32} \, cm^{-2} s^{-1}$

(factor 2 larger than design luminosity)

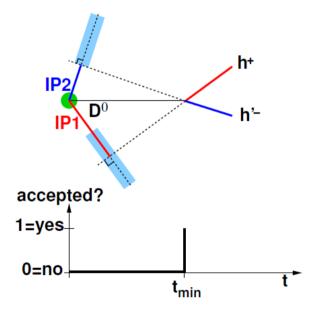

- Visible pp interactions per bunch crossing
 - μ = 1.7 (50 ns bunch spacing)

LHCb - Lifetime Acceptance

JHEP 04 (2012) 129 Knowledge of the proper time acceptance dependence on the trigger and selection is needed.

- Is determined on an event by event basis by the swimming method developed by NA11 and used by DELPHI and CDF.
- Recreate trigger decision while moving the PV along the D⁰ momentum. Well suited for the LHCb software trigger.

Initially the IP for this D⁰ lifetime is still below trigger threshold.



Jörg Marks

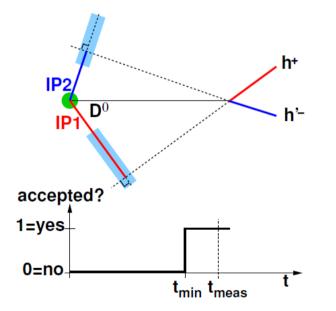
LHCb - Lifetime Acceptance

JHEP 04 (2012) 129 Knowledge of the proper time acceptance dependence on the trigger and selection is needed.

- Is determined on an event by event basis by the swimming method developed by NA11 and used by DELPHI and CDF.
- Recreate trigger decision while moving the PV along the D⁰ momentum. Well suited for the LHCb software trigger.

Initially the IP for this D⁰ lifetime is still below trigger threshold.

Moving the PV and recreating the IP info yields a D⁰ lifetime t_{min} which creates a trigger.



Jörg Marks

LHCb - Lifetime Acceptance

JHEP 04 (2012) 129 Knowledge of the proper time acceptance dependence on the trigger and selection is needed.

- Is determined on an event by event basis by the swimming method developed by NA11 and used by DELPHI and CDF.
- Recreate trigger decision while moving the PV along the D⁰ momentum.
 Well suited for the LHCb software trigger.

Initially the IP for this D⁰ lifetime is still below trigger threshold.

Moving the PV and recreating the IP info yields a D^0 lifetime t_{min} which creates a trigger.

 t_{meas} is reached.

Similar procedure can be applied for other selection criteria.

