ChPT tests at NA48 and NA62 experiments at CERN

Dmitry Madigozhin (JINR, Dubna)

on behalf of the NA48/2 and NA62 collaborations

Mainz, August 27, 2014

Kaon decays provide an important laboratory for the investigations at «intensity frontier»: rare decays and high statistics precision measurements.

• SM tests: CKM ($\pi v v$), CPV ($\pi \pi$, $\pi \pi \pi$), Lepton universality ($R_{\kappa} = \Gamma(ev)/\Gamma(\mu v)$)

• ChPT development — low energy strong interaction parameters, form factors *etc* (needed for some SM tests and important for particle physics in general) :

Outline

- NA48/2 experiment
- Ke4 : introduction
- NA48/2: $\mathbf{K}^{\pm} \rightarrow \pi^{+}\pi^{-}\mathbf{e}^{\pm}\mathbf{v}$
- NA48/2: $\mathbf{K}^{\pm} \rightarrow \pi^{0}\pi^{0}\mathbf{e}^{\pm}\mathbf{v}$
- NA48/2 and NA62 (R_K phase): $K^{\pm} \rightarrow \pi^+ \gamma \gamma$
- Summary

NA48/2 beam line

× 10⁻ 1200

The NA48 detector

Main detector components:

- Magnetic spectrometer (4 DCHs): 4 views/DCH: redundancy \Rightarrow efficiency; used in trigger logic; $\Delta p/p = 1.0\% \oplus 0.044\%^*p$ [p in GeV/c].
- Hodoscope

fast trigger;

precise time measurement (150ps).

- Liquid Krypton EM calorimeter (LKr) High granularity, quasi-homogeneous $\sigma_{\rm E}/{\rm E} = 3.2\%/{\rm E}^{1/2} \oplus 9\%/{\rm E} \oplus 0.42\%$ $\sigma_{\rm x} = \sigma_{\rm y} = (0.42/{\rm E}^{1/2} \oplus 0.06) {\rm cm}$ [E in GeV]. (0.15cm@10GeV).
- Hadron calorimeter, muon veto counters, photon vetoes.

Introduction: K_{e4} amplitude

$K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}v$ amplitude is a product of weak leptonic current and (V-A) hadronic current:

$$\frac{G_w}{\sqrt{2}} V_{us}^* \bar{u}_v \gamma_\lambda (1 - \gamma_5) v_e \langle \pi^+ \pi^- | V^\lambda - A^\lambda | \mathbf{K}^+ \rangle, \quad \text{where}$$
$$\langle \pi^+ \pi^- | A^\lambda | \mathbf{K}^+ \rangle = \frac{-i}{m_K} \left(F(\mathbf{p}_{\pi^+} + \mathbf{p}_{\pi^-})^\lambda + G(\mathbf{p}_{\pi^+} - \mathbf{p}_{\pi^-})^\lambda + R(\mathbf{p}_e + \mathbf{p}_v)^\lambda \right)$$

R enters in the decay rate multiplied by lepton mass squared => this term is negligible for K_{e4}

and

$$\langle \pi^+ \pi^- | V^{\lambda} | \mathbf{K}^+ \rangle = \frac{-H}{m_K^3} \epsilon^{\lambda \mu \rho \sigma} (\mathbf{p}_{\pi^+} + \mathbf{p}_{\pi^-} + \mathbf{p}_e + \mathbf{p}_{\nu})_{\mu}$$
$$\times (\mathbf{p}_{\pi^+} + \mathbf{p}_{\pi^-})_{\rho} (\mathbf{p}_{\pi^+} - \mathbf{p}_{\pi^-})_{\sigma}.$$

In the above expressions, **p** is the four-momentum of each particle, *F*, *G*, *R* are three axial-vector and *H* one vector complex form factors with the convention $\epsilon^{0123} = 1$.

F,*G*,*R*,*H* form factors (FF) depend on decay Lorentz invariants, so their parameterisation (or some tabulation) is needed to describe data.

Ke4 decays : formalism of $(\pi^+\pi^-)$ and $(\pi^0\pi^0)$ modes

Partial Wave expansion of the amplitude into s and p waves (Pais-Treiman 1968) + Watson theorem (T-invariance) for δ_{ℓ}^{I} $\delta_{0}^{0} \equiv \delta_{s}$ and $\delta_{1}^{1} \equiv \delta_{p}$ F, G = 2 complex Axial Form Factors F = F_s e^{i\deltas} + F_p e^{id\deltap} COS (θ_{π}) G = G_p e^{i\deltag} H = 1 complex Vector Form Factor H = H_p e^{i\deltah}

Reduces to the single Fs Form Factor

Map the distributions of the Ca.Ma. variables in the five-dimensional space with 4 real Form factors and only one phase shift, assuming identical phases for the pwave Form Factors F_p , G_p , H_p

Dalitz plot density proportional to Fs²

The fit parameters (real) are : $F_s \quad F_p \quad G_p \quad H_p \text{ and } \delta = \delta_s - \delta_p$ reduce to the only Fs Ke4(+-) : $K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}v$

dominant) and checked by MC

$\pi\pi$ scattering lengths measurement from phase shift δ (M_{$\pi\pi$}) = δ_s - δ_p [Eur.Phys. C70 (2010) 635]

Form factors (normalized to f_s) [Eur.Phys. C70 (2010) 635]

Series expansion with:

- $q^2 = S_{\pi} / (4m_{\pi}^2) 1$
- $S_e/(4m_{\pi}^2)$

 $F_s^2 = f_s^2 (1+f_s' f_s q^2 + f_s' f_s q^4 + f_e' f_s S_e / 4m_{\pi}^2)^2$

 $G_{p} = f_{s}(g_{p}/f_{s} + g'_{p}/f_{s}q^{2})$

K_{e4} formfactors: fit results

	value	stat	syst
f_s'/f_s	= 0.152	$\pm 0.007_{\text{stat}}$	$\pm 0.005_{syst}$
f_s''/f_s	= -0.073	$\pm 0.007_{stat}$	$\pm 0.006_{syst}$
$f'_{\rm e}/f_s$	= 0.068	$\pm 0.006_{stat}$	$\pm 0.007_{\rm syst}$
f_p/f_s	= -0.048	$\pm 0.003_{stat}$	$\pm 0.004_{syst}$
g_p/f_s	= 0.868	$\pm 0.010_{stat}$	$\pm 0.010_{\text{syst}}$
g'_p/f_s	= 0.089	$\pm 0.017_{\rm stat}$	$\pm 0.013_{syst}$
h_p/f_s	= -0.398	$\pm 0.015_{stat}$	$\pm 0.008_{\text{syst}}$
	correlations		
	f_s''/f_s	$f'_{\rm e}/f_s$	g_p/f_s
f_s'/f_s	-0.954	$0.080 \qquad g'_p/f_s$	-0.914
f_s''/f_s		0.019	

9

K_{e4}(+ −) branching fraction measurement [PLB 715 (2012) 105] K[±]→π⁺π⁻νe[±] / K[±]→π⁺π⁻π[±]

 $Br(K_{e4}(+-)) = (4.257 \pm 0.004_{stat} \pm 0.016_{syst} \pm 0.031_{ext}) \times 10^{-5}$ (PDG 2012: $(4.09 \pm 0.10_{tot}) \times 10^{-5}$)

Absolute form factor value (for $|V_{us}| = 0.2252 \pm 0.0009$ from PDG 2012) : F_s(q2=0,Se=0) = 5.705± 0.003_{stat} ± 0.017_{syst} ± 0.031_{ext}

Ke4(00) : $K^{\pm} \rightarrow \pi^{0} \pi^{0} \nu e^{\pm}$

 $\mathbf{K}^{\pm} \rightarrow \pi^{0} \pi^{0} \mathbf{v} e^{\pm}$ relative to $\mathbf{K}^{\pm} \rightarrow \pi^{0} \pi^{0} \pi^{\pm}$ with Br=(1.761±0.022)%

Combined with charged track (Z_3 at CDA to beam line) if: • $D_7 = |Z_3 - Z_n| < 800$ cm

$K_{e4}(00)$ signal selection

- Assign m_{π} to the charged track, plot P_t (to beam) vs invariant mass
- Cut $K_{3\pi}$ events with a small P_t and ~ kaon PDG mass
- Cut S_e < 0.25 (GeV/c²)² ,rejects 0.5% candidates (mis-reconstructed tracks in fake electrons and accidentals)
 No extra close cluster E > 3 GeV

Elliptic cuts separate ~93 x 10⁶ K_{3 π} from ~65000 K_{e4} candidates

Electron identification:

- LKr cluster associated to track is in-time (10 ns) with track and $2\pi^0$
- E(LKr)/P(DCH) ~ 1 [0.9-1.1]

• Extra rejection using a dedicated discriminating variable. It is a linear combination of variables related to shower properties and trained on real and fake electrons from data.

- Fake-electron background (K $\rightarrow \pi^0 \pi^0 \pi^+$) 0.65 %
- Decay electron background (K $\rightarrow \pi^0 \pi^0 \pi^+; \pi \rightarrow e\nu$) 0.12 % 0.23 %
- Accidental track or photon

Total 1.00 %

Kaon momentum reconstruction imposing energy-momentum conservation and zero neutrino mass.

Form Factor measurement

Because of two identical particles in the final state, the $\pi^0 \pi^0$ system cannot be in a l=1 state and only the S-wave term contributes to the partial wave expansion of the form factors (F_s).

The differential rate depends only on 3 kinematic variables:

$$d^{3}\Gamma = \frac{G_{F}^{2}|V_{us}|^{2}}{2(4\pi)^{6}m_{K}^{5}} \rho(S_{\pi}, S_{e}) J_{3}(S_{\pi}, S_{e}, \cos\theta_{e}) \times dS_{\pi} dS_{e} d\cos\theta_{e}$$
$$J_{3} = |XF_{s}|^{2}(1 - \cos 2\theta_{e}) = 2|XF_{s}|^{2}\sin^{2}\theta_{e}$$

where $\rho(S_{\pi}, S_{\rm e})$ is the phase space factor $X\sigma_{\pi} (1 - z_{\rm e})$, with $X = \frac{1}{2}\lambda^{1/2}(m_K^2, S_{\pi}, S_{\rm e})$, $\sigma_{\pi} = (1 - 4m_{\pi}^2/S_{\pi})^{1/2}$, $z_{\rm e} = m_{\rm e}^2/S_{\rm e}$, and $\lambda(a, b, c) = a^2 + b^2 + c^2 - 2(ab + ac + bc)$.

No F_s dependence with θ_e angle, only to be studied in the (S π ,Se) plane

- Density of events is proportional to $|F_s|^2$
- Subtract background in the 2d-plane
- Compare to the same distribution from simulation including acceptance, resolution, trigger efficiency, radiative corrections and kinematic factors but using a constant form factor.

• Define a grid of 10 equal population bins in S_{π} above the $2m_{\pi^+}$ threshold and two equal population bins below (10 bins with 6000 events each, 2 bins with 3000 events each), 10 bins in S_e (300 or 600 events in 2d-bins)

Form Factor measurement: 2d plot (S_{π} , S_{e})

K_{e4} candidates — background ~65000 events

 $\rm K_{e4}$ simulated with constant $\rm F_{s}$ 100 millions simulated

Fit procedure

We observe the cusp-like behavior of Form Factor S_{π} dependence with a threshold at $4m^{2}$

Define the dimensionless variables:

X = q² = $S_{\pi}/(4m_{\pi^{+}}^{2}) - 1$ Y = $S_{e}/(4m_{\pi^{-}}^{2})$

And 2d fit function:

$$\begin{array}{ll} G = N \left(1 + aX + bX^{2} + cY \right)^{2} & X > 0 \\ G = N \left(1 + d(|X|/(1+X))^{1/2} + cY \right)^{2} & X < 0 \end{array}$$

To minimize:

 $(F_s/f_s)^2/N$

Form Factor measurement

Error	δа	δb	δς	δd
Trigger simulation	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Background	0.0140	0.0122	0.0062	0.0164
Radat. simulation	0.0037	0.0035	0.0033	0.0013
Systematic error	0.014	0.013	0.007	0.016

*K*_{e4}(00) Form Factor interpretation by analogy

1-loop calculation for 3π decays: Cabibbo, PRL 93(2004)121801

Above threshold: $|M|^2 = |MO + i M1|^2 = MO^2 + M1^2$ Below threshold: $|M|^2 = |MO + M1|^2 = MO^2 + M1^2 + 2 MO M1$ $q2 = S\pi/4m\pi^{+2} - 1 \sigma\pi = \int (4m\pi^{+2}/S\pi - 1) = \int (|q2|/(1+q2))$

M0 = unperturbed amplitude: Fs = fs (1+ a q2 + b q4 + c Se/4m π +²) M1 = scattering amplitude: - 2/3 (a0-a2) fs $\int (|q2|/(1+q2))$

We don't plan to extract a0 and a2 from $K_{e4}(00)$ data, so precise interpretation is not necessary to finish the work.

K_{e4}(00) : Br measurement

Br is measured in independent subsamples and then combined.

 $N(K_{e4} \text{ candidates}) = 65210$ N(bkg) = 651 $N(K_{3\pi} \text{ candidates}) = 93.54 \text{ M}$

Acceptances: $A(K_{e4}) = 1.926(1)\%$ $A(K_{3\pi}) = 4.052(2)\%$ Trigger efficiency $\epsilon(K_{e4}) = 96.06(3)\%$, $\epsilon(K_{3\pi}) = 97.42(0)\%$ Normalization: Br $(K_{3\pi}) = (1.761 \pm 0.022)\%$ - source of external error

Systematic Uncertainty (% to Br value)

Acceptance	0.16
Form Factor	0.17
Background	0.25
Trigger cut	0.04
Rad. Corr.	0.19
Simulation stat	0.07
Trigger efficiency	0.03
Total	0.40

$$Br(K_{e4}^{00}) =$$

 $(2.552 \pm 0.010_{stat} \pm 0.010_{syst} \pm 0.032_{ext})10^{-5}$

PDG 2012 : (2.2 ± 0.4) 10⁻⁵

Absolute form factor value (no radiative corrections, for $|V_{us}| = 0.2252 \pm 0.0009$ from PDG 2012) :

 $(1+\delta_{EM}) F_{s}(q2=0,Se=0)$ = 6.079± 0.012_{stat} ± 0.027_{syst} ± 0.046_{ext} 18

Ke4 Br measurement in statistically independent subsamples

all in units of 10-5

Phys.Lett. B715 (2012) 105:

```
K_{e4}(+-) normalized to K_{3\pi}(+-)
```

 $(4.257 \pm 0.004 \pm 0.016 \pm 0.031) =$ Stat Syst Ext

(4.257 ± 0.035) 0.8% rel.err.

<u>Final:</u>

 $K_{e4}(00)$ normalized to $K_{3\pi}(00)$

 $(2.552 \pm 0.010 \pm 0.010 \pm 0.032) =$ Stat Syst Ext

(2.552 ± 0.035) 1.4% rel.err.

ChPT: $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$

NA48/2 2004 data (3 days special minimum bias run)
NA62 (R_K phase) 2007 data (3 month control min. bias trigger downscaled by 20)

Signal and reference channel invariant mass plots for NA62 run (2007)

K[±]→π[±]γγ :*z*spectrum Data/MC

Model-independent measurement of branching ratios in z bins

Model-independent branching ratio:

 $B_{MI}(z > 0.2) = (0.965 \pm 0.061_{stat} \pm 0.014_{syst}) \times 10^{-6}$

Charge asymmetry: $(B_{MI}^{+}-B_{MI}^{-})/(B_{MI}^{+}+B_{MI}^{-}) = -0.03 \pm 0.07$

Combined NA48/2 and NA62 final result, based on 381 events (10 times the old world sample):

 \hat{c} for $O(p^4) = 1.72 \pm 0.20_{stat} \pm 0.06_{syst}$ \hat{c} for $O(p^6) = 1.86 \pm 0.23_{stat} \pm 0.11_{syst}$

Both formulations for this *z* spectrum predict very similar Br values.

Measured Br for $O(p^6) = (1.003 \pm 0.051_{stat} \pm 0.024_{syst}) \cdot 10^{-6}$

Summary

- 1.11 millons of reconstructed $K^{\pm} \rightarrow \pi^{+}\pi^{-}\nu e^{\pm}$ (K_{e4}(+-)) and ~65000 of $K^{\pm} \rightarrow \pi^{0}\pi^{0}\nu e^{\pm}$ (K_{e4}(00)) decays (2003+2004 data).
- Improved branching fractions: Br K_{e4}(+-) = (4.257 ± 0.035) 10⁻⁵ [Phys.Lett. B715 (2012) 105] (3 times better/PDG) Br K_{e4}(00) = (2.552 ± 0.035) 10⁻⁵ [CERN-PH-EP-2014-145, Accepted by JHEP] (10 times better/PDG)
- $K_{e4}(00) F_s$ form factor is compatible with the $K_{e4}(+-)$ one above $2m_{\pi^+}$ threshold. Deficit below can be due to $\pi\pi$ final state charge exchange scattering.
- Final results for $\pi^{\pm}\gamma\gamma$ based on 381 events \hat{c} for O(p⁴) = 1.72±0.20_{stat}±0.06_{syst} \hat{c} for O(p⁶) = 1.86±0.23_{stat}±0.11_{syst} Br($\pi^{\pm}\gamma\gamma$) (z >0.2) = (0.965±0.063) \cdot 10⁻⁶, charge asymmetry: -0.03 ± 0.07 Br($\pi^{\pm}\gamma\gamma$) for O(p⁶) = (1.003±0.056) \cdot 10⁻⁶