

Precision tests of the Standard Model with Kaon decays at CERN

Chris Parkinson, on behalf of the NA62 collaboration

HQL2014

Kaon physics at CERN

- What three Kaon 'decay-in-flight' experiments: NA48/2, NA62_{RK}, NA62
- Where the North Area (NA) at CERNs Prevessin site
- Who collaborations of 100-200 scientists
- Why to search for new physics (effects) in Kaon decays!
 - The NA62 primary physics goal is $K^+ \rightarrow \pi^+ \nu \nu$. See talk by Michal Koval

Chris Parkinson

HQL2014

Precision tests of the Standard Model with Kaon decays at CERN

- 1. NA48/2 data taking in 2003-2004, using the NA48/2 detector
- 2. NA62_{RK} data taking in 2007-2008, using the NA48/2 detector with optimisations for a measurement of R_K
- 3. NA62 begins data taking in 2014 with new detector

Precision measurement of R_{K} at NA62_{RK}

The ratio R_{K}

• Precise test of lepton universality in $K^+ \rightarrow \ell^+ v$

Value of R_K can be precisely calculated in the SM

- Large contribution from Lepton Flavour Violating (LFV) loop diagrams
 - Sensitivity to slepton mixing

$$R_{K}^{\rm LFV} \approx R_{K}^{\rm SM} \left[1 + \frac{m_{K}^{4}}{m_{H}^{4}} \frac{m_{\tau}^{2}}{m_{e}^{2}} |\Delta_{R}^{31}|^{2} \tan^{6}\beta \right] \sim 1\%$$

from **PRD 74 (2006) 011701**

The NA48/2 and NA62_{RK} experiments

• Kaon yields:

 $NA62_{RK}$: ~10¹⁰ decays in fiducial volume NA48/2 : ~10¹¹ decays in fiducial volume

Select K⁺ → ℓ⁺ν with a MB trigger
 K_{µν}: 1 track event, downscaled by 1/150
 K_{ev}: 1 track event with LKr energy deposit
 Event rate of 1 MHz down to 10 kHz

7

 R_{κ} at NA62_{RK}

Background: B/(S+B)=(10.95±0.27)%

World's most precise measurement of R_K by NA62_{RK}

 $\begin{array}{l} {\sf R}_{\sf K} = 2.488(7)_{\rm st}(7)_{\rm sy} \times 10^{-5} \\ = 2.488(10) \times 10^{-5} \\ 0.4\% \ {\sf precision} \end{array} \qquad \begin{array}{l} {\sf \Delta}_{\sf r} = 0.011 \pm 0.011 \\ \end{array} \\ \begin{array}{l} {\sf PLB \ 719 \ (2013) \ 326} \end{array}$

R_{K} at NA62_{RK}

Eur. Phys. J. C64 (2009) 627

- 1. Considerable improvement over PDG2008 and KLOE (2009)
- 2. Stringent, model-independent constraints are imposed

Searches for 1. Heavy Neutral Leptons 2. Dark Photon with Kaon decays

Heavy Neutral Leptons

- The **SM** contains three massless, left-handed neutral leptons (neutrinos)
- Since observation of neutrino oscillations, we know that neutrinos are massive. Require RH neutrinos
- Many models exist that incorporate RH neutrinos
- In the vMSM*, three RH neutrinos are added
 - N₁ is light *O*(few KeV)
 - $N_{2,3}$ are O(100 MeV to few GeV)
- This model can account for:
 - 1. Matter-antimatter asymmetry
 - 2. Dark Matter (N₁)
 - 3. Neutrino mixing
 - * [PLB 620 17-26], [PLB 631 151-156]

Three Generations

Chris Parkinson

HQL2014

Precision tests of the Standard Model with Kaon decays at CERN

Heavy Neutral Leptons I

- For a Neutrino with mass $m_\pi \lesssim m_
 u \lesssim m_K$
- Two distinct searches, depending on HNL lifetime τ_N
- 1. Long lifetime HNL escapes detector
- **Peak** in $K^+ \rightarrow \ell^+ \nu$ missing mass

Ongoing analysis of the NA62_{RK} data

Heavy Neutral Leptons II

- For a Neutrino with mass $m_\pi \lesssim m_
 u \lesssim m_K$
- Two distinct searches, depending on Neutrino lifetime τ_N
- 2. Short lifetime HNL decays within detector
- Fully reconstruct decay. No secondary vertex if $\tau_N < 10 \text{ ps}$
- Several final states available , e.g. $K^+ \rightarrow \mu^+ \mu^+ \pi^-$ Lepton Number Violation! $K^+ \rightarrow e^+ e^+ \pi^ K^+ \rightarrow \mu^+ e^+ \pi^ K^+ \rightarrow \mu^+ \mu^+ e^- \nu$

Heavy Neutral Leptons II

Dark Photons

- With $\mathcal{B}(K^+ \to \pi^+ \pi^0) \sim 20\%$, Kaon decays produce a huge number of π^0 , providing access to range of exotic π^0 decays
- E.g. a dark photon* that is only visible due to mixing with the SM photon
- Expect contributions of **dark photon** to $\pi^0 \rightarrow \gamma ee$ decays

• Ongoing analysis of the NA48/2 data

Chris Parkinson

HQL2014

The NA62 Experiment

The NA62 Experiment

Kaon flux expected ~ 60x higher than NA48/2 Expect ~ 10^{13} *K*⁺ decays in fiducial volume in 2 years

The NA62 Trigger

- The particle flux of ~ 10 MHz demands a highly selective trigger
- Split the trigger into three stages:
- L0 Trigger: Hardware (FPGA). Input rate: 10MHz, Output rate: 1MHz
 - Around 200kHz required for $K^+ \rightarrow \pi^+ \nu \nu$ trigger
 - Leaves 800kHz for (other studies + control channels)
 ~ few 100 kHz for exotic decay program
- L1 Trigger: Software (Single detector). Output rate: ~100kHz
- L2 Trigger: Software (Full information). Output rate: ~ few kHz
- Next slides: Outline a prospective L0 trigger strategy

The NA62 L0 Trigger

- The RICH : R_N primitive
 - Number of hit RICH PMTs
 - $R_4 \rightarrow single track$
 - $R_{10} \rightarrow$ multiple tracks
- The HODO: Q₁, Q_x primitives
 - Q₁: One HODO quadrant with coincident hits
 - \rightarrow single track
 - Q_X: Coincident hits in opposite HODO quadrants
 → multiple track from Kaon decay
- The LKr : E₁₀ primitive
 - E₁₀: 10 GeV deposited in LKr

The NA62 L0 Trigger

- The muon rate is ~ 14 MHz
- Contributions from
 - Beam halo: 4 MHz
 - $\pi^+ \rightarrow \mu^+ \nu$ decays in the beam : 3 MHz in single 'inner' pad
- The MUV3 : MO_N primitives
 - MO₁: Hit in one outer MUV3 pad
 - MO₂: Coincident hits in two outer MUV3 pads
 - MO₂ trigger rate dominated by accidental coincidences, despite σ_t ~ 100ps
- **NB:** $!M_1$: Muon veto condition for $K^+ \rightarrow \pi^+ vv$

Chris Parkinson

HQL2014

The NA62 L0 Trigger

- General minimum bias triggers, e.g. monitoring the number of K+ decays
 - Single track (ST) : F[R₄ * Q₁ / 1000]
 - Multiple track (MT) : F[R₁₀ * Q_X / 100]
- For decay with substantial rates, lacking distinctive signatures, e.g. $K^+ \rightarrow e^+ v$
 - Track + EM energy (TE) : F[R₄ * Q₁ * E₁₀ / 50]
- Searches for LNV, rare decays and the dark photon, e.g. $K^+ \rightarrow \mu^+ \mu^+ \pi$, $K^+ \rightarrow e^+ e^+ \pi^-$
 - Dielectron (2E) : F[R₁₀ * Q_X * E₁₀ / 10]
 - Dimuon (2M) : F[R₁₀ * Q_X * MO₂]
- Search for LFV decays, and HNLs, e.g. $K^+ \rightarrow \pi^+ \mu^+ e^-$
 - Muon+tracks+EM energy (MTE) : $F[R_{10} * Q_X * MO_1 * E_{10}]$

The total rate from the above L0 triggers ~ few 100 kHz

 $RICH : R_4, R_{10}$ $RICH : Q_X : MO_1 : Q_1, Q_X$ $RICH : R_4, R_{10}$ $HODO : Q_1, Q_X$ $RICH : R_4, R_{10}$ $RICH : R_4, R_{10}$

Precision tests of the Standard Model with Kaon decays at CERN

Physics prospects for NA62

Assume ~ 1% acceptance (pessimistic), no trigger downscaling Single Event Sensitivity = 1 / (N_{K+} * acceptance)

Decay	Physics Trigger		NA62 Prospects
R _K	LU	TE	x2 better
$\pi^+\mu^+e^-$	LFV	MTE	$\sim \! 10^{-11}$
$\pi^+\mu^-e^+$	LFV	MTE	$\sim \! 10^{-11}$
$\pi^{-}\mu^{+}e^{+}$	LNV	MTE	${\sim}10^{-11}$
$\pi e^+ e^+$	LNV	2E	${\sim}10^{-11}$
$\pi^{-}\mu^{+}\mu^{+}$	LNV	2M	$\sim \! 10^{-11}$
μve ⁺ e ⁺	LNV/LFV	2E	$\sim \! 10^{-11}$
e¯νμ ⁺ μ ⁺	LNV	2M	$\sim \! 10^{-11}$
$\pi^{+}e^{+}e^{-}, \pi^{+}\mu^{+}\mu^{-}$	Rare, γ_D	2E/2M	10 ⁴ events
$\pi^+\gamma \mathrm{e}^+\mathrm{e}^-,\pi^+\gamma\mu^+\mu^-$	Rare	2E/2M	$10^{2}(10)$ events
$\pi^{+}\pi^{0}e^{+}e^{-}, \pi^{+}\pi^{0}\mu^{+}\mu^{-}$	Rare	2E/2M	10^3 (few) events
e ⁺ νμ ⁺ μ ⁻ , μ ⁺ νμ ⁺ μ ⁻	Rare	2M	10^3 events
$\pi^+ X^0$	New particle	ST	~10 ⁻¹¹
$\pi^+\chi\chi$	New particle	ST	$\sim \! 10^{-11}$
$\pi^+\pi^+e^-\nu$	$\Delta S \neq \Delta Q$	MTE	$\sim \! 10^{-11}$
$\pi^+\pi^+\mu^-\nu$	$\Delta S \neq \Delta Q$	MT	$\sim \! 10^{-11}$
$\pi^+\gamma$	Ang. Mom.	TE	$\sim \! 10^{-11}$
μ ⁺ N, N→νγ	HNL	TE	$\sim \! 10^{-11}$
$N \rightarrow \mu^+ \rho^-, \rho^- \rightarrow \pi^+ \pi^0$	HNL	MTE	
$\pi^+\gamma\gamma$	χPT	TE	10^5 events
$\pi^0\pi^0e^+v$	χPT	TE	10^6 events
$\pi^0\pi^0\mu^+\nu$	χPT	TE	10^5 events

Chris Parkinson

HQL2014

Precision tests of the Standard Model with Kaon decays at CERN

Physics prospects for NA62

	Source	B/(S+B)	חוסו	Source	B/(S+B)
	$\frac{K_{\mu 2}}{K_{\mu 2}}$	$(5.64\pm0.20)\%$. RICH PID	<u>Κ_{µ2}</u>	(5.64±0.20)%
	<u>к_{µ2} (µ→е)</u>	(0.26±0.03)%		<u>К_{µ2} (µ→е)</u>	(0.26±0.03)% 🗘 0.19
K "	$K_{e2\gamma}$ (SD)	(2.60±0.11)%	Hermetic	$K_{e2\gamma}$ (SD)	(2.60±0.11)%
K	K _{e3(D)}	(0.18±0.09)%	photon	K _{e3(D)}	(0.18±0.09)%
	$K_{2\pi(D)}$	(0.12±0.06)%	vetoes	$K_{2\pi(D)}$	(0.12±0.06)%
	Opposite sign K	(0.04±0.02)%	_	Opposite sign K	(0.04±0.02)%
	Beam halo	(2.11±0.09)%	Precise timing	Beam halo	(2.11±0.09)%
	Total	(10.95±0.27)%	U	Total	(10.95±0.27)% ~ 0.1
K +-	$\rightarrow \mu^+ \mu^+ \pi^-$	⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ 	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	$\pi^{-}\mu^{+}\mu^{+}$ invariant and expected due (270 vs 120 MeV hass resolution 1eV/c ²)	Signal region (±30) 0.48 0.5 0.52 0.54 ht mass, GeV/c ²
	Chris Parkinson	HQL2014 Prec	ision tests of the Sta	andard Model with Ka	aon decays at CERN

Physics prospects for NA62

Expect ~2x10¹² π^0 decays in FV in 2 years ($K^+ \rightarrow \pi^+ \pi^0 \sim 20\%$) Assume ~ 1% acceptance (conservative), no trigger downscaling Single Event Sensitivity = 1 / ($N_{\pi 0}$ * acceptance)

Decay	Physics	Trigger	NA62 Prospects
$\pi^0 \rightarrow 3\gamma$	C violation	TE	~10-10
$\pi^0 { ightarrow} 4\gamma$	New scalars	TE	~10-10
$\pi^0 \rightarrow inv.$	LFV, HNL	$\pi^+ \nu u$	~10-9
π ⁰ →eμ	LFV	MTE	~10-10
$\pi^0 \rightarrow 4e$	New vectors	2 E	10 ⁵ events
$\pi^0 \rightarrow ee\gamma$	Dark photon	2 E	10 ⁷ events

Summary

- 1. Several interesting extensions of the SM are being probed with precision measurements of Kaon decays at CERN, using the NA48/2 and NA62_{RK} data.
- 2. The NA62 experiment will start taking data in 2014.
- 3. The flexible L0 trigger scheme that will allow study of a large number of new physics signatures
- 4. Many existing measurements can be improved by orders of magnitude

Stay tuned for physics results!

Thank you

R_{K} at NA62_{RK}

The crucial aspect of the analysis is to isolate K_{ev} decays

HQL2014

Chris Parkinson

Heavy Neutral Leptons

- The **SM** contains three massless, left-handed neutral leptons (neutrinos)
- Conspicuous lack of RH neutrino ?
- Since observation of neutrino oscillations, we know that neutrinos are massive ...
- Mass term for neutrino requires RH neutrinos

Heavy Neutral Leptons

- The SM contains three massless, left-handed neutral leptons (neutrinos)
- Many models exist that incorporate RH neutrinos
- In the vMSM*, three RH neutrinos are added
 - N₁ is light O(few KeV)
 - $N_{2,3}$ are O(100 MeV to few GeV)
- This model can account for:
 - 1. Matter-antimatter asymmetry
 - **2.** Dark Matter (N_1)
 - 3. Neutrino mixing

Chris Parkinson

HQL2014

mass

name →

Quarks

-eptons

charge $\rightarrow \frac{2}{3}$

2.4 MeV

up

<0.0001 eV <mark>~10 kev</mark>

electron sterile neutrino neutrino

0.511 MeV

electron

4.8 MeV

dowr

Three Generations of Matter (Fermions) spin ½

 $\frac{2}{3}$

-¹∕3

Ш

1.27 GeV

charm

104 MeV

strange

~GeV

neutring

105.7 MeV

muon

~0.01 eV

neutrino

Ш

171.2 GeV

top

4.2 GeV

bottom

1.777 GeV

し tau

~0.04 eV

neutrin

Heavy Neutral Leptons I

- For a Neutrino with mass $m_\pi \lesssim m_
 u \lesssim m_K$
- Two distinct searches, depending on HNL lifetime τ_N
 - 1. Long lifetime HNL escapes detector

Peak in $K^+ \rightarrow \ell^+ \nu$ missing mass

Such a search is proceeding with the NA62_{RK} data

Heavy Neutral Leptons II

- For a Neutrino with mass $m_\pi \lesssim m_
 u \lesssim m_K$
- Two distinct searches, depending on Neutrino lifetime
 - 2. Short lifetime HNL decays within detector

Fully reconstruct decay. No secondary vertex if $\tau_N < 10 \text{ ps}$

29

• Several final states available, for example: $K^+ \rightarrow \mu^+ \mu^+ \pi^-$

Heavy Neutral Leptons II

- For a Neutrino with mass $m_\pi \lesssim m_
 u \lesssim m_K$
- Two distinct searches, depending on Neutrino lifetime
 - 2. Short lifetime HNL decays within detector

Fully reconstruct decay. No secondary vertex if $\tau_N < 10 \text{ ps}$

Expect 10x better measurement from re-analysis of the NA48/2 data

Chris Parkinson

HQL2014

Precision tests of the Standard Model with Kaon decays at CERN

Dark Photons

- Question: Why should dark matter be so simple (one or two particles) when the SM is so rich ?
- Consider a 'dark sector' of particles, that can communicate with the SM particles only via a messenger particle: the dark photon, U
- **U boson mixes** with the SM photon Expect contributions of **U boson** to $\pi^0 \rightarrow \gamma ee$ decays

Such a search is being performed using the NA62 data collected in 2007

Chris Parkinson

HQL2014

Precision tests of the Standard Model with Kaon decays at CERN

The NA62 Trigger

- L0 Trigger: Hardware (FPGA). Input rate: 10MHz, Output rate: 1MHz
 - Around 200kHz required for $K^+ \rightarrow \pi^+ \nu \nu$ trigger
 - About 800kHz remains for (other studies + control channels)

~ few 100 kHz for exotic decay program

- L1 Trigger: Software (Single detector). Output rate: ~100kHz
- L2 Trigger: Software (Full information). Output rate: ~ few kHz

L0 Trigger requirements

- 1. Trigger on variety of exotic signatures, in multiple decay modes
 - LFV, LNV signatures, enhancements from dark photon, HNL, and more ...
- 2. Charge-blind: Accept rare and LNV decays with same trigger
- 3. Not based on vertex topology: Accept HNL decays with $\tau_N > 10ps$
- 4. Use 'fast' detectors for timing: RICH, CHOD, MUV3 have $\sigma_t \sim 100 \text{ps}$
- 5. Simple and robust criteria