

Prospects for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ observation at CERN in NA62

Michal Kovaľ

Comenius University Bratislava

on behalf of the NA62 Collaboration

XIIth International Conference on Heavy Quarks and Leptons 27. 8. 2014, Mainz, Germany

OUTLINE

• $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay overview

- Theoretical framework
- Experimental status
- New physics sensitivity
- NA62 experiment at CERN
 - Beamline
 - Signal signature, main backgrounds
 - The NA62 detector
 - Expected sensitivity

Conclusions

SM THEORETICAL FRAMEWORK

• FCNC loop process, highly CKM suppressed, theoretically clean

• Dominated by short-distance contribution (BR $\sim |V_{ts}^* V_{td}|^2$)

• SM prediction:

$$BR(K^+ \to \pi^+ \nu \bar{\nu}) = (7.81 \pm 0.75 \pm 0.29) \times 10^{-11}$$

Brod, Gorbahn, Stamou: PRD83(2011) 034030

 error: CKM parametric, dominated by V_{cb}
 error: theoretical, mostly LD corrections

- t quark contribution computed at NLO QCD and 2-loop EW corrections
- c quark loop contribution computed at NNLO QCD and NLO EW corr.
- Correction for LD contributions
- Hadronic matrix element related to $BR(K^+ \rightarrow \pi^0 e^+ \nu)$

CURRENT STATUS AND NEW PHYSICS SENSITIVITY

Current experimental result:

$$BR(K^+ \to \pi^+ \nu \bar{\nu}) = (1.73 \ ^{+1.15}_{-1.05}) \times 10^{-10}$$

BNL E787/E949: PRL101 (2008) 191802

- Based on 7 observed events
- Stopped kaon technique

New Physics Sensitivity:

- General Z' gauge boson model (FCNC at tree level)
 - Buras et al, JHEP 1302 (2013) 116
- Perfect probe of MSSM with non-Minimal Flavour Violation
 - Isidori et al, JHEP 0608 (2006) 064
- Still complementary to LHC searches

NA62 EXPERIMENT

Goal

- Branching ratio measurement of $K^+ \rightarrow \pi^+ \nu \bar{\nu}$
- 10 % measurement precision
- Collection of O(100) events in 2-3 years of data taking

Requirements

- Large statistics, at least 10¹³ K⁺ decays
 - high intensity kaon beam
 - $\sim 10\%$ signal acceptance
- Systematics control at % level
 - 10¹² background rejection (< 20% background)
 - at least 10% background measurement precision

Technique

- High momentum K^+ beam (75 GeV/c) with kaon decay in flight
- Low momentum π^+ selection ($p_\pi < 35 \text{ GeV/c})
 ightarrow$ large missing E

NA62 BEAMLINE

- Primary SPS protons (400 GeV/c)
- Protons on Be target: 3 × 10¹² / pulse
- Secondary hadronic beam, p = 75 GeV/c \sim 6% K^+ (others: π^+ , protons)
- Total rate at beam tracker: 750 MHz
- Rate downstream: 10 MHz
- Simultaneous operation with LHC

SIGNAL AND MAIN BACKGROUNDS

- Signal signature: one K^+ track, one π^+ track, **nothing else**
- Backgrounds:
 - 1. K^+ decay modes
 - 2. Accidental single track matched with a kaon like track
- Kinematic variable: $m_{miss}^2 = (P_K P_{\pi^+})^2$
 - Two m²_{miss} regions for event candidates are defined

8% of background not separated by kinematics

 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ in NA62

M. Koval - HQL 2014

GUIDING PRINCIPLES FOR THE NA62 DETECTORS

- 1. High intensity and precise timing (< 1 ns)
- 2. Good tracking detectors $\rightarrow K^+$ and π^+ momentum vectors
- 3. Hermetic veto detectors \rightarrow photons, muons
- 4. Particle identification \rightarrow kaons in the beam, π/μ separation

KTAG (CEDAR)

- Differential Cherenkov counter (CEDAR, from SPS)
- Extended external optics, new photo-detectors new electronics

- Beam K^+/π^+ separation
- 50 MHz kaon rate
- Time resolution $\sigma_{\rm T}$ < 100 ps
- < 1% pion mis-ID probability</p>
- > 95 % kaon tagging efficiency
- Suppression of background from accidental tracks ← interactions of beam particles along the beam line

GIGATRACKER

 Beam tracker for K⁺ momentum and time measurement

- Time resolution
 σ_T ~ 200 ps (per station)
- Momentum resolution $\sigma(P_K)/P_K = 0.2\%$
- Angular resolution $\sigma(\frac{dX, Y}{dZ}) = 15 \,\mu \text{rad}$

- 3 stations of Si pixel detectors $(300 \times 300 \,\mu\text{m}^2 \text{ pixel size})$
- 18000 pixels per station
- *X*/*X*0 < 0.5% per station

STRAW SPECTROMETER

• Charged tracks (π^+) reconstruction

- 4 straw chambers in vacuum
- 4 views in a chamber
- 4 planes of staggered tubes per view (9.6 mm radius mylar tubes, 2.1 m long)
- Dipole magnet with 265 MeV/c p_T kick
- X/X0 : 0.1% per view (< 2% total)
- Resolution
 - $\sigma(P)/P = 0.32\% \oplus 0.008 P [\text{GeV/c}]$
 - $\sigma(\frac{dX,Y}{dZ}) = 20 50 \,\mu\text{rad}$

PHOTON VETO SYSTEM

- $O(10^8) \pi^0$ rejection from $K^+ \rightarrow \pi^+ \pi^0$
- Selection of low energy charged pion $ightarrow {\it p}_{\pi^0} >$ 40 GeV/c
- Hermetic coverage up to 50 mrad, time resolution: $\sigma_{\rm T} <$ 1 ns

Large Angle Veto (LAV) 12 stations of lead-glass (from OPAL) 8.5 mrad $\leq \theta \leq$ 50 mrad

Liquid Krypton (LKr) EM calorim. from NA48 1 mrad $\leq \theta \leq$ 8.5 mrad

IRC - SAC calorimeters Shashlyk technology $\theta \leq 1 \text{ mrad}$

 K^+ ightarrow $\pi^+
u ar{
u}$ in NA62

PARTICLE ID: CALORIMETERS

- $\pi/\mu/e$ separation
- μ rejection factor $\sim 10^5$
 - LKr: EM, hadronic, MIP cluster ID
 - MUV1,2: hadronic, MIP cluster ID
 - MUV3: µ fast counter

MUV1+MUV2 MUV3

- MUV1,2:
 - Iron/scintillator sampling calorimeters
- MUV3:
 - Array of scintillating pads with PMs read-out
 - Time resolution: $\sigma_{\rm T} < 500 \ {\rm ps}$
 - To be used at Level-0 trigger

PARTICLE ID: RICH

- Additional π/μ separation
- μ rejection factor > 10² (up to 35 GeV/c)
- 14 GeV/c threshold for π^+
- 17 m long vessel filled with Ne (1 Atm)
- 20 mirror segments

- π^+ crossing time measurement
- Time resolution:
 σ_T < 100 ps
- To be used both at L0 trigger and offline

CHOD AND CHANTI

CHOD

- NA48 hodoscope
- Provides fast trigger signals (charged particles) σ_T < 1 ns
- 2 planes (horizontal + vertical) of 64 plastic scintillator strips

CHANTI (one station)

- Veto for charged particles produced by inelastic interactions in GTK3
- 6 scintillator stations in vacuum, each made of 2 planes (x,y)

TRIGGER AND DATA ACQUISITION

Reduction of 10 MHz K⁺ decay rate to 10 KHz

Multilevel Trigger System

- 1. FPGA based Level-0
 - synchronous signals to sub-detectors
 - decision based on digital primitives from fast detectors
 - latency: < 1 ms
- 2. PC based Level-1/2
 - asynchronous processing in the PC farm
 - L1: single detector information, lat. < 1 s
 - L2: all detector information, lat. < 30 s

NA62 SENSITIVITY

Decay	events / year
$K^+ ightarrow \pi^+ u ar{ u}$ [SM]	45
$igstar{} {\cal K}^+ o \pi^+ \pi^0$	5
$K^+ ightarrow \mu^+ u$	1
$K^+ ightarrow \pi^+ \pi^- \pi^+$	< 1
${\cal K}^+ o \pi^+ \pi^- {m e}^+ u$ + other 3-track decays	< 1
${\cal K}^+ o \pi^+ \pi^0 \gamma$ (IB)	1.5
${\cal K}^+ o \mu^+ u \gamma$ (IB)	0.5
${\cal K}^+ o \mu^+ ({m e}^+) \pi^0 u$, others	negligible
Total background	< 10

Nominal intensity: $4.5 \times 10^{12} \ K^+$ decays in the fiducial region / year Cut and count analysis without any optimization

 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ in NA62

CONCLUSIONS

- NA62 detector construction is almost complete
- 1st physics run starts on 6 October 2014 (lower beam intensity)
 - 2 months of data taking
 - Detector commissioning
 - Aiming to reach SM sensitivity
- Full intensity beam in 2015, 2016, 2017
- Many other rare kaon decays will be studied (see next talk)