

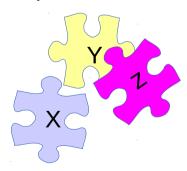
Search for exotic charmonium states

on behalf of the BABAR and BELLE Collaborations

August 25th, 2014 | Elisabetta Prencipe(*), Forschungszentrum Jülich (Germany) | HQL 2014, Mainz (Germany)

glied in der Helmholtz-Gemeinscha

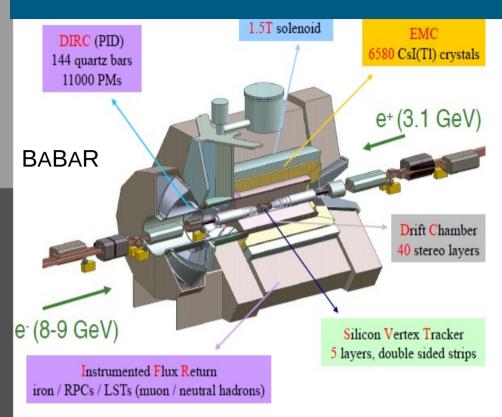
Introduction


- Exciting time to study exotic states using the full BABAR and BELLE dataset.
- How many charmonium(-like) states can we count?

So many! CERN Yellow Report http://arxiv.org/abs/hep-ph/0412158 unexpected but found, expected and not found, controversial claims...

- 2014: 50th anniversary of CP violation discovery. Much progress thanks to the B-factories!
- 2014: 11 years after the observation of the unexpected X(3872).

QUESTION: What have we understood?


- This talk is mainly focused on:
 - Analysis of the invariant mass J/ψω
 - Analysis of the invariant mass $J/\psi\phi$ more recent result

itglied in der Helmholtz-Gemeinschaft

The BABAR and BELLE detectors



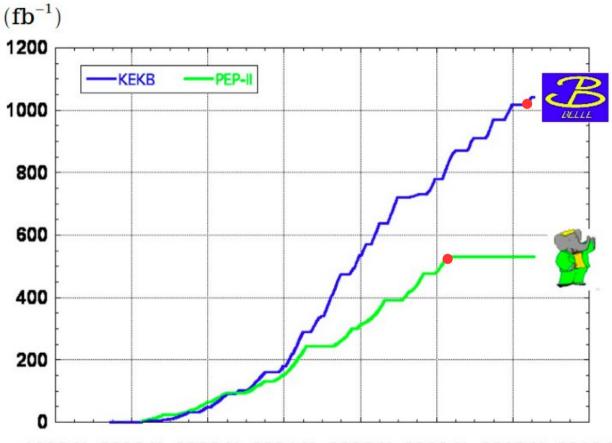
- Located at SLAC (California, USA)
- Runs: from 1999 to 2008
- e+e- asymmetric collider

$$-0.9 < \cos \theta^* < 0.85$$

operating at the c.m. energy of Y(4S), then Y(2S) and Y(3S).

Belle Detector

- Located at KEK (Japan)
- Runs: from 1999 to 2010
- e+e- asymmetric collider


$$-0.86 < \cos \theta < 0.95$$

operating at the c.m. energy of Y(4S), then Y(1S), Y(2S), Y(3S), Y(5S).

Mitglied in der Helmholtz-Gemeinschaft

The BABAR and BELLE luminosity JÜLICH

$> 1 \text{ ab}^{-1}$

On resonance:

Y(5S): 121 fb⁻¹ Y(4S): 711 fb⁻¹ $Y(3S): 3 \text{ fb}^{-1}$

 $Y(2S): 25 \text{ fb}^{-1}$

 $Y(1S): 6 \text{ fb}^{-1}$

Off reson./scan:

 $\sim 100 \text{ fb}^{-1}$

$513.7 \pm 1.8 \text{ fb}-1$

On resonance:

Y(4S): 424 fb⁻¹, 471 M Y(3S): 28 fb⁻¹, 122 M

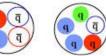
Y(2S): 14 fb⁻¹, 99 M

Off resonance: 48 fb^{-1}

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

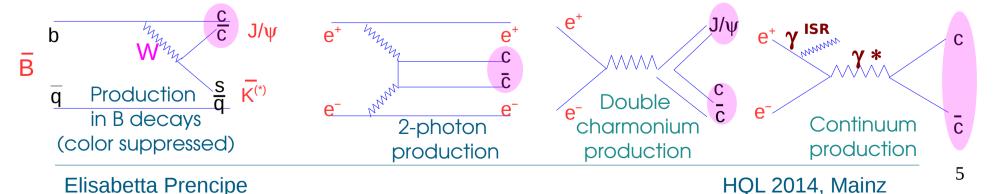
- Optimized for studies of CP violation
- High luminosity achieved ⇒ rare decay studies
- High production rate of $c\bar{c} \Rightarrow$ charmonium studies
- Run at $Y(nS) \Rightarrow$ bottomonium studies

itglied in der Helmholtz-Gemeinsch


Experimental approach

- Why should we look for new resonant states?
 - Elementary particles exist; then:
 - Mesons (2 quarks: one quark and one antiquark)
 - Baryons (3 quarks)
 - More complicated aggregations of matter: tetraquarks, hybrids, molecular states, and more...

Baryon Meson Tetrquark Pentaquark



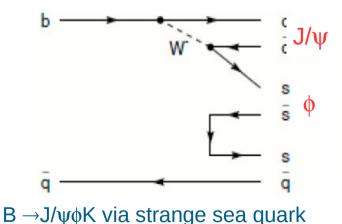
Baryonium Hybrid Glueball

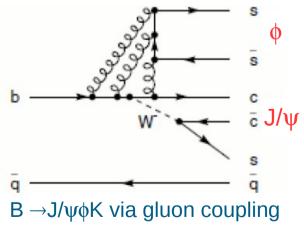
Need to understand these forms of aggregation of matter

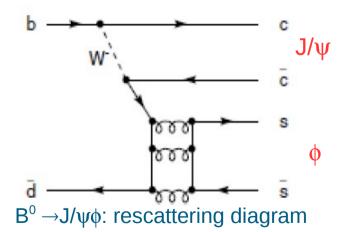
- Where shall we look for new resonant states?
 - Several theoretical approaches.
 - The systems of $J/\psi\pi\pi$, $J/\psi\pi\pi\pi^0$ prove to be rich sources of information: still under study.
 - What about J/ψKK (strangeness in charmonium)? Recently (partially) covered

Strangeness in Charmonium

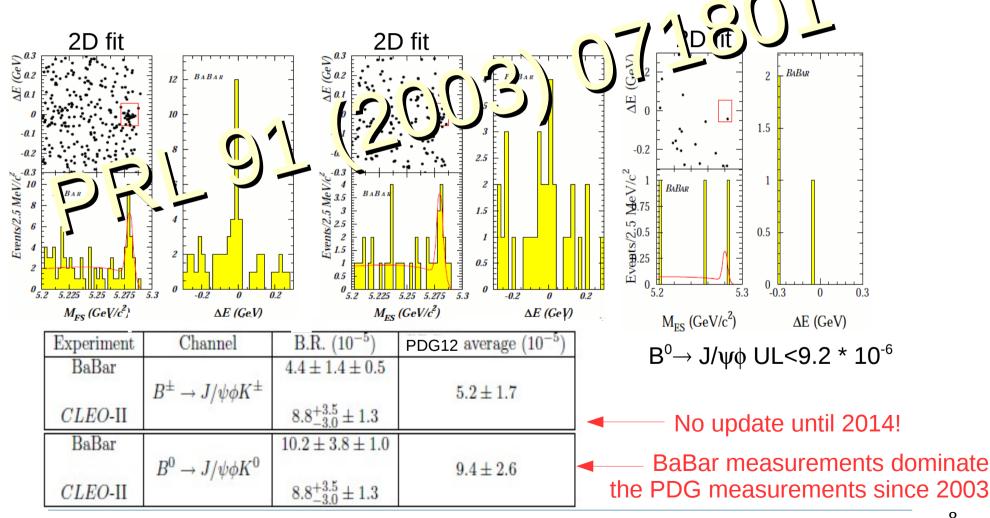
 $b \rightarrow c\bar{s}s$


(suppressed B decays)


itglied in der Helmholtz-Gemeinscha


Analysis $B \rightarrow J/\psi KK(K)$: motivation

- B \rightarrow J/ ψ K K: rare B decay, Cabibbo suppressed, predicted BF ~10⁻⁵
- K^+K^- contribution expected to be dominated from ϕ [BF($\phi \to K^+K^-$) ~49.5%]
- B \rightarrow J/ ψ ϕ K: three body decay, gluon rich process \Rightarrow ideal place to look for exotics
- It could proceed also via quasi-2-body decay, B $\rightarrow Y_g (\bar{c}c\bar{s}s)K$, $Y_g \rightarrow J/\psi \phi$
- If any Y_{q} exists, expected mass < 4.3 GeV/c² (threshold DD**)
- B⁰ → J/ψφ: transition $b\bar{d} \to \bar{c}c\bar{s}s$ rescattering process ⇒ no signal expected



Analysis $B \rightarrow J/\psi KK(K)$: "old" measurements

- Old BaBar publication: PRL 91 (2003) 071801, 51 fb⁻¹
- Today: 424 fb⁻¹, 470M BB: expected much higher precision in BF measurements, and possibility to look at the invariant mass distributions

lied in der Helmholtz-Gemeinschaf

$B \rightarrow J/\psi KK(K)$: BF strategy

- B channels under study: B[±] and B⁰
- K⁺K⁻ invariant mass in the full range [0.98;1.69] GeV/c²

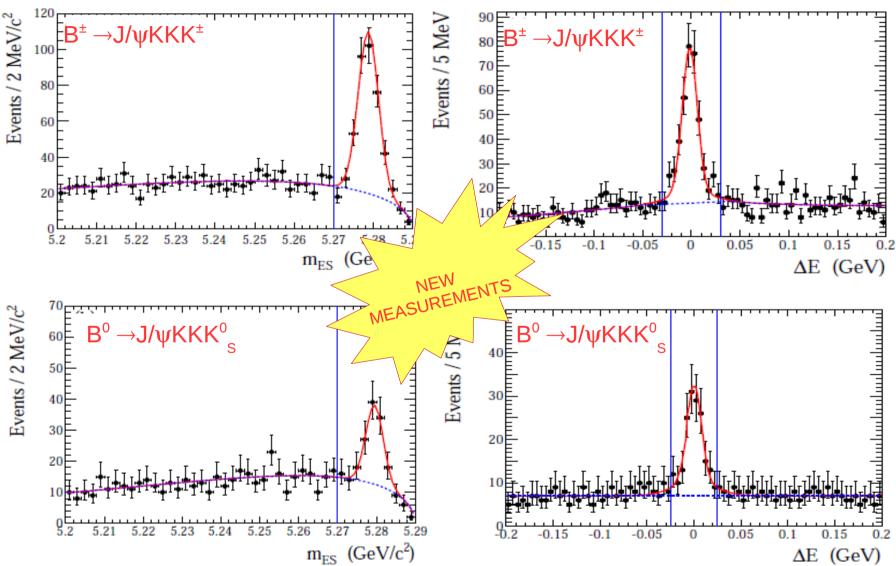
PDG2012

decay channel	BR	$J^G(J^{PC})$
$a_0(980) \to K^+K^-$	seen	$1^{-}(0^{++})$
$f_0(980) \to K^+K^-$	seen	$0^+(0^{++})$
$\phi(1020) \to K^+K^-$	$(48.9 \pm 0.5)\%$	$0^{-}(1^{})$
$f_2(1270) \to K^+K^-$	$(4.6 \pm 0.4)\%$	$0^{+}(2^{++})$
$a_2(1320) \to K^+K^-$	$(4.9 \pm 0.8)\%$	$1^{-}(2^{++})$
$f_2'(1525) \to K^+K^-$	$(88.8 \pm 3.1)\%$	$0^{+}(2^{++})$
$\phi(1680) \to K^+K^-$	seen	0-(1)

Several resonant states decaying to K^+K^- . Expected dominant meson $(\rightarrow K^+K^-)$ in these B decays: ϕ

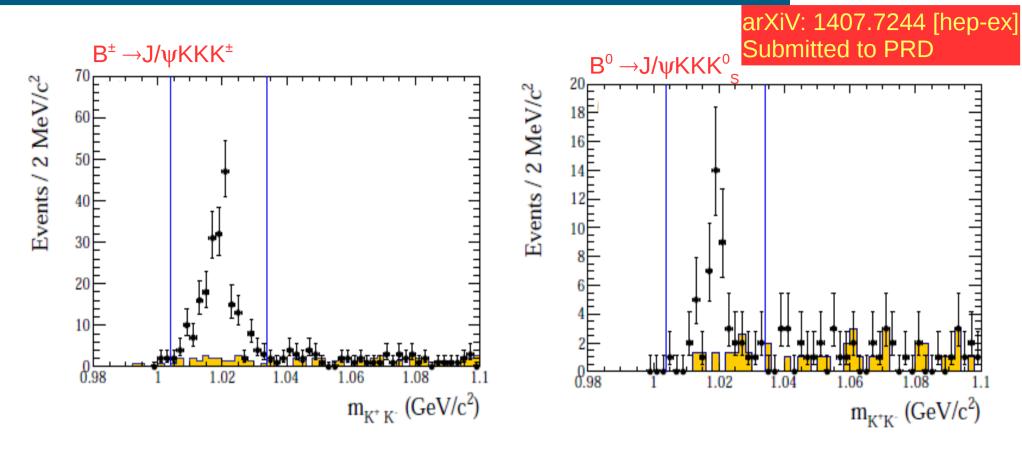
- Measurement of BFs:
 - blind analysis (large MC samples) to check consistency of fit methods
 - unbinned maximum likelihood fit of m_{ES} (gaussian fit for signal yield; Argus function to parametrize the background). Double check with ΔE fit is performed

$$m_{ES} = \sqrt{E_{beam}^* - p_{beam}^*} \qquad \Delta E = E_{beam}^* - \sqrt{s/2}$$


- K^+K^- invariant mass in the full range, then we restrict to the ϕ mass region
- J/ ψ reconstructed to e^+e^- and $\mu^+\mu^-$; mass constrained

$B \rightarrow J/\psi KKK$: fits for BF measurements

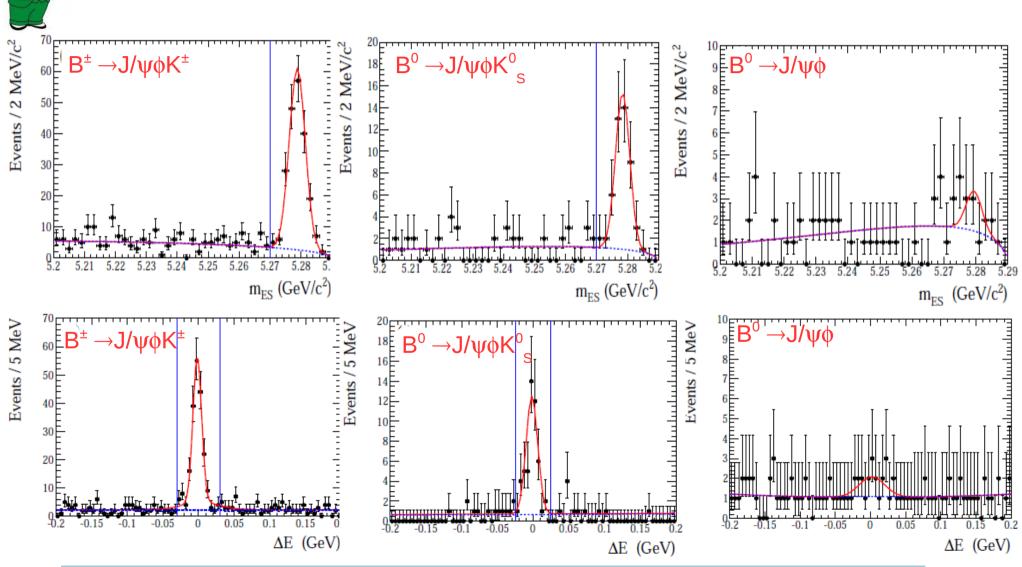
No BF measurements in the PDG until 2014


arXiV: 1407.7244 [hep-ex] Submitted to PRD

tglied in der Helmholtz-Gemeinscha

K⁺K⁻ invariant mass

- ϕ mass region selected to study $B \rightarrow J/\psi \phi K$
- ϕ meson dominant over the other K⁺K⁻combinations
- Observation of good signal, small background



$B \rightarrow J/\psi \phi(K)$: fits for BF measurements

arXiV: 1407.7244 [hep-ex] Submitted to PRD

Elisabetta Prencipe

glied in der Helmholtz-Gemeinschaft

$\overline{B} \rightarrow J/\psi KK(K)$: BF results

arXiV: 1407.7244 [hep-ex] Submitted to PRD

TABLE I: Event yields, BF measurements (\mathcal{B}) and efficiencies (ϵ) for the different final states. The yields re-weighted by the average efficiency ($\bar{\epsilon}$) evaluated on PHSP MC distributions, and the yields re-weighted by the efficiency from the Dalitz plots (ϵ_D) are reported. BF measurements with the two different efficiency methods are compared for the channel $B^+ \to J/\psi K^+ K^- K^+$ (B_{KKK}^+), $B^+ \to J/\psi \phi K^+$ ($B_{\phi K}^+$), $B^0 \to J/\psi K^- K^+ K_S^0$ (B_{KKK}^0), and $B^0 \to J/\psi \phi K_S^0$ ($B_{\phi K_S}^0$). The $B^0 \to J/\psi \phi$ (B_ϕ^0) UL at 90% c.l. is listed at the end of the table.

B channel	Event	$ar{\epsilon}~(\%)$	Corrected	Corrected	\mathcal{B} (×10 ⁻⁵)	$\mathcal{B} (\times 10^{-5})$
	yield		yield $(\bar{\epsilon})$	yield (ϵ_D)	calculated with $\bar{\epsilon}$	calculated with ϵ_D
B^+_{KKK}	$290{\pm}22$	17.96 ± 0.04	1615 ± 122	1904 ± 144	$5.86\pm0.44 \text{ (stat)} \pm0.24 \text{ (sys)}$	$6.91\pm0.52 \text{ (stat)}\pm0.28 \text{ (sys)}$
	$189{\pm}14$	$16.28 {\pm} 0.04$	1161 ± 86	1396 ± 103	$4.21\pm0.31 \text{ (stat)}\pm0.13 \text{ (sys)}$	$5.06\pm0.37 \text{ (stat)}\pm0.15 \text{ (sys)}$
$B_{\phi K}^+$ $B_{\phi KKK_S}^0$	68 ± 13	11.31 ± 0.04	586 ± 115	639 ± 125	$3.07\pm0.59 \text{ (stat)}\pm0.13 \text{ (sys)}$	$3.35\pm0.66 \text{ (stat)}\pm0.15 \text{ (sys)}$
$B^0_{\phi K_S}$ B^0_{ϕ}	41 ± 7	10.73 ± 0.04	382 ± 65	406 ± 69	$2.00\pm0.34 \text{ (stat)}\pm0.05 \text{ (sys)}$	$2.13\pm0.36 \text{ (stat)}\pm0.06 \text{ (sys)}$
B^0_{ϕ}	6 ± 4	31.12 ± 0.07	19 ± 13	_	< 0.101	_

■ The difference between the case A) and B) is due to the K⁺K⁻ correction in the Dalitz structure

meinschaff

$B \rightarrow J/\psi KKK$: non-resonant contribution

arXiV: 1407.7244 [hep-ex] Submitted to PRD

$$R_{+} = \frac{\mathcal{B}(B^{+} \to J/\psi K^{+} K^{-} K^{+})}{\mathcal{B}(B^{+} \to J/\psi \phi K^{+})} = 1.39 \pm 0.15 \pm 0.07$$

$$R_0 = \frac{\mathcal{B}(B^0 \to J/\psi K^+ K^- K_S^0)}{\mathcal{B}(B^0 \to J/\psi \phi K_S^0)} = 1.54 \pm 0.40 \pm 0.08$$

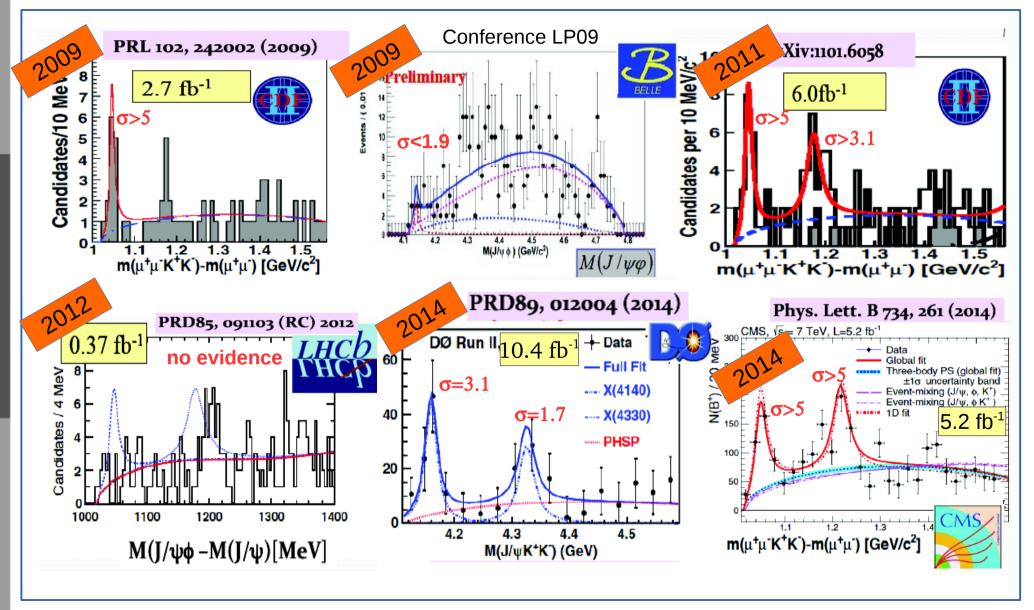
$$R_{\phi} = \frac{\mathcal{B}(B^0 \to J/\psi \phi K_S^0)}{\mathcal{B}(B^+ \to J/\psi \phi K^+)} = 0.48 \pm 0.09 \pm 0.02$$

$$R_{2K} = \frac{\mathcal{B}(B^0 \to J/\psi K^+ K^- K_s^0)}{\mathcal{B}(B^+ \to J/\psi K^+ K^- K^+)} = 0.52 \pm 0.09 \pm 0.03$$

- BFs in agreement with the prediction of the quark spectator model
- K⁺K⁻ contribution to BFs outside the φ mass region: first measurement
- Old Babar measurement on B \rightarrow J/ $\psi\phi$ K confirmed, now with >4 times precision
 - ⇒ <u>currently highest world precision</u> of these BF measurements!

Mitglied in der Helmholtz-Gemeinsch

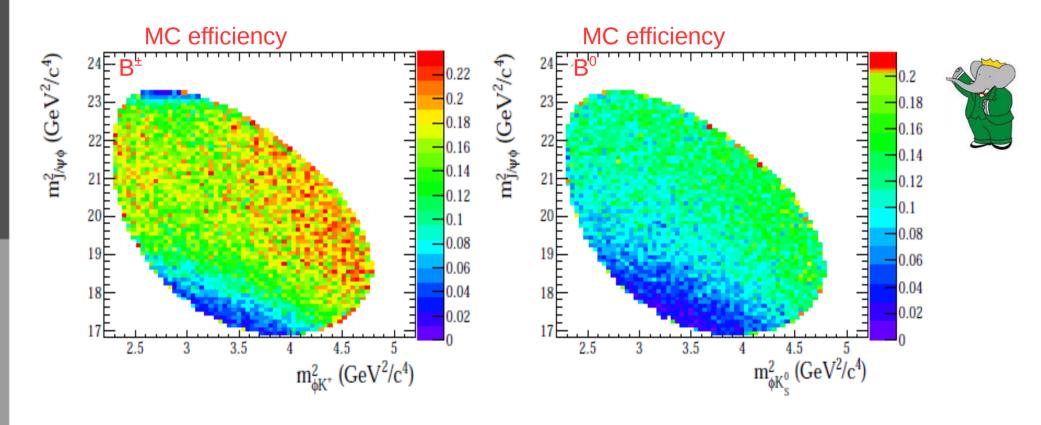
$B \rightarrow J/\psi KKK$: search for exotics


- Signal box selected: $m_{ES} > 5.27 \text{ GeV/c}^2$; $|\Delta E| < 30 \text{ MeV (B}^{\pm})$ and $|\Delta E| < 25 \text{ MeV (B}^{0})$
- Mass resolution at the J/ $\psi\phi$ threshold: 2 MeV/c²
- Search for resonant states in J/ψKK, J/ψK, KKK
- J/ $\psi \phi$ invariant mass gained more attention because of several recent publications
- J/ ψ and ϕ are <u>vectors</u>: <u>high spin contribution expected</u>
- Efficiency as function of the invariant mass must be taken into account
- In our fit: mass and width fixed to the CDF values (first publication on res. structure)

Experiment	ref	$M_{X(4140)}$	Γ _{X(4140)}	,
·		$[MeV/c^2]$	[MeV]	
CDF	PRL102.242002(2009)	$4143.0 \pm 2.9 \pm 1.2$	$11.7^{+8.3}_{5.0} \pm 3.7$	OBSERVATION
CDF	arXiv:1101.6058	$4143.4^{+2.9}_{-3.0} \pm 0.6$	$15.2^{+10.4}_{6.1} \pm 2.5$	1
LHCb	PRD85,091103(2012)	-		NO EVIDENCE
CMS	PRB734,261(2014)	$4148.0 \pm 2.4 \pm 6.3$	$28^{+15}_{-11} \pm 19$	OBSERVATION
D0	PRD89,012004(2014)	$4159.0 \pm 4.3 \pm 6.6$	$19.9 \pm 12.6^{+1.0}_{-8.0}$	EVIDENCE
		$M_{X(4270)}$	$\Gamma_{X(4270)}$	
		$[MeV/c^2]$	[MeV]	
CDF	arXiv:1101.6058	$4274.4^{+8.4}_{-6.7} \pm 1.9$	$32.3^{+21.1}_{15.3} \pm 7.6$	EVIDENCE
LHCb	PRD85,091103(2012)			NO EVIDENCE
CMS	PRB734,261(2014)	$4313.8 \pm 5.3 \pm 7.3$	$38^{+30}_{-15} \pm 16$	OBSERVATION
D0	PRD89,012004(2014)	≈ 4360	30(fixed)	NO EVIDENCE, but
Elisabetta P	rencipe			BETTER FIT

itglied in der Helmholtz-Gemeinscha

The controversial picture of $m_{J/\psi\phi}$


tglied in der Helmholtz-Gemeinschaft

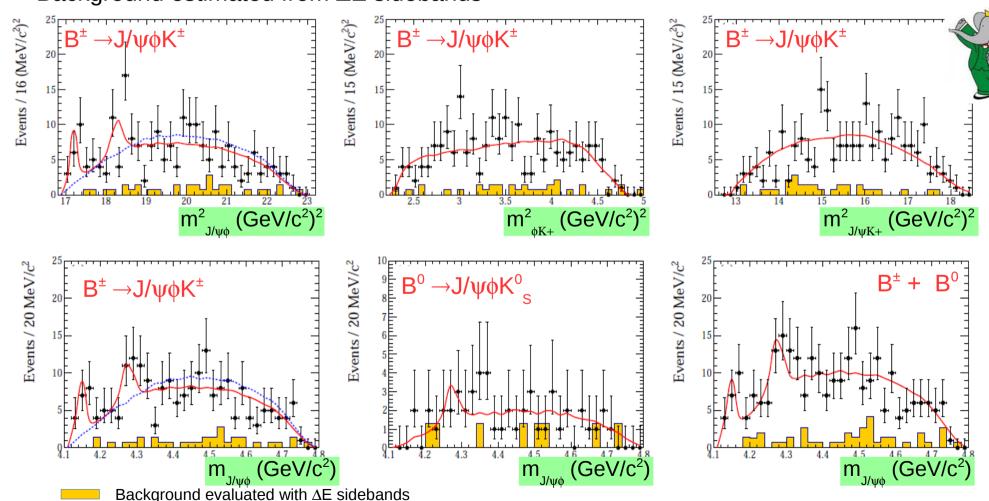
$B \rightarrow J/\psi \phi K$: reconstruction efficiency

arXiV: 1407.7244 [hep-ex] Submitted to PRD

- Efficiency lower at the J/ $\psi\phi$ mass threshold due to the difficulty to reconstruct low momentum kaon
- Charged B channel more sensitive to the efficiency change at the J/ψφ threshold compared to B⁰ channel; poorer φ (→K⁺K⁻) reconstruction

ied in der Helmholtz-Gemeinschaft

$B \rightarrow J/\psi \phi K$: invariant mass fit



arXiV: 1407.7244 [hep-ex]

Submitted to PRD

Unbinned maximum likelihood fit

- Central value and width of the Breit-Wigners are fixed in the fit
- 2 Breit-Wigner + PHSP function <u>re-weighted</u> by 2D-efficiency map from <u>Dalitz plots</u>
- **Background estimated from \Delta E sidebands**

itglied in der Helmholtz-Gemeinscha

$B \rightarrow J/\psi \phi K$: mass fit results

Channel	Fit	$f_{X(4140)}(\%)$	$f_{X(4270)}(\%)$	$2D \chi^2/\nu$	$1D \chi^2/\nu$
B^+		9.2 ± 3.3			
	В	9.2 ± 2.9	0.	17.4/13	15.0/17
	\mathbf{C}	0.	10.0 ± 4.8	20.7/13	19.3/19
	D	0.		26.4/14	•
$B^0 + B^+$	A	7.3 ± 3.8	12.0 ± 4.9	8.5/12	15.9/19

arXiV: 1407.7244 [hep-ex] Submitted to PRD

- These results <u>are background</u> <u>corrected</u>.
- Small background: purity 89% (B[±]) and 82% (B⁰)
- χ^2 of fits acceptable in all cases: no hypothesis should be rejected

Our fit:

- S-wave relativistic Breit-Wigners;
- non-resonant contribution represented by a constant term;
- no interference allowed between the fit components;
- small bkg from ΔE sidebands, consistent with PHSP behavior (incorporated in the non-resonant PHSP term);
- high spin contribution expected, but angular term non included due to poor statistics (we assume that the resonances decay isotropically)

fit without resonances (phase space):
$$\chi^2/\text{ndof} = 26.4/14$$
 fit with two resonances (parameters fixed to CDF): $\chi^2/\text{ndof} = 12.7/12$ $f_{X(4140)} = (9.2 \pm 3.3 \pm 4.7)\%, \ f_{X(4270)} = (10.6 \pm 4.8 \pm 7.1)\%$ Parameters fixed to the CDF values PRL102,242002(2009) $f_{X(4140)} = (13.2 \pm 3.8 \pm 6.8)\%, \ f_{X(4270)} = (10.9 \pm 5.2 \pm 7.3)\%$ Parameters fixed to the CMS values PLB734,261(2014)

glied in der Helmholtz-Gemeinscha

$B \rightarrow J/\psi \phi K$: fractions

arXiV: 1407.7244 [hep-ex] Submitted to PRD

$$\mathcal{B}(B^+ \to X(4140)K^+) \times \mathcal{B}(X(4140) \to J/\psi \phi) / \mathcal{B}(B^+ \to J/\psi \phi K^+) < 0.135$$

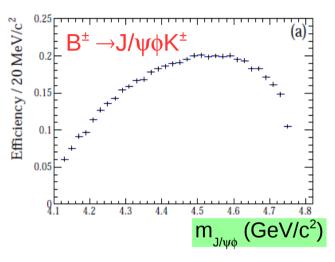
 $\mathcal{B}(B^+ \to X(4270)K^+) \times \mathcal{B}(X(4270) \to J/\psi \phi) / \mathcal{B}(B^+ \to J/\psi \phi K^+) < 0.184$

U.L. @ 90% c.l.

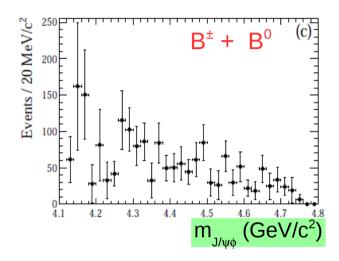
X(4140) and X(4270) on 422.5 fb⁻¹ integrated luminosity: $<2\sigma$ effect (within sys. uncertainties)

No additional structures are shown in the other invariant mass systems

Experiment	ref	f _{X(4140)} [%]
CDF	PRL102.242002(2009)	-
CDF	arXiv:1101.6058	$14.9 \pm 2.9 \pm 2.4$
LHCb	PRD85,091103(2012)	< 7
CMS	PLB734,261(2014)	13.4 ± 3.0
D0	PRD89,012004(2014)	$19\pm7\pm4$
		f _{X (4270)} [%]
CDF	arXiv:1101.6058	-
LHCb	PRD85,091103(2012)	< 8
CMS	PRB734,261(2014)	18.0 ± 7.3
D0	PRD89,012004(2014)	-


ied in der Helmholtz-Gemeinschaft

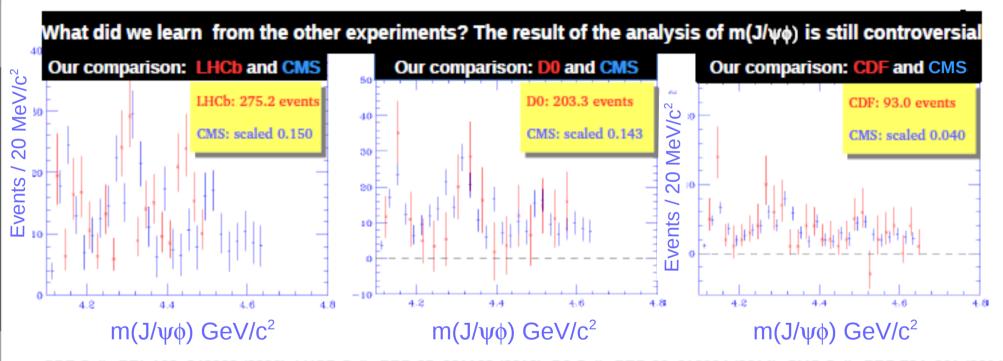
$B \rightarrow J/\psi \phi K$: BABAR re-weighted data



arXiV: 1407.7244 [hep-ex] Submitted to PRD

What happens if we re-weight data (not the fit function) by the Dalitz efficiency?

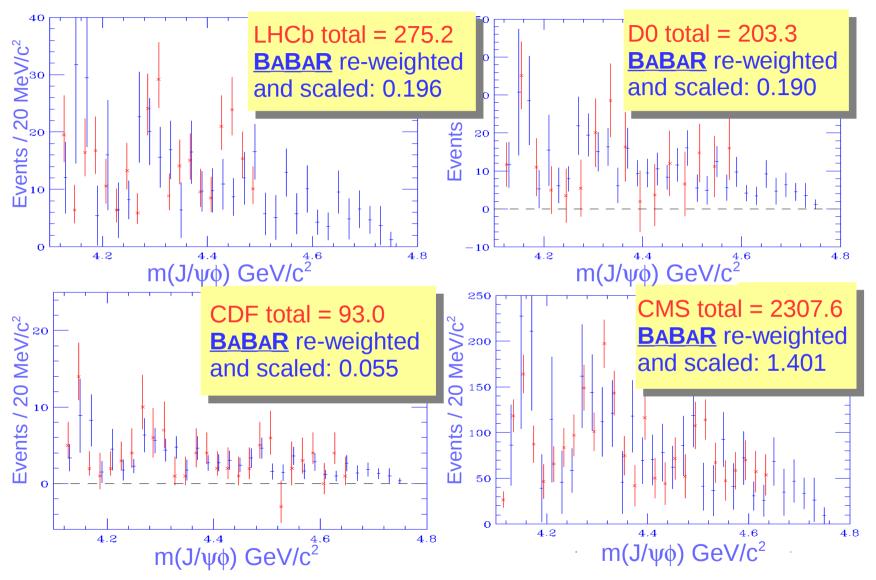
- (a) Average efficiency distribution as a function of the $J/\psi\phi$ mass for $B^+ \to J/\psi\phi K^+$
- (b) Efficiency corrected $J/\psi\phi$ for the combined B^+ and B^0 samples
- (c) Efficiency corrected and background subtracted $J/\psi\phi$ mass spectrum for the combined B^+ and B^0 samples


Significance $< 2 \sigma$ within systematic uncertainties

tglied in der Helmholtz-Gemeinschaft

$B \rightarrow J/\psi \phi K$: comparison (I)

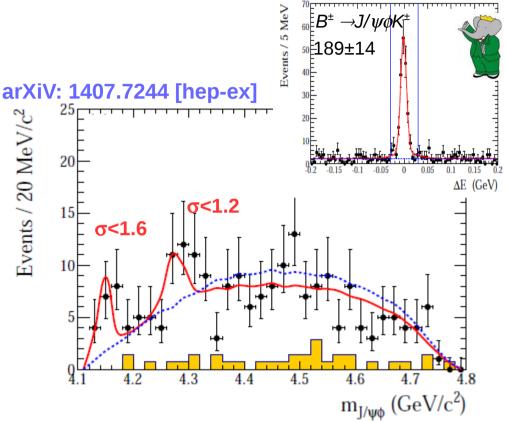
Let's try to combine properly results and try to understand:

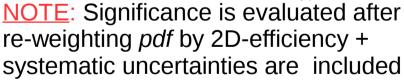


CDF Coll., PRL 102, 242002 (2009); LHCB Coll., PRD 85, 091103 (2010); D0 Coll., PRD 89, 012004 (2014); CMS Coll., PRB 734, 261 (2014)

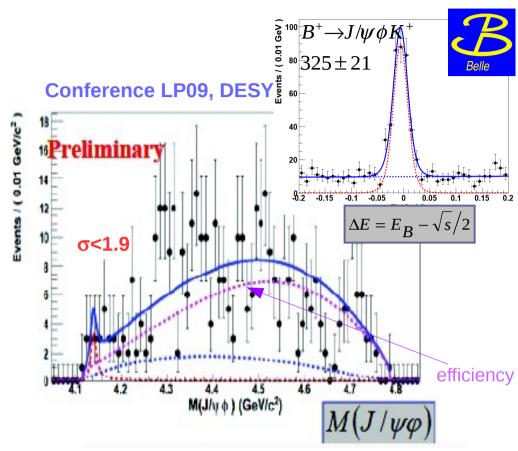
Mitglied in der Helmholtz-Gemeinscha

$B \rightarrow J/\psi \phi K$: comparison (II)




<u>Note</u>: BABAR re-weighed data (B⁰ + B[±]); other experiments: <u>only</u> B[±], <u>only</u> J/ $\psi \rightarrow \mu \mu$

talied in der Helmholtz-Gemeinscha

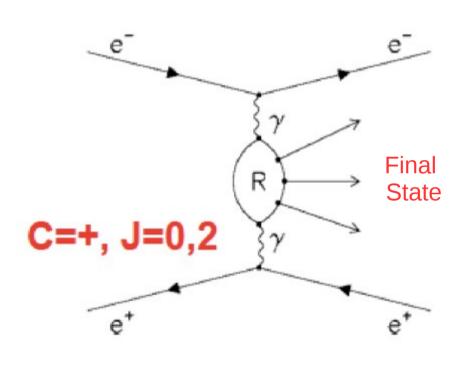

$B \rightarrow J/\psi \phi K$: comparison (III)

$$Br(B^+ \to X(4140)K^+, X \to J/ψφ)$$
 <5.7 ×10⁻⁶ @90%*C.L.*

Br(B⁺
$$\rightarrow$$
X(4140)K⁺, X \rightarrow J/ψφ) <6 ×10⁻⁶ @90%C.L.

Consistency!

Search for new resonances via $\gamma\gamma$ interactions


 $X(4140){\rightarrow} J/\psi \varphi$

 $X(3915) \rightarrow J/\psi\omega$

itglied in der Helmholtz-Gemeinscha

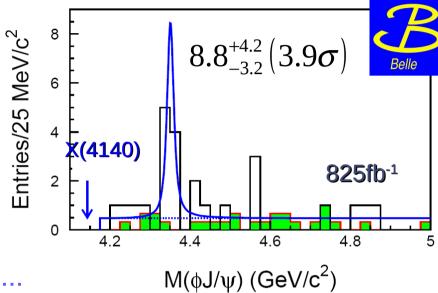
2-photon interactions

- 2-photon interactions:
 e⁺e⁻ interact and emit a quasi-real photon,
 which can form resonances.
- Clear signature: J=0[±],2[±], ...; the resonant state (if any) cannot be vector
- In BABAR resonant states are observed in 2-photon interactions: X(3915), ...
- Low p_t with respect to the beam axis
- Final state emitted along the beam direction

tglied in der Helmholtz-Gemeinschaft

Search for exotic states in J/ψφ via γγ

PRL 104, 112004 (2010)


$$e^+e^- \rightarrow J/\psi \phi$$

$$M = 4350.6^{+4.6}_{-5.1} \pm 0.7 MeV$$

 $\Gamma = 13.3^{+17.9}_{-9.1} \pm 4.1 MeV$

$$\Gamma_{\gamma\gamma}Br(Y(4350) \to J/\varphi\psi) = \begin{pmatrix} 6.4^{+3.1}_{-2.3} \pm 1.1eV \text{ for } J^P = 0^+\\ 1.5^{+0.7}_{-0.5} \pm 0.3eV \text{ for } J^P = 2^+ \end{pmatrix}$$

No evidence for Y(4140) and/or Y(4270)!

...indeed hint of a new resonant state is found...

- X(4140) and X(4270), after 5 years of discussions and search in several modes, are <u>not observed in any other decay mode</u>, except m(J/ $\psi \phi$) in B⁺, with J/ $\psi \rightarrow \mu^+ \mu^-$ only
- Not all experiments confirm their observation, neither evidence in some cases. Are they real resonances?

tglied in der Helmholtz-Gemeinscha

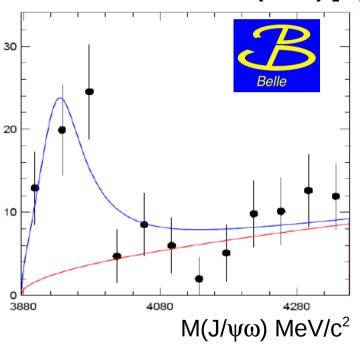
Remarks on X(4140)

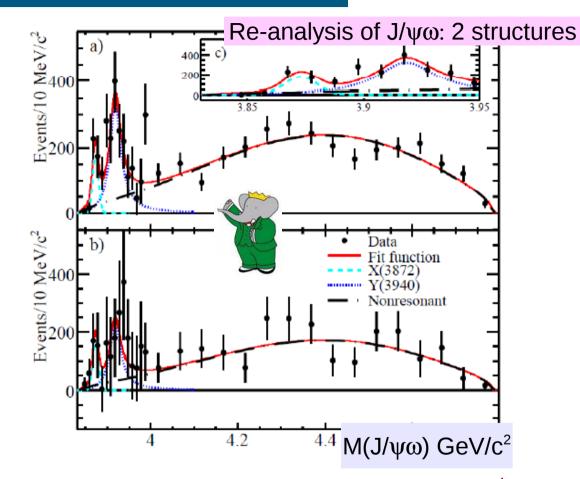
- No evidence in BABAR and BELLE, in B decays, with $J/\psi \rightarrow e^+e^-$ and $\mu^+\mu^-$
- BABAR data reweighted by efficiency: <2σ within systematic effects, on 468 M BB</p>
- BABAR and BELLE consistent in UL to the presence of a new Y state in $m(J/\psi\phi)$
- THE BABAR UL is consistent with what was published from other experiments.
- BABAR and BELLE show the same efficiency behaviour at threshold of m(J/ψφ): poorer φ reconstruction
- BELLE showed that in J/ $\psi \phi$ invariant mass (via $\gamma \gamma$) no resonant state compatible with Y(4140): if any, then we cannot exclude any J^{PC} hypothesis
- No experiment showed additional decay mode for Y(4140).

So:

- All experiments agree that the inv. mass system J/ψφ cannot be simply described by PHSP
- 2 vectors can be polarized: need full Dalitz analysis and higher statistics
- "Enhancements" does <u>not</u> mean <u>only</u> new resonant state! If real resonance, would expect to be seen in different decay modes
- **B**⁺: controversial interpretation of $m(J/\psi\phi)$;
- B^0 : no evidence of Y(4140) and Y(4270) in BABAR and LHCb (x20 statistics)

From $X \rightarrow J/\psi \phi ...$


...to
$$X \rightarrow J/\psi \omega$$


ied in der Helmholtz-Gemeinschaft

Invariant mass of $J/\psi\omega$ (B decays)

- Analysis: $B^+ \rightarrow J/\psi \omega K^+$ $\omega \rightarrow \pi \pi \pi^0$
- First observation of Y(3940) [X(3915)]

PRL 94, 182002 (2005)

PRL 101, 082001 (2008) PRD 82, 011101 (2010)

Elisabetta Prencipe

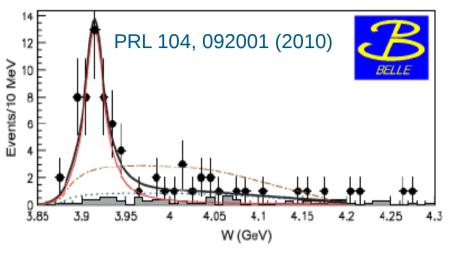
	Mass (MeV)	Γ (MeV)
Belle	$3943 \pm 11(stat) \pm 13(syst)$	$87 \pm 22(stat) \pm 26(syst)$
253 fb ⁻¹	55 15 211(5/6/1) 215(5/5/1)	07 ± 22(stat) ± 20(syst)
BaBar 350 fb ⁻¹	3914.6 ^{+3.8} ± 2.0	34 ⁺¹² ± 5

itglied in der Helmholtz-Gemeinschaft

What is X(3915)?

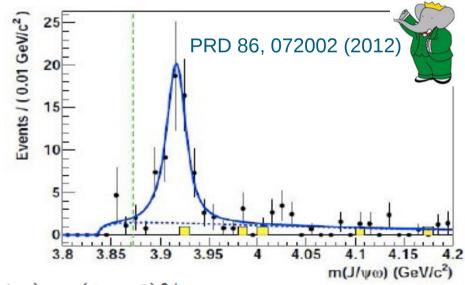
- Several analyses show enhancements at a mass value compatible with X(3915):
 - B decays (BABAR and BELLE in agreement, mostly)
 - double-charmonium, e^+e^- →J/ ψ D* \overline{D} (PRL 98, 082001 (2007), BELLE)
 - $-\gamma\gamma$ interactions: e⁺e⁻ →DD (PRL 96, 082003 (2006) BELLE; PRD 81, 092003 BABAR)

Consequence: X(3915), Y(3940), X(3940), Z(3930) observed. Are they the same state? Unlikely....



- The analysis via $\gamma\gamma$ interaction is performed to gain more information on the invariant mass system of J/ $\psi\omega$.
 - **Z(3930)** to DD, via $\gamma\gamma$: angular distribution analysis supports J=2 $\Rightarrow \chi_{c2}$ (2P)?
 - X(3940): possible interpretation as η_c (3S); χ_{co} (2P) cannot decay to D* \overline{D}
 - X(3915) \rightarrow J/ $\psi\omega$: analysis via $\gamma\gamma$ needed to establish J^{PC}: if J=0, could it be $\chi_{co}(2P)$?

Invariant mass system of $J/\psi\omega$ (via $\gamma\gamma$)


$$M = 3915 \pm 3 \pm 2 \text{ MeV/}c^2$$

 $\Gamma = 17 \pm 10 \pm 3 \text{ MeV}$
 $\Gamma_{\gamma\gamma} \cdot \mathcal{B}(J\psi\omega) = 61 \pm 17 \pm 8 \text{ eV} \quad (J = 0)$
 $\Gamma_{\gamma\gamma} \cdot \mathcal{B}(J\psi\omega) = 18 \pm 5 \pm 2 \text{ eV} \quad (J = 2)$

Confirmation from BABAR:

$M = 3919.4 \pm 2.2 \pm 1.6 \text{ MeV}/c^2$ $\Gamma = 13 \pm 6 \pm 3 \text{ MeV}$ $\Gamma_{\gamma\gamma} \cdot \mathcal{B}(J\psi\omega) = 52 \pm 10 \pm 3 \text{ eV}$ (J = 0) $\Gamma_{\gamma\gamma} \cdot \mathcal{B}(J\psi\omega) = 10.5 \pm 1.9 \pm 0.6 \text{ eV}$ (J = 2)

CONSISTENCY!

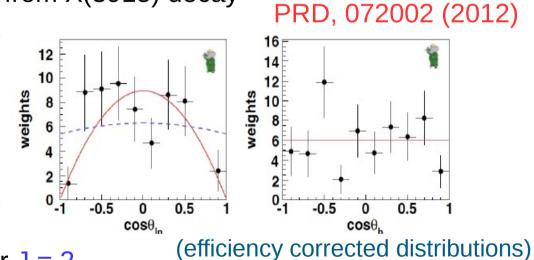
• If $\Gamma_{\gamma\gamma} = \mathcal{O}(1 \text{ keV})$ (typical cc), then $\mathcal{B}(J/\psi\omega) > (1-6)\%$

litglied in der Helmholtz-Gemeinschaf

12

weights

J/ψω angular analysis (via γγ)



Theoretical input: PRD 70, 094023 (2004), J.L. Rosner

- Angles are defined in 3 different c.m. frames: $J/\psi\omega$, J/ψ , and ω.
- \blacksquare The normal to the ω decay plane defines the axis orientation
- No background subtraction: all events in 3890< M(J/ $\psi\omega$)<3950 MeV/c² come from X(3915) decay

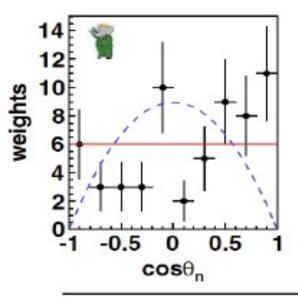
-0.5

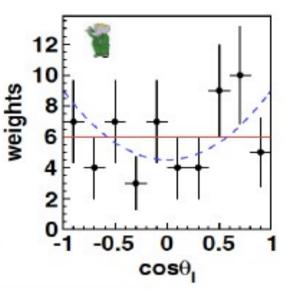
Result: J = 0 strongly preferred over J = 2

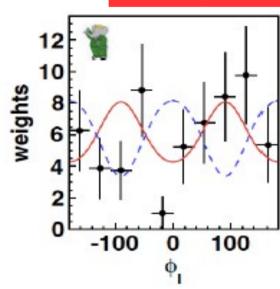
veights

33

-0.5


iglied in der Helmholtz-Gemeinschaft.


X(3915): 0⁺ or 0⁻?


9.6

PRD, 072002 (2012)

Angle	$J^P = 0^-$	$J^P = 0^+$
θ_n	$\sin^2 \theta_n$	1
χ^2	77.6	16.3
θ_l	$1 + \cos^2 \theta_l$	1
χ^2	8.7	8.3
ϕ_l	$2-\cos(2\cos\phi_l)$	$2 + \cos(2\cos\phi_l)$

21.7

O⁺ favored over O⁻

Strong implication:

 $\chi_{c0}(2P)$ candidate?

iglied in der Helmholtz-Gemeinschaft

Remarks on X(3915)

- Y(3940) [X(3915)] was observed from BABAR and BELLE in B \rightarrow J/ψωK
- X(3940) was observed from BELLE in the recoil of J/ψ (double charmonium)
- X(3915) was observed from BABAR and BELLE in $\gamma\gamma$ interactions

NO DOUBT: X(3915) EXISTS!

X(3915) cannot have J = 1 (seen in $\gamma\gamma$ interactions)

■ Angular analysis in BABAR: $J = 0^+ \Rightarrow in favor$ of $\chi_{co}(2P)$ interpretation

Is this the only possible interpretation?

- Argument <u>against</u> $X(3915) = \chi_{co}(2P)$:
- in the potential model: unlikely to explain $\chi_{c0}(2P) = X(3915)$ and $\chi_{c2}(2P) = Z(3930)$.
- M(Z(3930)) = 3927.2 \pm 2.6 MeV/c². PRL 96, 082003 (2006) BELLE; PRD 81, 092003 BABAR In this picture, the mass difference between $\chi_{c0}(2P)$ and $\chi_{c2}(2P)$ is ~10 MeV/c² only, for an excitation from J=0 to J=2.
- For comparison, $\chi_{cl}(1P)$ mass difference is ~142 MeV/c²...

glied in der Helmholtz-Gemeinscha

Summary

- Study of B decays: $B^{\pm,0} \rightarrow J/\psi KKK^{\pm,0}$ (charged and neutral B) for the first time: observation
 - K^+K^- inv mass restricted to ϕ meson in [1.004;1.034] GeV/c²:
 - $-J/\psi K$ and KKK systems PHSP distributed; $J/\psi \phi$ system shows a non-PHSP behaviour
- Search for X(4140) and X(4270) in $J/\psi\phi$ inv mass system: no evidence (BABAR and BELLE)
- Interpretation of $J/\psi\phi$ inv mass system is difficult, because:
 - dynamics of J/ ψ and ϕ (vectors) interaction is complicated: full Dalitz analysis needed;
 - different hypotheses for explaining the presence of a non-PHSP behavior at the threshold
 - BABAR results consistent with other experiments within uncertainties.
- Non resonant K^+K^- contribution to the BF of B \rightarrow J/ ψ KKK: first measurement
- Information on X(3915) from different analyses:
 - B decay (BABAR and BELLE)
 - double charmonium (BELLE; BABAR coming soon)
 - $-\gamma\gamma$ interactions (BABAR and BELLE)
- BABAR and BELLE have plenty of results in search for exotic charmonium states: time to combine results and understand what we reached

Thank you for your attention!

Back up slides

Z(3930)

State	J^{PC}	Process
$\eta_c(2S, 3639)$	0-+	$B o K(K_S K \pi)$
$\psi(3820)$	2	$B o \chi_{c1}\gamma K$
X(3872)	$1^{++}/2^{-+}$	$B \to K(J/\psi \pi^+ \pi^-)$
G(3900)	1	$e^+e^- \to \gamma(D\bar{D})$
X(3915)	$0/2^{?+}$	$B o K(J/\psi\omega)$
$\chi_{c2}(2P, 3927)$	2++	$\gamma\gamma o Dar{D}$
X(3940)	??+	$e^+e^- \to J/\psi(D\bar{D}^*)$
Y(4008)	1	$e^+e^- \to \gamma (J/\psi \pi^+\pi^-)$
$Z_1(4050)^+$?	$B o K(\chi_{c1}(1P)\pi^+)$

JULICH
FORSCHUNGSZENTRUM

Summary of Charmonium states at the B factories

State	J^{PC}	Process
X(4160)	??+	$e^+e^- o J/\psi(D^*\bar{D}^*)$
$Z_2(4250)^+$?	$B \to K(\chi_{c1}(1P)\pi^+)$
Y(4260)	1	$e^+e^- \rightarrow \gamma (J/\psi \pi^+\pi^-)$
X(4350)	$0/2^{++}$	$\gamma\gamma o J/\psi\phi$
Y(4360)	1	$e^+e^- \to \gamma(\psi(2S)\pi^+\pi^-)$
$Z(4430)^+$?	$B \to K(\psi(2S)\pi^+)$
Y(4630)	1	$e^+e^- o \gamma(\Lambda_c^+\Lambda_c^-)$
Y(4660)	1	$e^+e^- \to \gamma(\psi(2S)\pi^+\pi^-)$