Status and Prospects of the NOvA Experiment

Daniel Cronin-Hennessy August 29, 2014 Heavy Quarks and Leptons 2014 Schloß Waldhausen, Mainz Deuschland

Outline

Overview NOvA Physics NOvA Technology Current Status

NOvA: NuMI Off-Axis v_e Appearance Experiment Neutrinos at the Main Injector

The NOvA Collaboration

38 Institutions from 7 Countries 205 members

Neutrino Beam from Fermilab to Minnesota

NOvA Physics Impact

- * Mass Hierarchy from Matter Effect on v_e Appearance
- * CP Violation from δ in the PNMS matrix
- *Improved Atmospheric Oscillation Parameters from v_{μ} Disappearance
- * Tests of 3 Flavor mixing paradigm (v_s?)
- * θ_{23} Octant
- *Supernova ν 's

NOvA Technique

Off-Axis position of detector results in a Narrow band beam peaked at ~2 GeV

At 810 km from source the L/E is optimal for electron neutrino appearance.

Beam upgrades that increase power from 320 kW to 700 kW (in progress)

NOvA Oscillation Measurements

*Survivial Probability $P(v_{\mu} \rightarrow v_{\mu})$

*Appearance Probability $P(v_e \rightarrow v_e)$

* Neutrinos and anti-neutrinos

* Sensitive to Hierarchy, θ_{13} , θ_{23} , δ_{CP} and Δm_{31}

* Reactor experiments do not have all of these dependencies.

$$P(\stackrel{(-)}{\nu}_{\mu} \rightarrow \stackrel{(-)}{\nu}_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2}(A-1)\Delta}{(A-1^{2})}$$

$$\stackrel{(+)}{-} 2\alpha \sin \theta_{13} \sin \delta_{CP} \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin A\Delta}{A} \frac{\sin(A-1)\Delta}{A-1} \sin \Delta$$

$$+ 2\alpha \sin \theta_{13} \cos \delta_{CP} \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin A\Delta}{A} \frac{\sin(A-1)\Delta}{A-1} \cos \Delta$$
Where: $\alpha = \frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}} \quad \Delta = \Delta m_{31}^{2} \frac{L}{4E} \quad A = \stackrel{(-)}{+} G_{f} N_{e} \frac{L}{\sqrt{2}\Delta}$

ve Appearance in Matter

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) \simeq \left| \sqrt{P_{Atm}} e^{-i(\Delta_{32} + \delta)} + \sqrt{P_{Sol}} \right|^{2} \\ = P_{atm} + P_{sol} + 2\sqrt{P_{atm}} P_{sol}(\cos \Delta_{32} \cos \delta \mp \sin \Delta_{32} \sin \delta) \\ \hline \sqrt{P_{atm}} = \sin \theta_{23} \sin 2\theta_{13} \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31} \\ \sqrt{P_{sol}} = \cos \theta_{23} \sin 2\theta_{12} \frac{\sin(aL)}{aL} \delta_{21} \\ a = G_{F} N_{e} / \sqrt{2} \simeq 1/3500 \text{ km} \end{split}$$
 This term has a dependence on the relative sign of Δ_{31}

Effect increases with the baseline:

aL = 0.08 for L = 295 km aL = 0.23 for L = 810 km

This gives NOvA a method of determining the mass order for v_1 / v_3

Measuring the Hierarchy

Measuring the Hierarchy

third of $\delta_{\rm CP}$

5 1 1.5 2 2.5 3 3. Significance of hierarchy resolution (σ)

0.5

3.5

Energy resolution on ν_{μ} CC Events from current detector performance & reconstruction techniques:

- 4.5% energy resolution for QE events
- 6% resolution for non-QE events

$$P(\nu_{\mu} \rightarrow \nu_{\mu})$$

Sensitivities to non-maximal θ_{23} now include cosmic rejection efficiencies

For baseline exposure, any value θ_{23} the NOvA measurements will improve on current best fit values

Non-Maximal θ_{23}

NOvA will make a precision measurement of $P(v_{\mu} \rightarrow v_{\mu})$ which has the NOvA 1 σ and 2 σ Countours for Starred Point potential to establish $\theta_{23} \neq 45^{\circ}$ based on NOvA **NOvA Nominal Run** 810km Baseline the $sin^2\theta_{23}$ dependence of the oscillation 3.6E21 PoT $(v + \overline{v})$ $\sin^2 2\theta_{13} = 0.09$ 0.08 probability. $\sin^2 2\theta_{23} = 0.95$ If this is the case then the $P(v_{\mu} \rightarrow v_{e})$ Θ_{23} =45 ellipses shift based on how far θ_{23} differs Θ₂₃>45° (V_µ) 0.06 from 45°. Inverted $\mathbf{P}(\overline{\nu}_{\mu} \!\rightarrow\! \overline{\nu}_{e})$ This corresponds to the mass state v_3 coupling more to v_{τ} or v_{μ} 0.04 $\Theta_{23} < 45^{\circ} (v_{\tau})$ Θ_{23} >45° (v_µ) V_3 Θ₂₃<45 0.02 Ve (V_{T}) ο **δ=0** Normal $\delta = \pi/2$ VT $\Box \delta = \pi$ V_µ ٧_T $\delta = 3\pi/2$ 0.00 0.00 0.06 0.02 0.04 0.08 $\mathbf{P}(v_{\mu} \rightarrow v_{e})$

Octant Retermination

For Non-maximal θ_{23} octant determination by NOvA

- For $\sin^2 2\theta_{23} = 0.97$
- > 95% CL for all values of δ_{CP}

15 16 ril 18, 201 larch 5, 2014 arch 5, 2014 arch 21, 201 ch 21, 20: bruary 19, 20: bruary 19, 201 irch 13, 2014 bruary 3, 201 anuary 14, 2014 bruary 3, 201 uly 1, 2012 uly 1, 2013 May 21, 2013 1uary 14, 20: lay 21, 201

NOvA By the Numbers:

Over:

- ✓ 11 millon liters of scintillator
- 10.4 million meters of Wavelength Shifting Fiber
- ✓ 305,000 meters of PVC Extrusion
- ✓ 11,000 Detector Modules, Front End Boards & APDs

Construction Completed: Apr 25, 2014 (14 kt) Electronics: 80% complete (11.25 kt) Estimated Completion: July 2014

The Readout Cell

NOvA Detection Cell

- * 15.5 m long, 3.9x6.6cm tube,
- * Made of reflective PVC structure,
- * Filled with liquid scintillator,
- * Wavelength shifting fiber for light transport,
- * Read out by an avalanche photodiode
 - * Passage of MIP through the cell results in dE/dx ≈12.9 MeV across the cell.
- * Need the light output to be 30-38 p.e. from the FAR END end to give a 10:1 signal/ noise

Waveshifting fiber readout and 32pixel APD used for cell digitization

NOvA Cell Efficiency

Life on the surface: Cosmic ray rate ~120k Hz

Life on the surface: Reconstructed tracks

Life on the surface: In time with accelerator signal

First v November 12, 2013

First v_{μ} -CC Candidate

Far Retector x Candidates

Complimentary Methods of PID

- EID Neural net based on EM shower profile
- Library Event Matching (LEM) Template method based on event topology

ve Selection

ν_e Signal and Background Estimates

	Simulation				Data	
Cut	ν_e Signal	NC	Beam ν_e	$\nu_{\mu} \ \mathrm{CC}$	Cosmic Ray	All Background
All Events	36.7	380	28.1	557	19M	19M
Pre-selection	24.7	83.5	2.9 _{Ba}	30.0	56k	56k
Vertex Gap	24.6	81.8	2.9	29.6	55k	55k
P_T/P	22.0	59.6	2.6	24.3	1248	1334
Maximum Y	21.2	57.4	2.5	23.0	834	917
Neutral Net	13.9	3.9	1.5	0.7	0.5	6.5
Library Template	14.0	3.5	1.5	1.1	0.9	7.0
	•					

- Exposure 6×10²⁰ POT
- 1 yr at design mass/beam power
- 14 kt total detector mass

- Signal estimates are leading order
- Simple oscillation w/o matter effect
- Averaged over hierarchy and $\delta_{\rm CP}$

Summary

- *Near and Far Detectors are complete.
- *Detectors functoning as expected.
- *We are currently acquiring beam data.
- *Accelerator is ramping toward 700 kW.
- *By end of year we will have collected the data for our first oscillation results.