Neus on Double Beter Deczy Search

Why?

(A, Z) → (A, Z+2) + 2 e⁻

deep insight in v physics unaccessible by oscillation measurements

if $0\nu\beta\beta$ observed $\rightarrow \nu$ is a Majorana particle

if $T_{1/2}^{0v}$ is measured $\rightarrow m_{BB}$ (v mass scale) can be extracted

PNMS (mixing) matrix elements

$$\mathbf{m}_{\beta\beta} = \Sigma \mathbf{m}_{j} \mathbf{U}_{ej}^{2}$$

Majorana mass of neutrino

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) |M^{0\nu}|^2 \frac{|\langle m_{\beta\beta} \rangle|^2}{m_e^2}$$
Nuclear Eactor of Merit

Nuclear Factor of Merit (theoretical evaluation)

.... we neglect here possible contribution to the half-life amplitude from right-handed couplings

if $T^{0v}_{1/2}$ is measured $\rightarrow m_{\beta\beta}$ value can be extracted

unfair statement

How?

How?

both generally hidden in a huge background due to radioactivity and cosmic rays $0\nu\beta\beta$

real challenge for future expt.

Sensitivity

SCALE = exposure (number of bb emitters and measuring time)
= Isotope Mass x Time

PERFORMANCES = number of background counts in the ROI *Background Rate x detector FWHM*

Strategies to improve Sensitivity

1. increase the **SCALE**

main problem (cost+time) is isotope enrichment (excluding Te)

2. improve the **PERFORMANCES**

\rightarrow achieve the 0 background condition where $S_{0VBB} \propto time$

high resolution detectors

particle identification (mostly α 's rejection) event classification according to particle track: Single Site vs. Multi Site $0\nu\beta\beta$ is mostry SS whereas background events (γ 's) are often MS

identification of daughter nucleus

$2\nu\beta\beta$ is the ultimate irreducible background

importance of energy resolution - choice of proper candidate

Goals

Goals

m_{lightest} [eV]

Plenty of experiments and techniques

Techniques	Experiments
TPC	EXO NEXT
Inhomogeneous Tracking Detectors	SuperNEMO MOON
Bolometric Detectors	CUORE AMORE LUCIFER LUMINEU
Semiconductors	GERDA MAJORANA COBRA
Liquid Scintillators	KamLAND-ZEN SNO+

I chose only few of them ... those reporting new results or construction achievements in the latest months

a long standing tradition

GERDA and MAJORANA

⁷⁶Ge – enrichible – $Q_{\beta\beta}$ = 2039 keV

widely used technique for γ spectroscopy

two different strategies

MAJORANA Demonstrator

(under construction)

GERDA

experimental set-up

- ⁷⁶Ge enriched HPGe detectors operated in a LAr
- water Cherenkov tank
- LNGS 3800 m.w.e. overburden

strategies

- well defined phased program (mass increase and detector improvement)
- ionization signal FWHM at $Q_{BB} \sim 2-4$ keV
- PSA for background rejection (SS vs MS)
- extremely radioclean environment (liquid generally easly purified)

Maura Pavan – HQ&L 2014

 active shield phase I water Cherenkov phase II LAr scintillation

GERDA – phase I

Exposure 21.6 kg x y Background Index Coaxial BEGe refurbished coaxial HPGe (10.9 kg) + new BEGe (3.6 kg) 1.7 10⁻² counts/(keV kg yr) 3.6 10⁻² counts/(keV kg yr)

 $0\nu\beta\beta$ result

 $T_{1/2}^{0v}$ > 2.1 10²⁵ yr at 90% C.L.

Klapdor claim ~ ruled out !

BEGe bkg is 30 times higher than what needed for Phase II

main background sources

⁴²K + ²²²Rn in LAr
(⁴²K unexpected and partially already mitigated)

²¹⁴Bi+²²⁸Th in detector assembly surface alphas

GERDA – toward phase II

- Transition to Phase II ongoing:
 - Increase of target mass (+20 kg; total ≈40 kg of Ge detectors)
 - New custom made BEGe detectors with enhanced pulse shape discrimination
 - Liquid argon instrumentation
 - Background ≤ 10⁻³ cts /(keV kg yr)

Phase II Goal

Sensitivity $S_{1/2}^{0v} \sim 10^{26}$ yr

Kamland-ZEN

¹³⁰Xe – enrichible – $Q_{\beta\beta}$ = 2458 keV

experimental set-up

Inner Balloon = Xe loaded liquid scintillator DBD source 320 kg Xe (290 kg 136 Xe) increased to 383 kg Xe in phase II

Outer Balloon = liquid scintillator active shield for external gammas

Water Cherenkov detector muon veto

2700 m.w.e. Kamioka

strategies

scintillation signal FWHM at $Q_{BB} \sim 240 \text{ keV}$

different **cuts used to reject bkg events** Fiducial Volume changed over the analyses

Kamland-ZEN – phase I data

Kamland-ZEN – toward phase II

purification of both Xe and LS

increase in Xe concentration

¹¹⁰Ag reduced by a factor 10

phase 1 phase 2 (2.44 ± 0.01) wt% → (2.96 ± 0.01) wt%

optimization of background rejection cuts

Kamland-ZEN – phase II

Kamland-ZEN – future prospects

Maura Pavan – HQ&L 2014

15

the very popular 136xe !!

beside Kamland-ZEn other two experiment are based on ¹³⁶Xe – why ?

EXO-200

experimental set-up

liquid Xe TPC 80.6% enriched ¹³⁶Xe

heavvy shielded

WIPP New Mexico 1587 m.w.e.

EXO-200 – $T_{1/2}^{0\nu}$ < 1.1 x 10²⁵ y

EXO – future prospects

	limit	sensitivity
PRL 2012	1.6 10 ²⁵ y	0.7 10 ²⁵ y
Nature 2014	1.1 10 ²⁵ y	1.9 10 ²⁵ y

EXO-200

5 year sensitivity $\sim 4 \ 10^{25}$ y simply scaling the sensitivity with time sqrt (5/1.3)

EXO-n (5000 kg ?)

increase in mass (increase also self-shielding) better SS/MS (improved spatial resolution)

daughter nucleus identification ??

Identification of Ba ion : ¹³⁶Xe -> ¹³⁶Ba⁺⁺ +2e⁻ by laser fluoresence

operate at 10 mK

solid state detectors competitive (similar FWHM) with Ge diodes energy resolution FWHM ~ 5 keV at 3 MeV

can be made of various ββ candidates: ⁸²Se, ¹⁰⁰Mo, ¹¹⁶Cd, ¹³⁰Te

particle identification possible

CUORE

¹³⁰Te – nat. i.a. ~34% – $Q_{\beta\beta}$ = 2528 keV

experimental set-up

detector = 988 TeO₂ crystals operated as bolometer = 741 kg = 206 kg 130 Te

10 mK refrigerator specially designed low activity

internal/external Pb shields + neutron shield

LNGS 3800 m.w.e. overburden

strategies

thermal signal FWHM at $Q_{BB} \sim 5 \text{ keV}$

background rejection obtained operating the detectors in anticoincidence (DBD signal fully contained in 1 crystal)

CUORE – the demonstrator = CUORE-0

1 CUORE tower mounted in the old Cuoricino cryostat 52 TeO₂ crystals = 39 kg = 11 kg ¹³⁰Te

CUORE-0 demonstrator – CUORE goals are

- (I) resolution 5 keV FWHM at Q_{BB}
- (II) background 10⁻² c/keV/kg/y

¹³⁰Te DBD experiment

running - June 2014 background exposure 18.06 kg.y or 5.02 kg(¹³⁰Te).yr. presently blinded data in the DBD region

Sensitivity $S^{0v}_{1/2} \sim 10^{26} \, \mathrm{yr}$

CUORE – the demonstrator = CUORE-0

²³²Th calibration of Cuore-0 array

CUORE – the demonstrator = CUORE-0

extrapolating CUORE-0 result to CUORE (less radioactive cryostat + more effective anticoincidence cut)

10⁻² c/keV/kg/y is feasible

CUORE – future prospects

unblinding in 2015 sensitivity 2 10²⁴ y

present generation experiments running or nearly (within 1-2 years) running aim at approaching the IH region

various technical efforst toward improvement of techniques

the challenge of net generation is to be able to (nearly) fully cover the IH

huge masses (procurement of isotope may be a big issue)
zero background detectors

just to understand how number now discussed compares among each other

BACKUP

GERDA

EXO-200 – bkg in the ROI $(1.7\pm0.2)\cdot10^{-3}$ keV⁻¹ kg⁻¹ yr⁻¹

SNO+

use SNO apparatus replacing heavy water with a liquid scintillator doped with a DBD candidate: **Te**

Sphere = 780 ton of Liquid Scintillator to be doped with $\beta\beta$ active nucleus

Geodesic Structure = support structure for PM

Water Cherenkov detector muon veto

6000 m.w.e. Sudbury

strategies

experimental set-up

scintillation signal FWHM at $Q_{\beta\beta} \sim 250 \text{ keV}$

rejection of bkg events Fiducial Volume + delayed coincidences

SNO+ - prospects

2014: water fill and water commissioning

nucleon decay physics
Backgrounds analysis

- Supernovae neutrinos
- 2015: start liquid scintillator fill
 - background analysis
 - reactor- and geo- antineutrinos
 - Supernovae neutrinos
 - Iow energy solar neutrinos

2016: 0.3% Te loading

- neutrinoless double beta decay
- reactor- and geo- antineutrinos
- Supernovae neutrinos

Half-life sensitivity @90%CL

down to the IH region by (hopefully) an increase in LS doping