Top Quark Physics at CMS

XIIth International Conference on Heavy Quarks and Leptons Waldthausen Castle, Mainz, August 25-29, 2014

Andreas B. Meyer

CMS Experiment

- Total Weight 14000 t
- Diameter 15 m
- Magnetic Field 3.8 T
- Silicon Pixel and Strip Trackers
- Crystal ECal, Brass HCal
- Muon Chambers, DT, RPC, CSC
- Trigger L1: 100kHz, ~500 Hz to tape

LHC 2010-2012: Top Quark Factory

- peak inst. luminosity: $8 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ \rightarrow 7000 top quark pairs per hour (8 TeV)
- > 25 fb⁻¹ recorded

ATI AS

 \rightarrow > 5,000,000 top each CMS and ATLAS

~ 2.3 MeV ~ 4.8 MeV ~ 95 MeV ~1.3 GeV ~ 4.2 GeV

~ 173 GeV

Top Quarks

M_w [GeV]

eV]

The top quark is the heaviest known particle

- Maximum sensitivity to Higgs (EWK loops, $gg \rightarrow H$)
- T ~ 5x10⁻²⁵ s: decay before hadronization: "bare quark"
- Direct access to spin and charge

Search for New Physics

- New physics might preferentially couple / decay to top
- Measu ard (and non-standard) couplings DES
- measurement of SM parameters Pre
 - ss sections, differential distributions
 - Froperues (mass, spin structure, asymmetries, Vtb ...)

Precise top quark measurements \rightarrow tighten constraints on standard model parameters \rightarrow sensitivity to New Physics

asurements

vidths measurements

Andreas B. Meyer

Top Quarl

Top Quark Pair Production

Top quark physics: require high-precision leptons, jets and b-tagging

Physics from Top Quark Production and Decay

Inclusive tt Cross Sections (8 TeV)

- dilepton channel: 1e+1µ+2jets (1b-tag)
 - Almost background-free, remaining backgrounds estimated from data
 - Systematics: Q², matching, jet energy scale

Several event hypotheses due ambiguities and due to unknov

Perform kinematic fit to top pa

- Constraints: M_w=80.4GeV/
 Assign identified b-jets to k
- Float jet p_T within uncertain
- Take hypothesis with small

Lepton charge q defines charge $q=+1 \rightarrow lept. top , q = -1 \rightarrow defines charge q$

almost exclusively to t->'

ATLAS and CMS have measured the inclusive tt cross section in all decay channels (except π)

Differential tt Cross Section

CMS. 5.0 fb⁻¹ at √s = 7 TeV

Data

3.5 ×10⁵

2

Dilepton Combined

CMS. 5.0 fb⁻¹ at $\sqrt{s} = 7$ TeV

CMS. 5.0 fb⁻¹ at √s = 7 TeV

Data

AS, 5

200

300

Dilepton Combined

Fop-quark pairs / 10 GeV

Charge/FB-Asymmetry

- LO: No charge asymmetry expected
- NLO: Interferences between qq diagrams
 - diluted at LHC due to large gg and unknown quark direction

Available asymmetry calculations are effectively leading order

tree-level and box diagrams: positive asymmetry

t T

Charge-Asymmetry

EAG: effective axial-vector coupling gluons events ം 0.15 ◀ CMS Preliminary CMS Preliminary Data Data 19.7 fb⁻¹ at $\sqrt{s} = 8$ TeV 19.7 fb⁻¹ at $\sqrt{s} = 8$ TeV EAG 1.0 TeV 40000 tī $A_{C,unc} = 0.003 \pm 0.002$ l+jets EAG 1.5 TeV Single top I+jets 0.1 NLO prediction 1 W+jets NLO prediction 2 30000 Z+jets Multijet 0.05 20000 0 $m(t\bar{t})$ 10000 -0.05 600 800 400 0 m, [GeV/c²] -4 -2 2 0 Δlyl 1.2 Data/MC 0.15 ں ◄ 1.1 CMS Preliminary Data 19.7 fb⁻¹ at $\sqrt{s} = 8$ TeV EAG 1.0 TeV 0.9 I+jets EAG 1.5 TeV 0.1 NLO prediction 1 0.8<u>4</u> -2 0 2 NLO prediction 2 0.05 $A_{C,top} = 0.4 \pm 1.0_{stat} \pm 1.1_{syst}$ % PLB 717 (2012) 129 $A_{C,top} = 0.5 \pm 0.7_{stat} \pm 0.6_{syst}$ % 0 TOP-12-033 -0.05^L QCD: $A_{C,top} = 1.23 \pm 0.05 \%$ Bernreuther, Si arXiv:1205.6580 0.5 1 ly l NNLO prediction underway Differential distributions give additional sensitivity

TOP-12-033

W Polarization

Andreas B. Meyer

			t ch.	tW ch.	s ch.	tt
Ē	Tevatron (pp)	2 TeV	2.08pb	0.25pb	1.05pb	7.08pb
		7 TeV	64.6pb	I 5.6pb	4.59 pb	I 72pb
	LHC (pp)	8 TeV	87.6pb	22.2pb	5.55pb	249pb
		14 TeV	248pb (×3.2)	84.8pb (×3.8)	11.9pb (×2.1)	954 pb (×3.9)

t-Channel: PDF from σ_t/σ_t

- In pp collisions expect: u-density ~2 × d-density
- Simultaneous fit to η'-distributions of positive and negative leptons

CMS, $\sqrt{s} = 8$ TeV, L = 19.7 fb⁻¹

 1.95 ± 0.10 (stat.) ± 0.19 (syst.)

Consistent with expectation - errors still large

CMS

ABM11

CT10

CT10w

HERAPDF

MSTW2008

NNPDF 2.3

1.2

1.4

1.6

η'jet

tW-Channel

- Event Signature
 - 2 e or µ, 1 jet (b-tagged)
- Analysis
 - Binned likelihood fit to BDT
- Dominant uncertainties:
 - statistics, b-tagging, tt bg-model

PLB 736 (2014) 33

$R_B = BR (tWb) / BR (tWq)$

Events

Obs./Exp.

2 leptons, 2 jets, MET

measured t-channel

Andreas B

- R_B from fit to b-tag multiplicity
 - data-driven determination of correct jetassignment fraction, b-tag efficiency and misidentification
- Dominant systematics: b-tag and m_{top}
- |V_{tb}| from R_B assuming unitary CKM
- Total width Γ_{top} from R_B and t-channel single top cross section

0.5

0.94

0.96

0.98

eμ

1

1.02

1.04

1.08

1.06

Wtb-Couplings: |Vtb| Summary

Andreas B. Meyer

Rare Top decays: FCNC

FCNC couplings can be probed in production (single top) and decay of top quarks

Andreas B. Meyer

Top Quark Physics at CMS

HQL2014, Mainz, 28 August 2014 27

Top-Quark Mass

arXiv:1407.3792

- MC mass believed to be close to pole mass within 0.5 GeV
- Experimental uncertainties due to final state modeling₄₆
 - Hadronization
 - Fragmentation
 - **Colour Reconnection**
 - Flavour-dependent jet energy response

Top-Quark Mass in I+jets channel

- e/µ + 4 jets, 2 b-tags (high purity selection)
- Analysis ('2D-Ideogram')
 - Reconstruct top mass from kin.fit (Pgof > 0.2)
 - 2D-fit of mass and jet energy scale (JES) using W-mass constraint
 - Weight each fit solution by P_{gof}
 - Measurement from max.likelihood in mass-JES plane

Dominant Uncertainties

- Jet energy resolution: 0.26 GeV
- Pile-up: 0.27 GeV
- Flavour-dependent jet energy scale, includes hadronization (PYTHIA vs HERWIG) 0.41 GeV
- ME-generator: 0.23 GeV

172

172.5 m_t [GeV]

1.002

171.5

Analysis in CMSSV

As precise as World Average

Top Quark Physics at CMS

.19_{stat+JES} ± 0.75_{syst} GeV

Top-Quark Mass in fully hadronic channel

Events / 1 GeV

- Signature
 - 6 jets, 2 b-tags (high purity selection)
- Analysis ('2D-Ideogram')
- Reconstruct top mass from kin.fit (P_{gof} > 0.1) using W-mass constraint
 - Weight each fit solution by P_{gof}
 - Measurement from max.likelihood in mass-JES plane

Dominant Uncertainties

- p_T and η-dependent JES: 0.28 GeV
- Pile-up: 0.31 GeV
- Flavour-dependent jet energy scale, includes hadronization (PYTHIA vs HERWIG) 0.36 GeV

Top (

As precise as World Average

ME-generator: 0.21 GeV

TOP-14-002

Andreas B. Meyer

Top Mass: Kinematic Dependence

10ᡛ

8

6

2

m₁^{1D} - <m₁^{1D}> [GeV]

data - MG Z2* [GeV]

- Investigate modelling issues: various (non-)perturbative corrections are different in their kinematic dependence
- Investigate distributions with sensitivity to

 $m_{
m t}^{
m 2D} \chi^2$

0.83

5.76

1.14

7.54

4.22

1.33

1.16

2.17

0.72

1.77

1.28

6.27

1.60

1.35

37.15

Ndf

3

4

3

4

5

4

2

4

2

3

4

2

4

3

47

- Color reconnection
- ISR/FSR

Observable

Jet multiplicity

 $\Delta R_{a\overline{a}}$

 $p_{T,t,had}$

 $|\eta_{t,had}|$ H_T^4

 $m_{t\bar{t}}$

p_{T.tt}

PT,b,had

 $|\eta_{\rm b,had}|$ $\Delta R_{\rm bb}$

 $p_{\mathrm{T},\mathrm{q,had}}^{1}$ $\left|\eta_{\mathrm{q,had}}^{1}\right|$

PT.W.had

17W.had

Total

- b-quark kinematics
- Figures: m_{top} <m_{top}>

 $m_{\rm t}^{\rm 1D}\,\chi^2$

2.87

0.89

5.56

6.19

2.16

1.02

4.24

2.57

1.15

0.37

4.04

3.36

1.59

1.41

37.43

JSF χ^2

3.66

12.03

1.22

9.18

4.69

1.22

0.10

5.80

0.08

1.63

8.39

3.79

8.06

1.09

60.94

No significant deviations between data and various models w.r.t their kinematic dependence

Top Quark Mass Summary

CMS

CMS Preliminary

Results using alternative methods not included in this summary

m(top), α_S and PDF from tt Cross Section

 NNLO calculation: precise relation between cross section, pole mass, α_s and PDF

$$lpha_{
m S}({
m m_Z})=0.1151^{+0.0028}_{-0.0027}$$
 for fixed m_{top}= 173.2 ± 1.4 GeV and NNPDF2.3

Outlook: Top at 13 TeV

Conclusions

- Top quark physics: Key to QCD, electro-weak and New Physics
- Precision regime: $\sigma_{tt} < 5\%$, m(top) ≤ 1 GeV, ...
- Inclusive cross section prediction available up to full NNLO, same precision as data
- Top Top-Topics:
 - tt and single-top production including differential distributions, tt+jets, ttbb, tttt
 - tt+W,Z,γ, charge-asymmetry, spin-correlations, W-helicity, V_{tb}, FCNC
 - mass, α_S, PDF
- All results so far in agreement with SM predictions
- Run-1: CMS working on Run-1 Legacy measurements
- Run-2: A new regime of precision measurements and searches with top quarks

Systematics Top-Quark Mass

C	N	15	1	1
~		2	6	1
-	4	-		A
le	-	4		
		-		

(h)	l l+	-jets	All jets						
Channel	$\delta m_{\rm t}$ (GeV)	δJSF	$\delta m_{\rm t} ~({\rm GeV})$	δJSF					
Experimental uncertainties									
Fit calibration	0.10	0.001	0.06	<0.001					
$p_{\rm T}$ - and η -dependent JES	0.18	0.007	0.28	0.006					
Lepton energy scale	0.03	<0.001							
Missing transverse energy	0.09	0.001							
Jet energy resolution	0.26	0.004	0.10	<0.001					
b-tagging	0.02	<0.001	0.02	<0.001					
Pileup	0.27	0.005	0.31	0.001					
Trigger			0.18	0.003					
Background	0.11	0.001	0.22	0.002					
Hadronization model									
Flavor-dependent JSF	0.41	0.004	0.36	0.004					
b-fragmentation	0.06	0.001	0.07	0.001					
Semi-leptomic B hadron decays	0.16	<0.001	0.12	<0.001					
Hard scattering process model									
PDF	0.09	0.001	0.02	<0.001					
Renormalization/factorization scales	0.12±0.13	0.004 ± 0.001	0.19±0.19	0.004 ± 0.002					
ME-PS matching threshold	0.15±0.13	0.003 ± 0.001	0.20±0.19	0.002 ± 0.002					
ME generator	0.23±0.14	0.003 ± 0.001	0.09±0.21	0.003 ± 0.002					
Non-perturbative QCD model									
Underlying event	0.14±0.17	0.002 ± 0.002	0.13±0.28	0.000 ± 0.002					
Colour reconnection	0.08 ± 0.15	0.002 ± 0.001	0.00 ± 0.25	0.000 ± 0.002					
Total	0.75	0.012	0.83	0.011					

- Similar treatment as for 7 TeV
 but larger statistics (data + MC)
 help refining syst. assessments
- JES uncertainty component due to pileup + $\Delta \sigma_{min,bias}$
- Signal modelling is added

Madgraph vs Powheg + modeling of top p_T estimated after re-weigthing simulation to observed top p_T

 Hadronization is the dominant uncertainty

Pythia-based JES extrapolation: from calibrated jet flavour to other flavours

Pythia vs Herwig differences are evaluated separately for light, gluon and b-jets

b-fragmentation: default vs LEP

Semi-leptonic B rates: from PDG

Systematics Top-Quark Mass

R = BR (tWb) / BR (tWq)

PLB 736 (2014) 33

Chronological summary of measurements of R_B performed so far