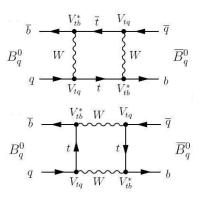
Mixing and CP violation in the B_s system with ATLAS HQL 2014

Daniel Scheirich on behalf of ATLAS

2014/08/26

Outline

Paper preprint: http://arxiv.org/abs/1407.1796 (accepted by PRD)


- Motivation
- Description of the angular analysis
- Experimental setup
- Data, Monte Carlo simulation and trigger selection
- Decay reconstruction and selection
- Flavor tagging
- Maximum likelihood fit
- Systematic uncertainties
- Results

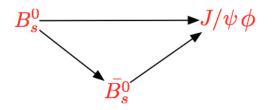
Motivation

Mixing in B_s system

- Mixing between B⁰_s and B
 ⁰_s gives rise to heavy and light mass eigenstates, B_L and B_H, with different lifetimes
- Mass difference [PDG] $\Delta m_s = m_s^H - m_s^L = 17.69 \pm 0.08 \text{ ps}^{-1}$
- Decay width difference [PRL 108 (2012) 241801] $\Delta\Gamma_s = \Gamma_s^L \Gamma_s^H = 0.087 \pm 0.021 \text{ ps}^{-1}$

Box diagrams of $B^{0} - \overline{B}^{0}$ mixing

$$i\frac{\mathrm{d}}{\mathrm{d}t}\left(\begin{array}{c}\left|B^{0}(t)\right\rangle\\\bar{B}^{0}(t)\right\rangle\end{array}\right) = \left[\left(\begin{array}{cc}M_{11} & M_{12}\\M_{12}^{*} & M_{22}\end{array}\right) - \frac{i}{2}\left(\begin{array}{cc}\Gamma_{11} & \Gamma_{12}\\\Gamma_{12}^{*} & \Gamma_{22}\end{array}\right)\right]\left(\begin{array}{c}\left|B^{0}(t)\right\rangle\\\bar{B}^{0}(t)\right\rangle\end{array}\right)$$


B⁰ system time evolution

Motivation

CP violation in $B_s ightarrow J/\psi \phi$ decay

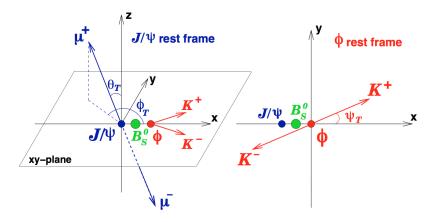
- Interference between mixing and direct decay
- Decay width depends on the **CP-violating** weak phase: *φ*_s

CP violation in the Standard Model

CP violation described by a **complex phase** in the CKM matrix

• In the SM: $\phi_s^{SM} \approx -2\beta_s = -0.0368 \pm 0.0018$

Motivation


New Physics

- In the SM ϕ_s is small $\Rightarrow \phi_s = \phi_s^{SM} + \phi_s^{NP} \approx \phi_s^{NP}$
- **Non-zero value** of ϕ_s indicates **new physics**
- ΔΓ_s is not sensitive to NP, but can be used to test theoretical predictions

Decay $B_s ightarrow J/\psi \phi$

- Clear experimental signature $B_s \rightarrow J/\psi(\mu^+\mu^-)\phi(\kappa^+\kappa^-)$
- Pseudo-scalar to vector-vector meson decay:
 - CP-even states: L = 0, 2
 - CP-odd state: *L* = 1
- Statistically distinguishable through time-dependent angular analysis

Transversity base decay angles

- In the **B**_s rest frame: x-axis aligned with the ϕ momentum and xy plane aligned with the ϕ decay plane
- θ_T and ϕ_T are the **polar and azimuthal** angles of the μ^+ momentum in the J/ψ rest frame
- ψ_{T} is the angle between the K^+ momentum and \hat{x} in the ϕ rest frame

Daniel Scheirich on behalf of ATLAS

Angular analysis

Decay amplitudes and phases

■ Differential decay rate of B_s → J/ψφ depends on the following parameters:

Amplitudes:

- |A₀(0)|: longitudinal CP-even state
- $|A_{\parallel}(0)|$: transverse CP-even
- $|A_{\perp}(0)|$: transverse CP-even odd
- Weak phase ϕ_s
- **Decay rates** Γ_s^L and Γ_s^H
- Mass difference Δm_s (cannot be extracted due to limited time resolution)

Strong phases:

• $\delta_0 = 0$ (fixed by convention)

$$lacksymbol{\delta}_{\parallel} = rg[A_{\parallel}(0)A_0^*(0)]$$

$$\bullet \delta_{\perp} = \arg[A_{\perp}(0)A_0^*(0)]$$

Angular analysis

Decays $B_s ightarrow J/\psi K^+ K^-$ and $B_s ightarrow J/\psi f_0(K^+ K^-)$

- Non-resonant S-wave decay $B_s \to J/\psi K^+ K^-$ and $B_s \to J/\psi f_0$ contribute to the final state
- Included in the differential decay rate due to interference with the $B_s \rightarrow J/\psi(\mu^+\mu^-)\phi(\kappa^+\kappa^-)$ decay
- Additional two parameters:
 - Amplitude $|A_S(0)|$
 - Phase δ_{S}
- Differential decay rate

$$rac{d\Gamma}{dt\,d\Omega} = \sum_{k=1}^{10} \mathcal{O}^{(k)}(t) \; g^{(k)}(heta_{ au}, \phi_{ au}, \psi_{ au})$$

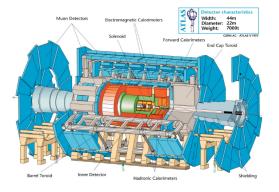
• $\mathcal{O}^{(k)}(t)$: time-dependent terms; $g^{(k)}(\theta_T, \phi_T, \psi_T)$: angular terms

Angular analysis

Differential decay rate

If initial flavor not known → terms starting with ± and ∓ disappear
 Initial flavor tagging → measurement of ϕ_s gains sensitivity

 \pm "+" for B_s^0 and "-" for \overline{B}_s^0 \mp "-" for B_s^0 and "+" for \overline{B}_s^0


		(1)
k	$\mathcal{O}^{(k)}(t)$	$g^{(k)}(heta_T,\psi_T,\phi_T)$
1	$\frac{1}{2} A_0(0) ^2 \left[(1+\cos\phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1-\cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2 heta_T\cos^2\phi_T)$
2	$\frac{1}{2} A_{\parallel}(0) ^2 \left[(1+\cos\phi_s) e^{-\Gamma_{\mathrm{L}}^{(s)}t} + (1-\cos\phi_s) e^{-\Gamma_{\mathrm{H}}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$\sin^2\psi_T(1-\sin^2 heta_T\sin^2\phi_T)$
3	$\frac{1}{2} A_{\perp}(0) ^2\left[\left(1-\cos\phi_s\right)e^{-\Gamma_{\rm L}^{(s)}t}+\left(1+\cos\phi_s\right)e^{-\Gamma_{\rm H}^{(s)}t}\boxplus 2e^{-\Gamma_s t}\sin(\Delta m_s t)\sin\phi_s\right]$	$\sin^2\psi_T\sin^2 heta_T$
4	$rac{1}{2} A_0(0) A_{\parallel}^{'}(0) \cos\delta_{ }$	$-rac{1}{\sqrt{2}}\sin 2\psi_T \sin^2 heta_T \sin 2\phi_T$
	$\left[\left(1+\cos\phi_s\right)e^{-\Gamma_{\mathrm{L}}^{(s)}t}+\left(1-\cos\phi_s\right)e^{-\Gamma_{\mathrm{H}}^{(s)}t}\boxplus 2e^{-\Gamma_s t}\sin(\Delta m_s t)\sin\phi_s\right]$	
5	$ A_{ }(0) A_{\perp}(0) rac{1}{2}(e^{-\Gamma_{ m L}^{(s)}t}-e^{-\Gamma_{ m H}^{(s)}t})\cos(\delta_{\perp}-\delta_{ })\sin\phi_{s}$	$\sin^2\psi_T\sin2 heta_T\sin\phi_T$
	$igsquigarrow e^{-\Gamma_s t}(\sin(\delta_\perp-\delta_\parallel)\cos(\Delta m_s t)-\cos(\delta_\perp-\delta_\parallel)\cos\phi_s\sin(\Delta m_s t))]$	
6	$ A_0(0) A_{\perp}(0) rac{1}{2}(e^{-\Gamma^{(s)}_{ m L}t}-e^{-\Gamma^{(s)}_{ m H}t})\cos\delta_{\perp}\sin\phi_s$	$rac{1}{\sqrt{2}}\sin 2\psi_T\sin 2 heta_T\cos \phi_T$
	$\pm e^{-\Gamma_s t}(\sin \delta_{\perp} \cos(\Delta m_s t) - \cos \delta_{\perp} \cos \phi_s \sin(\Delta m_s t))]$	
7	$\frac{1}{2} A_{S}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\Xi 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$rac{2}{3}\left(1-\sin^2 heta_T\cos^2\phi_T ight)$
8	$ A_{S}(0) A_{\parallel}(0) [rac{1}{2}(e^{-\Gamma_{ m L}^{(s)}t}-e^{-\Gamma_{ m H}^{(s)}t})\sin(\delta_{\parallel}-\delta_{S})\sin\phi_{s}$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2 heta_T\sin 2\phi_T$
	${\color{black}\underline{\boxplus}} e^{-\Gamma_S t}(\cos(\delta_{\parallel}-\delta_S)\cos(\Delta m_s t)-\sin(\delta_{\parallel}-\delta_S)\cos\phi_s\sin(\Delta m_s t))]$	
9	$rac{1}{2} A_S(0) A_\perp(0) \sin(\delta_\perp-\delta_S)$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin2 heta_T\cos\phi_T$
	$\left[(1 - \cos \phi_s) e^{-\Gamma_{\rm L}^{(s)} t} + (1 + \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)} t} \underline{\mp} 2 e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s \right]$	
10	$ A_0(0) A_S(0) _2^1 (e^{-\Gamma_{\rm H}^{(s)}t} - e^{-\Gamma_{\rm L}^{(s)}t}) \sin \delta_S \sin \phi_s$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
	$\boxplus e^{-\Gamma_s t}(\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t))]$	

Daniel Scheirich on behalf of ATLAS

Mixing and CP violation in the B_s system with ATLAS

The ATLAS Experiment

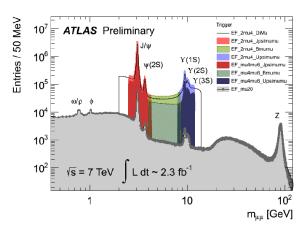
The ATLAS experiment

• Inner detector: tracks $p_T > 500$ MeV and $|\eta| < 2.5$

• Muon spectrometer: $p_T \gtrsim 2500$ MeV and $|\eta| < 2.7$

- Combined muons: ID+MS combined track
- Tagged muons: ID track + matched MS segments
- Extrapolated muons: MS track extrapolated to ID

This analysis


- Using only **combined** and segment **tagged** muons
- Track parameters from the ID measurement only (precision dominated by the ID)

Data, Monte Carlo, and Trigger

Data and Monte Carlo

- **7 TeV data** collected in **2011**, integrated luminosity of 4.9 fb⁻¹
- Monte Carlo
 - **Signal**: $B_s^0 \rightarrow J/\psi(\mu^+\mu^-)\phi(\kappa^+\kappa^-)$ (12 M, Pythia 6)
 - **Background**: $B^0 \to J/\psi K^{*0}$, $b\bar{b} \to J/\psi X$, and $pp \to J/\psi X$
- **Trigger selection**
 - Combination of single and di-muon triggers
 - J/ψ trigger with p_T requirement of 4 GeV on both muons (almost unprescaled)
 - J/ψ trigger with p_T requirement of 4 GeV and 2.5 GeV (prescale)
 - Other prescaled muon triggers
 - MC events weighted to emulate trigger prescales

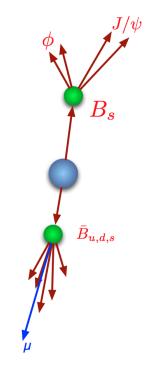
11

Decay reconstruction

- J/ψ → μ⁺μ⁻: oppositely charged muons fit to a common vertex
 φ → K⁺K⁻: oppositely charged tracks, p_T > 0.5 GeV, |m_{KK} - m_φ| < 11 MeV
- 3 $B_s \rightarrow J/\psi(\mu^+\mu^-)\phi(\kappa^+\kappa^-)$: $\mu^+\mu^-\kappa^+\kappa^-$ vertex fit
 - **J**/ ψ mass constrained in the fit
 - Vertex $\chi^2/N_{dof} < 3$
 - \blacksquare Invariant mass range 5.15 $< m_{\mu\mu KK} <$ 5.65 GeV
- Selected 132k Bs candidates
- No explicit requirement made on proper decay time!

Primary vertex

- \blacksquare In each bunch-crossing on average $\langle \mu \rangle \sim$ 5.6 collisions
- Primary vertex: closest to the B_s momentum in 3D


- Knowledge of initial *B* flavor improves **precision** of ϕ_s measurement
- Opposite-side tagging:
 - *b* quarks created in **pairs** $b\bar{b}$
 - Flavor of B_s is correlated with the flavor of other B meson in the event

Muon tagging

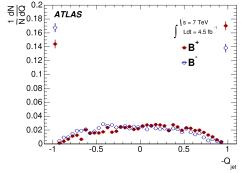
- $b
 ightarrow \mu$ transition: b flavor given by μ charge
- **Diluted** by $b \rightarrow c \rightarrow \mu$ cascade decays and neutral *B* meson oscillations

Jet charge tagging


- Search for **jet** opposite to B_s meson
- Momentum-weighted track charge sum as discriminating variable

Muon tagging

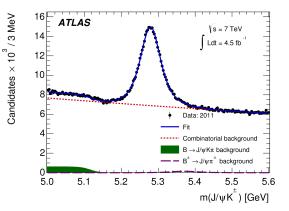
- Additional **muon** in the event
- Muon and tracks in the cone ∆R < 0.5 around the muon:</p>



Jet charge tagging

- \blacksquare In absence of μ use b-tagged jet
- Tracks in the cone ΔR < 1.0 around the jet axis:

$$Q_{jet} = rac{\sum_{tracks} q^i (p_T^i)^\kappa}{\sum_{tracks} (p_T^j)^\kappa}$$



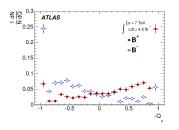
• Taggers calibrated with $B^{\pm} \rightarrow J/\psi K^{\pm}$ decays with known flavor

Tagging calibration

- Probability distributions for Q_{μ} and Q_{jet} created using events with $B^{\pm} \rightarrow J/\psi K^{\pm}$
- Background subtracted using distributions of Q_µ and Q_{jet} for events in sidebands

■ Calibration → probability distributions P(Q|B⁺) and P(Q|B⁻)
 ■ Tagging probability: (Bayes' theorem)

$$P(B|Q) = \frac{P(Q|B^+)}{P(Q|B^+) + P(Q|B^-)} \quad P(\bar{B}|Q) = \frac{P(Q|B^-)}{P(Q|B^+) + P(Q|B^-)}$$



Tagging performance

- Tagging efficiency
- Effective dilution
- Tagging power

$$\epsilon = 32.1 \pm 0.1 \%$$

 $\mathcal{D} = 21.3 \pm 0.08 \%$

 $TP = 1.45 \pm 0.05$ %

 $P_i = \frac{P(Q_i|B^+)}{P(Q_i|B^+) + P(Q_i|B^-)}$

$$\epsilon = \frac{1}{N} \sum_{i=1}^{n_{bins}} n_i$$
 $\mathcal{D} = \sqrt{\frac{TP}{\epsilon}}$ $TP = \frac{1}{N} \sum_{i=1}^{n_{bins}} n_i [2P_i - 1]^2$

Tagger	Efficiency [%]	Dilution [%]	Tagging Power [%]
Combined μ	3.37 ± 0.04	50.6 ± 0.5	0.86 ± 0.04
Segment Tagged μ	1.08 ± 0.02	36.7 ± 0.7	0.15 ± 0.02
Jet charge	27.7 ± 0.1	12.68 ± 0.06	0.45 ± 0.03
Total	32.1 ± 0.1	21.3 ± 0.08	1.45 ± 0.05

Observables

- Invariant mass *m_{J/ψKK}*
- Proper decay time: **t**

 $= L_{xy}m_B/p_T$

 \blacksquare Uncertainties σ_m and σ_t

- Three transversity angles $\mathbf{\Omega} \equiv (\theta_T, \phi_T, \psi_T)$
- Tagging probability: P(B|Q)
- Transverse momentum: **p**_T

Likelihood function

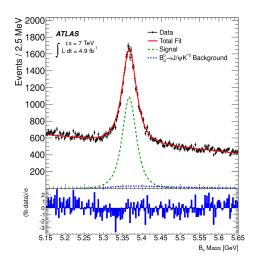
$$\ln \mathcal{L} = \sum_{i=1}^{N} \{ \overline{w_i} \cdot \ln(f_s \cdot \overline{\mathcal{F}_s(m_i, t_i, \Omega_i, P(B|Q))}) + f_s \cdot f_{B^0} \cdot \overline{\mathcal{F}_{B^0}(m_i, t_i, \Omega_i, P(B|Q))} + (1 - f_s \cdot (1 + f_{B^0})) \cdot \overline{\mathcal{F}_{bkg}(m_i, t_i, \Omega_i, P(B|Q))} \}$$

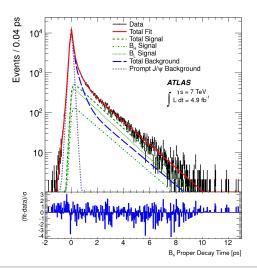
- Time-dependent muon trigger efficiency correction
- **Signal** probability density function (**PDF**)
- **Background** from $B^0 \to J/\psi K^{*0}$ and $B^0 \to J/\psi K\pi$
- Prompt and non-prompt combinatorial background

In total 25 free parameters

Signal PDF

$$F_{s}(m_{i}, t_{i}, \Omega_{i}, P(B|Q)) = \underbrace{P_{s}(m_{i}, \sigma_{m_{i}})}_{P_{s}(\Omega_{i}, t_{i}, P(B|Q), \sigma_{t_{i}})} \cdot \underbrace{P_{s}(\sigma_{t_{i}})}_{P_{s}(P(B|Q))} \cdot \underbrace{P_{s}(\sigma_{t_{i}})}_{A(\Omega_{i}, p_{T_{i}})} \cdot \underbrace{P_{s}(\sigma_{t_{i}})}_{P_{s}(p_{T_{i}})}$$

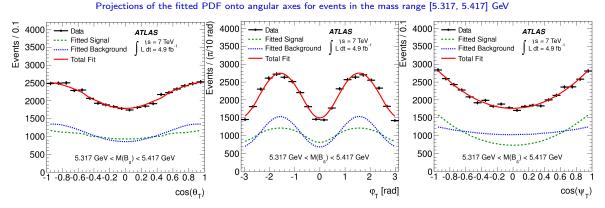

- **Mass PDF**: gaussian with width σ_{m_i}
- Time-angular PDF convolved with time resolution function G(t, σ_{ti}). Flavor-dependent terms weighted by the corresponding tagging probability
- Angular **acceptance** (from MC, in bins of p_T)
- **Punzi terms** [empirical distributions of σ_{m_i} , σ_{t_i} , and P(B|Q)].



Results of the fit

- $\blacksquare \ \phi_{\it s} = 0.12 \pm 0.25 \ {\rm rad}$
- $\Delta\Gamma_s$: 0.053 ± 0.021 ps⁻¹
- $\Gamma_s = 0.677 \pm 0.007 \text{ ps}^{-1}$

 $(\Delta m_s \text{ fixed, } |A_{\perp}| \text{ from the constraint, } \delta_0 \equiv 0)$ $|A_{\parallel}(0)|^2 = 0.220 \pm 0.008$ $\delta_{\perp} = 3.89 \pm 0.47 \text{ rad}$ $|A_0(0)|^2 = 0.529 \pm 0.006$ $\delta_{\parallel} \in [3.14, 3.23] \text{ rad}$ $|A_5(0)|^2 = 0.024 \pm 0.014$ $\delta_{\perp} - \delta_5 : [3.02, 3.25] \text{ rad}$



Mixing and CP violation in the B_s system with ATLAS

Daniel Scheirich on behalf of ATLAS

Results of the fit

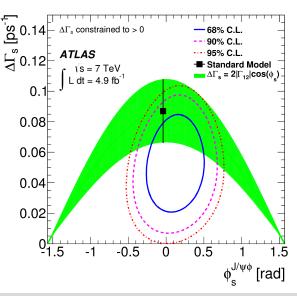
Systematic uncertainties

	ϕ_s	$\Delta \Gamma_s$	Γ_s	$ A_{\ }(0) ^2$	$ A_0(0) ^2$	$ A_S(0) ^2$	δ_{\perp}	δ_{\parallel}	$\delta_{\perp} - \delta_S$
	[rad]	$[\mathrm{ps}^{-1}]$	$[\mathrm{ps}^{-1}]$				[rad]	[rad]	[rad]
ID alignment	$< 10^{-2}$	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	-	$< 10^{-2}$	$< 10^{-2}$	-
Trigger efficiency	$< 10^{-2}$	$< 10^{-3}$	0.002	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-2}$	$< 10^{-2}$	$< 10^{-2}$
B^0 contribution	0.03	0.001	$< 10^{-3}$	$< 10^{-3}$	0.005	0.001	0.02	$< 10^{-2}$	$< 10^{-2}$
Tagging	0.03	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	0.04	$< 10^{-2}$	$< 10^{-2}$
Acceptance	0.02	0.004	0.002	0.002	0.004	-	-	$< 10^{-2}$	-
Models:									
Default fit	$< 10^{-2}$	0.003	$< 10^{-3}$	0.001	0.001	0.006	0.07	0.01	0.01
Signal mass	$< 10^{-2}$	0.001	$< 10^{-3}$	$< 10^{-3}$	0.001	$< 10^{-3}$	0.03	0.04	0.01
Background mass	$< 10^{-2}$	0.001	0.001	$< 10^{-3}$	$< 10^{-3}$	0.002	0.06	0.02	0.02
Resolution	0.02	$< 10^{-3}$	0.001	0.001	$< 10^{-3}$	0.002	0.04	0.02	0.01
Background time	0.01	0.001	$< 10^{-3}$	0.001	$< 10^{-3}$	0.002	0.01	0.02	0.02
Background angles	0.02	0.008	0.002	0.008	0.009	0.027	0.06	0.07	0.03
Total	0.05	0.010	0.004	0.009	0.012	0.028	0.11	0.09	0.04

Uncertainty of trigger efficiency correction

- Variation of physics background fractions
- Variation of tagging calibration parametrization
- Uncertainty estimated form MC tests of acceptance fitting method
 Pseudo-experiments with variations of parameterizations

Results

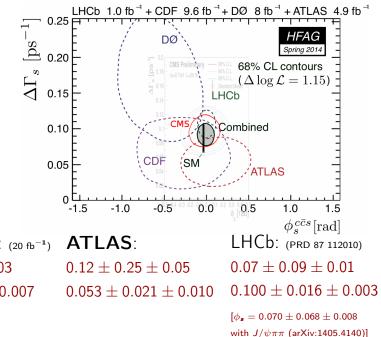

■ Ambiguity in sign of $\Delta\Gamma_s$: { ϕ_s , $\Delta\Gamma_s$, δ_{\perp} , δ_{\parallel} } \rightarrow { $\pi - \phi_s$, $-\Delta\Gamma_s$, $\pi - \delta_{\perp}$, $2\pi - \delta_{\parallel}$ } ■ $\Delta\Gamma_s > 0$ constrained by LHCb (PRL 108 (2012) 241801)

Summary of the fit extracted parameters

log L contours in $\phi_s \times \Delta \Gamma_s$ space

Parameter	Value	Statistical	Systematic	
		uncertainty	uncertainty	
$\phi_s[\mathrm{rad}]$	0.12	0.25	0.05	
$\Delta \Gamma_s [\mathrm{ps}^{-1}]$	0.053	0.021	0.010	
$\Gamma_s [\mathrm{ps}^{-1}]$	0.677	0.007	0.004	
$ A_{\parallel}(0) ^2$	0.220	0.008	0.009	
$ A_0(0) ^2$	0.529	0.006	0.012	
$ A_{S}(0) ^{2}$	0.024	0.014	0.028	
δ_{\perp}	3.89	0.47	0.11	
δ_{\parallel}	[3.	04,3.23]	0.09	
$\delta_{\perp} - \delta_S$	[3.	02,3.25]	0.04	

 $\phi_s^{SM} = -0.0368 \pm 0.0018$


Mixing and CP violation in the B_s system with ATLAS

Results

Comparison with other measurements

- HFAG combination shows an agreement with the SM
- HFAG combination
 does not include
 the CMS result
- CMS result
 superimposed
- CMS-PAS-BPH-11-006: (20 fb⁻¹) ϕ_s [rad]: 0.03 ± 0.11 ± 0.03 $\Delta\Gamma_s$ [ps]: 0.096 ± 0.014 ± 0.007

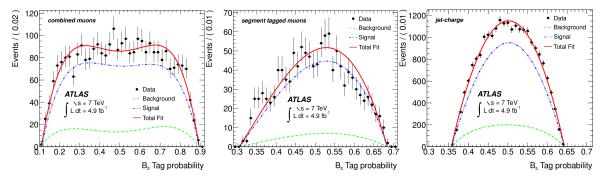
Conclusions

- Flavor-tagged time-angular analysis of $B_s \rightarrow J/\psi \phi$ decay with ATLAS 7 TeV data (2011) was performed
- The weak phase ϕ_s and the B_s^L and B_s^H decay rate difference was measured to be

$$\phi_s = 0.12 \pm 0.25(stat) \pm 0.05(syst) \text{ rad}$$

 $\Delta\Gamma_s = 0.053 \pm 0.021(stat) \pm 0.010(syst) \text{ ps}^{-1}$

- The results is in agreement with measurements by D0, CDF, LHCb, and CMS
- The results is in agreement with the SM expectations
- Analysis of 8 TeV data (2012) is under way
- Exciting prospects of precision measurement with run-2 data (ATL-PHYS-PUB-2013-010)



Backup slides

Tagging probability distributions (Punzi terms)

- Parametrized from **fits** to B_s **data** using Chebychev polynomials
- Background distributions fixed in sidebands
- \blacksquare Probabilities for events with $Q=\pm 1$ treated separately
- P = 0.5 in absence of tagging information

