Introduction to the Soft - Collinear Effective Theory

Lecture II

Iain Stewart MIT

Symmetry Breaking Summer School on Lake Chiemsee, Germany September, 2014

Outline (Lecture I)

EFT concepts
 Intro to SCET
 SCET degrees of freedom

Done on the Board

- SCET1, momentum scales and regions
- Field power counting in SCET
- Wilson lines, W, from off shell propagators
- Gauge Symmetry
- Hard-Collinear Factorization
- eg. Deep Inelastic Scattering

Outline (Lecture II)

- Review from Lecture I
- SCET Lagrangian
- Hard Operator Examples
- Sudakov Resummation from RGE
- Soft-Collinear Factorization
- One-loop Matching Example
- $e^+e^- \rightarrow \text{dijets}$ & Factorization

Done on the Board (See the lecture notes below plus the summary slide.)

SCET Lecture II Write ahead of time, review from LI: ete > 2jets with usoft radiat. SCET hard vsoft Cn Q P=02 Ca Q22 p2=072 USoft $P^{2} = Q^{2} \lambda^{4}$ Qat Q Modes pt= (+,-,+) f2 fields 2n~7, An~(2,1,2) Q (2,1,2) Q22n-collineor 3=~7, A=~(12,2) $Q(1, 2^{2}, 2)$ QZZZ A-collineor Q (22, 22, 22) Q224 usoft Bus~23, Aus~22 And X In = 0 Quark Building Black: Xn = Wn 2n S(w-ini) Xn Lecture I SCET 2 . for isolated interactions which are purely n-collinear or purely ultrasoft => just full Laco for each sector usoft: nothing to n-collinear: boost $(a^2, i, a) \Rightarrow (a, a, a)$ expand, homogeneous then same arguement · SCET describes interactions between sectors 1) usoft interacting with collinear 8-7-7 Der Eus EUS N On-shell

5 2) hard interactions produce collinear quarks obeying X 2n = 0 [boost orguement fails with hard int.] $daco = \overline{\Psi}i\overline{\mu}\psi$ write $\Psi = (\underline{\alpha}\overline{\mu} + \overline{\mu}\alpha)\Psi = 2\alpha + \beta_0$ = ... = $\frac{1}{2} \frac{1}{2} in \frac{1}{2} \frac$ e.o.m S/SPA => Y== In0 i Ø1 7 20 $2\alpha c = \frac{\pi}{2} \left(i n \cdot O + i B_{\perp} \right) \frac{\pi}{2} \frac{2}{2} \sum_{n} \left[s + i B_{\perp} \right] \frac{\pi}{2} \frac{2}{2} \sum_{n} \left[s + i B_{\perp} \right] \frac{\pi}{2} \frac{2}{2} \sum_{n} \left[s + i B_{\perp} \right] \frac{\pi}{2} \frac{2}{2} \sum_{n} \left[s + i B_{\perp} \right] \frac{\pi}{2} \frac{2}{2} \sum_{n} \left[s + i B_{\perp} \right] \frac{\pi}{2} \frac{2}{2} \sum_{n} \left[s + i B_{\perp} \right] \frac{\pi}{2} \frac{2}{2} \sum_{n} \left[s + i B_{\perp} \right] \frac{\pi}{2} \frac{2}{2} \sum_{n} \left[s + i B_{\perp} \right] \frac{\pi}{2} \frac{2}{2} \sum_{n} \left[s + i B_{\perp} \right] \frac{\pi}{2} \frac{2}{2} \sum_{n} \left[s + i B_{\perp} \right] \frac{\pi}{2} \sum_{n} \left[s + i B_{\perp} \right] \frac{\pi}{$ Expand · couple only to En [in path integral J.En] • $in \cdot D = in \cdot \partial + gn \cdot An + gn \cdot Aus$ $\lambda^2 = \lambda^2 = \lambda^2$ • $iD_{\perp} = iD_{n\perp} + o \cdots$ $\partial_{us} \ll i\partial_{n}^{\perp} = \frac{multipole}{expansion}$ $\partial_{us} \ll A_{n}^{\perp}$ • $i \overline{n} \cdot D = i \overline{n} \cdot D_n + \cdots + i \overline{n} \cdot \partial us \ll i \overline{n} \cdot \partial_n$ λ° $\overline{n} \cdot A us \ll \overline{n} \cdot A_n$ SCET $y_{n2}^{(n)} = \overline{2}_n \left(in \cdot D + i \not(n_1 \perp \perp i \not(n_1 \perp \perp n_2)) - \frac{\pi}{2} \right)$ gluon Lig , some D's $\chi_{SCET}^{(0)} = \chi_{US}^{(0)} + \Sigma \left(\chi_{U2}^{(0)} + \chi_{U2}^{(0)}\right)$ Gloon Building Block $g \mathcal{B}_{n+}^{\mu} = [\mathcal{W}_{n+}^{\dagger} i \mathcal{D}_{n+}^{\mu} \mathcal{W}_{n}] = [\mathcal{W}_{n+}^{\dagger} [i\overline{n};\mathcal{D}_{n+}, i\mathcal{D}_{n+}] \mathcal{W}_{n}$ field strength BAL = AAL - KE T. AA + ... Using egths of motion ? building blocks { Xn, Bns, Pit's suffice

More Hard Operators 0 In VI XA & Ampl ~ ete > dijets Bri Brige < [Ampl]² gluon PDF $(\overline{\chi}_{n}, \chi_{n})(\overline{\chi}_{n}, \chi_{n})$ ete > TTT pp → H + 1-jet remove top 400 --- → 400--remove hard physics QNMH 99->Hg 98 > Hg, 83 > H i'H " hard " hard were hard " hard were k focus on gluon => case here Boit Bost Bost H Tuiperus (if aiasas) & no daiasas by charge how many operators ? Use helicity basis (Cachazo's lectures later this week) ${}^{\circ}B_{n\pm} = -E_{\pm}^{\mu}(n,\bar{n}) {}^{\circ}B_{n\mu}^{\pm}, \quad E_{\pm}(n,\bar{n}) = \frac{1}{52}(0,1,\pm i,0)$ Allowed B B B 2 non-trivial C(µ)'s in SCET + & Wilson Coeffs determined by Parity

 $\begin{array}{ll} \textbf{SCET}_{I} \quad \textbf{summary} \\ \textbf{usoft \& collinear modes} \\ q_{us} \sim \lambda^{3} \qquad & \xi_{n} \sim \lambda \\ A_{us}^{\mu} \sim \lambda^{2} \qquad & (A_{n}^{+}, A_{n}^{-}, A_{n}^{\perp}) \sim (\lambda^{2}, 1, \lambda) \\ & \sim p_{c}^{\mu} \end{array}$

covariant derivatives:

$$iD_{\perp}^{n\mu} = i\partial_{n\perp}^{\mu} + gA_n^{\perp\mu} \qquad iD_{us}^{\mu} = i\partial^{\mu} + gA_{us}^{\mu}$$
$$i\bar{n} \cdot D_n = i\bar{n} \cdot \partial_n + g\bar{n} \cdot A_n$$

LO SCET_I Lagrangian:
$$\mathcal{L}^{(0)} = \mathcal{L}^{(0)}_{us} + \sum_{n} \left(\mathcal{L}^{(0)}_{n\xi} + \mathcal{L}^{(0)}_{ng} \right)$$

$$\mathcal{L}_{n\xi}^{(0)} = \bar{\xi}_n \left\{ n \cdot iD_{us} + gn \cdot A_n + i \not\!\!D_{\perp}^n \frac{1}{i\bar{n} \cdot D_n} i \not\!\!D_{\perp}^n \right\} \frac{\hbar}{2} \xi_n$$

 $\mathcal{L}_{ng}^{(0)} = \mathcal{L}_{ng}^{(0)}(D_{n\perp}^{\mu}, \bar{n} \cdot D_n, in \cdot D_{us} + gn \cdot A_n), \quad \mathcal{L}_{us}^{(0)} = \mathcal{L}^{\text{QCD}}(q_{us}, A_{us}^{\mu})$

Properties of
$$\mathcal{L}_{n\xi}^{(0)} = \bar{\xi}_n \left\{ n \cdot iD_{us} + gn \cdot A_n + i \not D_{\perp}^n \frac{1}{i\bar{n} \cdot D_n} i \not D_{\perp}^n \right\} \frac{\hbar}{2} \xi_n$$

1) has particles and antiparticles, pair creation & annihilation $i(\sqrt{2} - \sqrt{2})$

$$\frac{i\eta}{2}\frac{\theta(\bar{n}\cdot p)}{n\cdot p + \frac{p_{\perp}^2}{\bar{n}\cdot p} + i\epsilon} + \frac{i\eta}{2}\frac{\theta(-\bar{n}\cdot p)}{n\cdot p + \frac{p_{\perp}^2}{\bar{n}\cdot p} - i\epsilon} = \frac{i\eta}{2}\frac{\bar{n}\cdot p}{n\cdot p\bar{n}\cdot p + p_{\perp}^2 + i\epsilon} = \frac{i\eta}{2}\frac{\bar{n}\cdot p}{p^2 + i\epsilon}$$

2) all components of A_n^{μ} couple to ξ_n

3) only $n \cdot A_{us}$ couple at LO, only depends on $n \cdot k_{us}$ momentum

Sudakov Logs & RGE (Renormalization Group Equations)

UV renormalization in SCET

eg.
$$e^+_{\text{em}} \rightarrow \text{dijets}$$
 $\bar{\chi}_n \gamma^{\mu}_{\perp} \chi_{\bar{n}} = (\bar{\xi}_n W_n) \gamma^{\mu}_{\perp} (W^{\dagger}_{\bar{n}} \xi_{\bar{n}})$
 $\rightarrow - \otimes$ (Feynman gauge, UV: $d = 4 - 2\epsilon$, IR: $p^2 \neq 0, \bar{p}^2 \neq 0$)

$$\operatorname{sum} = \frac{\alpha_s C_F}{4\pi} \left[\frac{2}{\epsilon^2} + \frac{2}{\epsilon} \ln\left(\frac{\mu^2}{-Q^2 - i0}\right) + \frac{3}{\epsilon} + \dots \right]$$

$$\overline{\operatorname{MS}}$$

counterterm $(Z_C - 1) \times \bigotimes \left[-\frac{\alpha_s C_F}{4\pi} \left[-\frac{2}{\epsilon^2} - \frac{2}{\epsilon} \ln\left(\frac{\mu^2}{-Q^2 - i0}\right) - \frac{3}{\epsilon} + \dots \right]$

$$C^{\text{bare}} = Z_C C(\mu)$$

RGE:

$$0 = \mu \frac{d}{d\mu} C^{\text{bare}} = \left[\mu \frac{d}{d\mu} Z_C \right] C(\mu) + Z_C \left[\mu \frac{d}{d\mu} C(\mu) \right] \quad \Longrightarrow \quad \mu \frac{d}{d\mu} C(\mu) = \gamma_C C(\mu)$$

$$\gamma_C = \left(-Z_C^{-1}\right) \mu \frac{d}{d\mu} Z_C = (-1) \frac{C_F}{4\pi} \left[(-2\epsilon \alpha_s) \left(\frac{-2}{\epsilon^2} - \frac{2}{\epsilon} \ln \frac{\mu^2}{-Q^2} - \frac{3}{\epsilon}\right) + \alpha_s \left(\frac{-4}{\epsilon}\right) \right]$$
$$\mu \frac{d}{d\mu} \alpha_s = -2\epsilon \alpha_s + \dots$$

 $= -\frac{\alpha_s(\mu)}{4\pi} \left[4C_F \ln \frac{\mu^2}{-Q^2} + 6C_F \right] \quad \text{finite}$

$$\operatorname{sum} = \frac{\alpha_s C_F}{4\pi} \left[\frac{2}{\epsilon^2} + \frac{2}{\epsilon} \ln\left(\frac{\mu^2}{-Q^2 - i0}\right) + \frac{3}{\epsilon} + \dots \right]$$

$$\overline{\operatorname{MS}}$$

$$\operatorname{counterterm} \quad (Z_C - 1) \times \bigotimes \qquad = \frac{\alpha_s C_F}{4\pi} \left[-\frac{2}{\epsilon^2} - \frac{2}{\epsilon} \ln\left(\frac{\mu^2}{-Q^2 - i0}\right) - \frac{3}{\epsilon} + \dots \right]$$

$$C^{\text{bare}} = Z_C C(\mu)$$

RGE:

square the amplitude: $H = |C(\mu)|^2$

$$\mu \frac{d}{d\mu} H(Q,\mu) = \left(\gamma_C + \gamma_C^*\right) H(Q,\mu) = -\frac{\alpha_s(\mu)}{2\pi} \left[8C_F \ln \frac{\mu}{Q} + 6C_F\right] H(Q,\mu)$$
Solve This on
Homework #3
$$H(Q,\mu_1) = H(Q,\mu_0) \exp\left[-\# \alpha_s \ln^2 \frac{\mu_1}{Q} + \dots\right] \quad \text{frozen} \quad \text{coupling}$$

 $\bar{\chi}_n \gamma^{\mu}_{\perp} \chi_{\bar{n}}$

 $H(Q, \mu_1) = H(Q, \mu_0) \exp\left[-\# \frac{1}{\alpha_s(\mu_0)} f\left(\frac{\alpha_s(\mu_1)}{\alpha_s(\mu_0)}\right) + \dots\right] \quad \text{running coupling } \text{Sudakov}$

Form Factor

restricts radiation, Sudakov = no emission probability

Ultrasoft - Collinear Factorization

Multipole Expansion: $\mathcal{L}_{c}^{(0)} = \bar{\xi}_{n} \Big\{ n \cdot i D_{us} + gn \cdot A_{n} + i \mathcal{P}_{\perp}^{c} \frac{1}{i \bar{n} \cdot D_{c}} i \mathcal{P}_{\perp}^{c} \Big\} \frac{\bar{n}}{2} \xi_{n}$

usoft gluons have eikonal Feynman rules and induce eikonal propagators

Field Redefinition:

$$\xi_n \to Y_n \xi_n , A_n \to Y_n A_n Y_n^{\dagger} \qquad Y_n(x) = P \exp\left(ig \int_{-\infty}^{\infty} ds \, n \cdot A_{us}(x+ns)\right)$$
$$n \cdot D_{us} Y_n = 0, \quad Y_n^{\dagger} Y_n = 1$$

gives
$$\mathcal{L}_{n\xi}^{(0)} = \bar{\xi}_n \left\{ n \cdot i D_{us} + \dots \right\} \frac{n}{2} \xi_n \implies \bar{\xi}_n \left\{ n \cdot i D_n + i \not D_{n\perp} \frac{1}{i \bar{n} \cdot D_n} i \not D_{n\perp} \right\} \frac{n}{2} \xi_n$$

similar for $\mathcal{L}_{ng}^{(0)}$

Moves all usoft gluons to operators, simplifies cancellations

Field Theory gives the same results pre- and post- field redefinition, but the organization is different

Ultrasoft - Collinear Factorization:

 $\xi_n \to Y_n \xi_n$ also $W_n \to Y_n W_n Y_n^{\dagger}$

eg1.
$$\bar{\chi}_n \gamma^{\mu}_{\perp} \chi_{\bar{n}} \implies \bar{\chi}_n (Y_n^{\dagger} Y_{\bar{n}}) \gamma^{\mu}_{\perp} \chi_{\bar{n}}$$

usoft-collinear factorization is simple in SCET

eg2.
$$\bar{\chi}_n \frac{\hbar}{2} \chi_n \implies \bar{\chi}_n (Y_n^{\dagger} Y_n) \frac{\hbar}{2} \chi_n = \bar{\chi}_n \frac{\hbar}{2} \chi_n$$

color transparency

T

note: not upset by $\delta(\omega - i\bar{n} \cdot \partial_n)$ since ultrasoft gluons carry no $i\bar{n} \cdot \partial_n \sim \lambda^0$ momenta

One-Loop Matching Calculation

QCD - SCET =
$$\frac{\alpha_s C_F}{4\pi} \left[-\ln^2 \frac{\mu^2}{-Q^2} - 3\ln \frac{\mu^2}{-Q^2} - 8 + \frac{\pi^2}{6} \right]$$

$$C(Q,\mu) = 1 + \frac{\alpha_s(\mu)C_F}{4\pi} \left[-\ln^2 \frac{\mu^2}{-Q^2} - 3\ln \frac{\mu^2}{-Q^2} - 8 + \frac{\pi^2}{6} \right]$$

One-Loop Matching Calculation

 \otimes

$$QCD - SCET = \frac{\alpha_s C_F}{4\pi} \left[-\ln^2 \frac{\mu^2}{-Q^2} - 3\ln \frac{\mu^2}{-Q^2} - 8 + \frac{\pi^2}{6} \right]$$

$$C(Q, \mu) = 1 + \frac{\alpha_s(\mu)C_F}{4\pi} \left[-\ln^2 \frac{\mu^2}{-Q^2} - 3\ln \frac{\mu^2}{-Q^2} - 8 + \frac{\pi^2}{6} \right]$$

Once we know how this works, there is a much easier way to get this answer.

Result for C is independent of our choice of IR regulator. Use dim.reg. for IR too.

$$\begin{array}{c} & & \\ & &$$

$$\frac{d\sigma}{de} = \frac{1}{Q^2} \sum_X \mathcal{L}_{\mu\nu} \langle 0 | J^{\dagger\nu}(0) | X \rangle \langle X | J^{\mu}(0) | 0 \rangle \delta(e - e(X)) \delta^4(q - p_X)$$

SCET_I
$$J^{(0)} = \int d\omega d\bar{\omega} C(\omega, \bar{\omega}) \, \bar{\chi}_{n,\omega} \Gamma \chi_{\bar{n},\bar{\omega}}$$

= $\int d\omega d\bar{\omega} C(\omega, \bar{\omega}) \, \bar{\chi}_{n,\omega} \, Y_n^{\dagger} \Gamma Y_{\bar{n}} \, \chi_{\bar{n},\bar{\omega}}$
 $\chi_{n,\omega} = \delta(\omega - i\bar{n} \cdot \partial_n) \chi_n$

$$|X\rangle = |X_n X_{\bar{n}} X_{us}\rangle$$

$$\frac{d\sigma}{de} = \frac{1}{Q^2} \sum_{X_{us}, X_{\bar{n}}, X_n} \mathbb{L}_{\mu\nu} \int [d\omega_i] C(\omega, \bar{\omega}) C(\omega', \bar{\omega}') \langle 0 | (\tilde{Y}_{\bar{n}}^{\dagger} \Gamma \tilde{Y}_n) | X_{us} \rangle \langle X_{us} | (Y_n^{\dagger} \Gamma Y_{\bar{n}}) | 0 \rangle$$
$$\langle 0 | \bar{\chi}_{\bar{n}}, \bar{\omega}' | X_{\bar{n}} \rangle \langle X_{\bar{n}} | \chi_{\bar{n}}, \bar{\omega} | 0 \rangle \langle 0 | \chi_{n,\omega'} | X_n \rangle \langle X_n | \bar{\chi}_{n,\omega} | 0 \rangle \delta(e - e(X)) \delta^4(q - p_X)$$

should specify "e" to go further, but generically we get

$$\frac{d\sigma}{de} \sim |C(Q,\mu)|^2 \int d\ell^+ d\ell^- J_{\bar{n}}(\ell^-,\mu) J_n(\ell^+,\mu) S(\ell^-,\ell^+,\mu)$$
hard
perturbative
perturbative
corrections
hard
function

Homework #4: Compute the jet function at one-loop

Non-perturbative Factorization:

