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LO SCET  Lagrangian:

SCETI summary
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Reparameterization Invariance (RPI)

9

i∂µUc(x) ∼ pµ
cUc(x) ↔ Aµ

n,q (74)

i∂µUus(x) ∼ pµ
c Uus(x) ↔ Aµ

us (75)

n n̄, break Lorentz invariance, restored within collinear cone !
  by RPI,  three types

(b) Any choice of the reference light-cone vectors n and n̄ satisfying

n2 = 0 , n̄2 = 0 , n · n̄ = 2 , (3)

are equally good, and can not change physical predictions.

For type (b) the most general infinitesimal change in n and n̄ which preserves Eq. (3) is a
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Invariance under subset (I) of these transformations has already been explored in Ref. [15],
and used to derive important constraints on the next-to-leading order collinear Lagrangian
and heavy-to-light currents. Here we explore the consequences of invariance under the full set
of reparameterization transformations and extend the analysis of class (I) transformations
to higher orders in ⇤. In particular we show that the transformations in classes (II) and (III)
are necessary to rule out the possibility of additional operators in the lowest order collinear
Lagrangian that are allowed by power counting and gauge invariance.

As might be expected the collinear reparameterization invariance is a manifestation of
the Lorentz symmetry that was broken by introducing the vectors n and n̄. Essentially
reparameterization invariance restores Lorentz invariance to SCET order by order in ⇤. The
five parameters in Eq. (4) correspond to the five generators of the Lorentz group which are
“broken” by introducing the vectors n and n̄, namely {nµMµ⇥ , n̄µMµ⇥}. If the perpendicular
directions are 1, 2 then the five broken generators are Q±
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the interesting fields are those for collinear quarks (⌅n,p), collinear gluons (An,q), and usoft
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Sudakov Logs &  RGE (Renormalization Group Equations)
UV renormalization in SCET

e+e� � dijets �̄n�µ
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8.1 b ! s�, SCET Loops and Divergences 8 WILSON COEFFICIENTS AND HARD DYNAMICS

Next consider the ultrasoft loops in SCET. In Feynman gauge the ultrasoft wavefunction renormal-
ization of the collinear quark vanishes, since the couplings are both proportional to nµ, and n2 = 0. The
ultrasoft wavefunction renormalization of the heavy quark is just the HQET wavefunction renormalization.
We summarize these two results as:

Zus
⇠
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. (8.9)

We can already note that the 1/✏IR pole in Zus
h
v

matches up with the IR pole in Z 
b

in full QCD (and this is
the only IR divergence that we are regulating with dimensional regularization). In addition to wavefunction
renormalization there is an ultrasoft vertex diagram for the SCET current. Using the on-shell condition
v · pb = 0 for the incoming b-quark, and the SCET propagator from Eq. (5.43) for a line with injected
ultrasoft momentum, we have
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us = (ig)2(�i)CF ūn�uv

Z
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where the tree level SCET amplitude is

V 0
scet = un�uv , (8.11)

and ◆✏ = (4⇡)�✏e✏�E ensures that the scale µ has the appropriate normalization for the MS scheme. Note
that this graph is independent of the current’s Dirac structure �. On the heavy quark side the heavy-
quark propagator gives a Pv = (1 + v/)/2, but this commutes with the HQET vertex Feynman rule and
hence yields a projector on the HQET spinor, Pvuv = uv. On the light quark side the propagator gives
a n//2 and the vertex gives a n̄//2 to yield the projector Pn = (n/n̄/)/4 acting on the light-quark spinor,
Pnun = un. Hence whatever � is inserted at the current vertex is also the Dirac structure that appears
between spinors in the answer for the loop graph. For this heavy-to-light current this feature is actually
true for all loop diagrams in SCET, the spin structure of the current is preserved by loops diagrams in
the EFT. For ultrasoft diagrams it happens by a simple generalization of the arguments above, while for
collinear diagrams the interactions only appear on the collinear quark side of the �, so we just need to
know that they do not induce additional Dirac matrices. (This is ensured by chirality conservation in the
EFT.)

Lets finally consider the one loop diagrams with a collinear gluon. There is no wavefunction renormal-
ization diagram for the heavy quark, since the collinear gluon does not couple to it. There is a wavefunction
renormalization graph for the light-collinear quark
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We have not written out the SCET loop integrand, but it follows in a straightforward manner from using
the collinear quark and gluon propagators and vertex Feynman rules from Fig. (6). Note that the result for
Z⇠

n

is the same as the full theory Z . This occurs because for the wavefunction graph there is no connection
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As before, we next consider the loops in SCET. The wave function renormalization for the collinear
quark is the same as in the previous section, and we find
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The tree level amplitude in SCET is V 0
scet = ūn(pq)�i vn̄(pq̄), and to leading order V 0

qcd = V 0
scet. The

ultrasoft vertex graph in SCET involves an exchange between the n-collinear and n̄-collinear quarks,

and is given by
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There are two possible collinear vertex graphs which involve a contraction between the Wn[n̄ ·An] Wilson
line and a n-collinear quark, and another between the Wn̄[n ·An̄] Wilson line and the n̄-collinear quark

For the first diagram, we find
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One can easily show that the second collinear vertex diagram gives the same result as the first diagram.
Furthermore the collinear integral here is identical to the one for b ! s� in Eq. (8.14). The result in
Eq. (8.36) is for the naive integrand, since it does not include the 0-bin subtraction contribution. But the
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Next consider the ultrasoft loops in SCET. In Feynman gauge the ultrasoft wavefunction renormal-
ization of the collinear quark vanishes, since the couplings are both proportional to nµ, and n2 = 0. The
ultrasoft wavefunction renormalization of the heavy quark is just the HQET wavefunction renormalization.
We summarize these two results as:
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We can already note that the 1/✏IR pole in Zus
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matches up with the IR pole in Z 
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in full QCD (and this is
the only IR divergence that we are regulating with dimensional regularization). In addition to wavefunction
renormalization there is an ultrasoft vertex diagram for the SCET current. Using the on-shell condition
v · pb = 0 for the incoming b-quark, and the SCET propagator from Eq. (5.43) for a line with injected
ultrasoft momentum, we have
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where the tree level SCET amplitude is

V 0
scet = un�uv , (8.11)

and ◆✏ = (4⇡)�✏e✏�E ensures that the scale µ has the appropriate normalization for the MS scheme. Note
that this graph is independent of the current’s Dirac structure �. On the heavy quark side the heavy-
quark propagator gives a Pv = (1 + v/)/2, but this commutes with the HQET vertex Feynman rule and
hence yields a projector on the HQET spinor, Pvuv = uv. On the light quark side the propagator gives
a n//2 and the vertex gives a n̄//2 to yield the projector Pn = (n/n̄/)/4 acting on the light-quark spinor,
Pnun = un. Hence whatever � is inserted at the current vertex is also the Dirac structure that appears
between spinors in the answer for the loop graph. For this heavy-to-light current this feature is actually
true for all loop diagrams in SCET, the spin structure of the current is preserved by loops diagrams in
the EFT. For ultrasoft diagrams it happens by a simple generalization of the arguments above, while for
collinear diagrams the interactions only appear on the collinear quark side of the �, so we just need to
know that they do not induce additional Dirac matrices. (This is ensured by chirality conservation in the
EFT.)

Lets finally consider the one loop diagrams with a collinear gluon. There is no wavefunction renormal-
ization diagram for the heavy quark, since the collinear gluon does not couple to it. There is a wavefunction
renormalization graph for the light-collinear quark
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We have not written out the SCET loop integrand, but it follows in a straightforward manner from using
the collinear quark and gluon propagators and vertex Feynman rules from Fig. (6). Note that the result for
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As before, we next consider the loops in SCET. The wave function renormalization for the collinear
quark is the same as in the previous section, and we find
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The tree level amplitude in SCET is V 0
scet = ūn(pq)�i vn̄(pq̄), and to leading order V 0

qcd = V 0
scet. The

ultrasoft vertex graph in SCET involves an exchange between the n-collinear and n̄-collinear quarks,

and is given by
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ūn

⇣

ig
n̄/

2
n↵TA

⌘ in/

2

n̄ · pq
n̄ · pq n · k + p2q

�i
in̄/

2

�n · pq̄
n · pq̄ n̄ · k + p2q̄

⇣

ig
n/

2
n̄↵T

A
⌘

vn̄
�i

k2

= ig2CFµ
2✏◆✏

⇣

ūn
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There are two possible collinear vertex graphs which involve a contraction between the Wn[n̄ ·An] Wilson
line and a n-collinear quark, and another between the Wn̄[n ·An̄] Wilson line and the n̄-collinear quark

For the first diagram, we find
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ūn(pq)�i vn̄(pq̄) . (8.36)

One can easily show that the second collinear vertex diagram gives the same result as the first diagram.
Furthermore the collinear integral here is identical to the one for b ! s� in Eq. (8.14). The result in
Eq. (8.36) is for the naive integrand, since it does not include the 0-bin subtraction contribution. But the
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As before, we next consider the loops in SCET. The wave function renormalization for the collinear
quark is the same as in the previous section, and we find
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The tree level amplitude in SCET is V 0
scet = ūn(pq)�i vn̄(pq̄), and to leading order V 0

qcd = V 0
scet. The

ultrasoft vertex graph in SCET involves an exchange between the n-collinear and n̄-collinear quarks,

and is given by
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There are two possible collinear vertex graphs which involve a contraction between the Wn[n̄ ·An] Wilson
line and a n-collinear quark, and another between the Wn̄[n ·An̄] Wilson line and the n̄-collinear quark
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One can easily show that the second collinear vertex diagram gives the same result as the first diagram.
Furthermore the collinear integral here is identical to the one for b ! s� in Eq. (8.14). The result in
Eq. (8.36) is for the naive integrand, since it does not include the 0-bin subtraction contribution. But the
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Ultrasoft - Collinear Factorization
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FIG. 1: Eikonal iϵ prescriptions for incoming/outgoing quarks and antiquarks and the result that
reproduces this with an ultrasoft Wilson line and sterile quark field.

Since the dependence on s0 sometimes causes confusion, we explore some of the subtleties
in this section, in particular, why it is important to remember that factors of Y , Y † can
also be induced in the interpolating fields for incoming and outgoing collinear states, and
why a common choice for s0 = s †

0 is sufficient to properly reproduce the iϵ prescription in
perturbative computations. In many processes (examples being color allowed B → Dπ and
B → Xsγ) the s0 dependence of the Wilson lines cancels and the following considerations
are not crucial. In other processes, however, the path for the Wilson line is important for the
final result, particularly when these Wilson lines do not entirely cancel. An example of this
is jet event shapes as discussed in Refs. [28–30]. See also the discussion of path dependence
in eikonal lines in Refs. [31–37].

First consider the perturbative computation of attachments of usoft gluons to incoming
and outgoing quark and antiquark lines. The results for the eikonal factors for one gluon
are summarized in Fig. 1, and can be computed directly with the SCET collinear quark
Lagrangian (or from an appropriate limit of the QCD propagator). These attachments seem
to force one to make a particular choice for s0 and s0, see for example the recent detailed
study in Ref. [30]. In our notation it is straightforward to show that this choice corresponds
to

s0 = −∞ sign(P̄) , s0 = +∞ sign(P̄†) ,

{

P̃=P̃
′
=P , for P̄ , P̄† > 0

P̃=P̃
′
=P , for P̄ , P̄† < 0

. (21)

To see this take a quark with label n̄·p > 0 and an antiquark with label n̄·p′ < 0, and note
that
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This is in agreement with the Ỹ = Y−, Y † = Y †
−, Y = Y+, Ỹ † = Y †

+ used in [30] for the
production and annihilation of antiparticles and the annihilation and production of parti-
cles respectively. The results in Eq. (22) reproduce the natural choice of having incoming
quarks/antiquarks enter from −∞, while outgoing quarks/antiquarks extend out to +∞.
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n Yn =1



eg2.
color transparency

Field Theory gives the same results pre- and post- field 
redefinition, but the organization is different

Ultrasoft - Collinear Factorization:

eg1.

usoft-collinear factorization is !
simple in SCET
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n Yn

� /̄n

2
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2
�n

note:  not upset by!
since ultrasoft gluons carry no                        momenta

�(� � in̄ · �n)
in̄ · �n � �0

�n � Yn�n

also Wn � YnWnY †
n
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8 WILSON COEFFICIENTS AND HARD DYNAMICS

8 Wilson Coe�cients and Hard Dynamics

We now turn to the dynamics of SCET at one loop. An interesting aspect of loops in the e↵ective theory is
that often a full QCD loop graph has more than one counterpart with similar topology in SCET. We will
compare the SCET one loop calculation for a single hard interaction current with the one loop calculation
in QCD. Our goal is to understand the IR and UV divergences in SCET and the corresponding logarithms,
as well as understanding how the terms not associated to divergences are treated.

In our analysis we will use the same regulator for infrared divergences, and show that the IR divergences
in QCD and SCET exactly agree, which is a validation check on the EFT. The di↵erence determines
the Wilson coe�cient for the SCET operator that encodes the hard dynamics. This matching result is
independent of the choice of infrared regulator as long as the same regulator is used in the full and e↵ective
theories. Finally, the SCET calculation contains additional UV divergences, beyond those in full QCD,
and the renormalization and anomalous dimension determined from these divergences will sum up double
Sudakov logarithms.

We will give two examples of matching QCD onto SCET, the b ! s� transition, and e+e� ! 2-
jets. The first example has the advantage of involving only one collinear sector, but the disadvantage
of requiring some familiarity with Heavy Quark E↵ective theory for the treatment of the b quark and
involving contributions from two Dirac structures. The second example only involves jets with a single
Dirac structure, but has two collinear sectors. In both cases we will use Feynman gauge for all gluons, and
dimensional regularization with d = 4� 2✏ for all UV divergences (denoting them as 1/✏). To regulate the
IR divergences we will take the strange quark o↵shell, p2 6= 0. For IR divergences associated purely with
the heavy quark we will use dimensional regularization (denoting them 1/✏IR to distinguish from the UV
divergences).

8.1 b ! s�, SCET Loops and Divergences

As a 1-loop example consider the heavy-to-light currents for b ! s�. Although there are several operators
in the full electroweak Hamiltonian, for simplicity we will just consider the dominant dipole operator
JQCD
µ⌫ Fµ⌫ where Fµ⌫ is the photon field strength and the quark tensor current is

JQCD = s̄�b , � = �µ⌫PR . (8.1)

In SCET the corresponding current (for the original Lagrangian, prior to making the Yn field redefinition)
was

JSCET = (⇠̄nW )�hvC
�

v · n P†�
=

Z

d! C(!) �̄n,!�hv . (8.2)

In general because of the presense of the vectors vµ and nµ there can be a larger basis of Dirac structures
� for the SCET current (we will see below that at one-loop there are in fact two non-zero structures for
the SCET tensor current). Note that the factor of v · n makes it clear that the current preserves type-III
RPI. We will set v · n = 1 in the following.

Together with the QCD and (leading order) SCET Lagrangians, we can carry out loop calculations with
these two currents. First lets consider loop corrections in QCD. We have a wavefunction renormalization
graph for the heavy quark denoted b, and one for the massless (strange) quark denoted q:

b q
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back-to-back n and n̄ directions

JSCET = (⇠̄n̄Wn̄)�iC
�

P†
n̄,Pn, µ

�

(W †
n⇠n) =

Z

d! d!0 C(!,!0) �n̄,!0�i �n,! . (8.27)

By reparametrization invariance of type-III the dependence on the label operators can only be in the
combination !!0 inside C, so

C
�

!,!0) = C
�

!!0� . (8.28)

Finally in the CM frame momentum conservation fixes ! = !0 = Q, the CM energy of the e+e� pair, so
we can write

JSCET = C(Q2) (⇠̄n̄Wn̄)�i (W
†
n⇠n) , (8.29)

and the matching calculation in this section will determine the renormalized MSWilson coe�cient C(Q2, µ2).
In this case there is only one relevant Dirac structure �i in SCET for each of the vector and axial-vector
currents.

We again begin by calculating the full theory diagrams. As in the case of B ! Xs� we need the wave
function contributions for the light quarks, in this case one for the quark and one for the anti-quark. Both
wave function contributions are the same as the results obtained before

Z = 1� ↵sCF

4⇡



1

✏
� ln

�p2

µ2
+ 1

�

. (8.30)

The remaining vertex graph can again be calculated in a straightforward manner. At tree level we find

V 0
qcd = ū(pn)�ivn̄(pn̄) (8.31)

while the one loop vertex diagram

p
q

p
q

gives

V 1
qcd = µ2✏◆✏

Z

ddk

(2⇡)d
ig ū(pq)�

↵TA i(p/q + k/)

(pq + k)2
�i
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ig�↵T

A v(pq̄)
�i
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= ig2CF µ2✏
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(2⇡)d
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3

�

ū(pq)�i v(pq̄) . (8.32)

Here ◆✏ = (4⇡)�✏e✏�E ensures that the scale µ has the appropriate normalization for the MS scheme. Adding
the QCD diagrams we find

QCD Sum = V 1
qcd + 2

h1

2
(Z � 1)

i

V 0
qcd

=
↵sCF
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�2 ln2
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� 3 ln
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�

ū(pq)�i v(pq̄) . (8.33)
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As before, we next consider the loops in SCET. The wave function renormalization for the collinear
quark is the same as in the previous section, and we find

Zus
⇠ = 0 , Z⇠ = 1� CF↵s

4⇡

⇣1

✏
� ln

�p2

µ2
+ 1

⌘

. (8.34)

The tree level amplitude in SCET is V 0
scet = ūn(pq)�i vn̄(pq̄), and to leading order V 0

qcd = V 0
scet. The

ultrasoft vertex graph in SCET involves an exchange between the n-collinear and n̄-collinear quarks,

and is given by

V 1
usoft = µ2✏◆✏
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There are two possible collinear vertex graphs which involve a contraction between the Wn[n̄ ·An] Wilson
line and a n-collinear quark, and another between the Wn̄[n ·An̄] Wilson line and the n̄-collinear quark

For the first diagram, we find
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(2⇡)d
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One can easily show that the second collinear vertex diagram gives the same result as the first diagram.
Furthermore the collinear integral here is identical to the one for b ! s� in Eq. (8.14). The result in
Eq. (8.36) is for the naive integrand, since it does not include the 0-bin subtraction contribution. But the
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As before, we next consider the loops in SCET. The wave function renormalization for the collinear
quark is the same as in the previous section, and we find
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qcd = V 0
scet. The
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There are two possible collinear vertex graphs which involve a contraction between the Wn[n̄ ·An] Wilson
line and a n-collinear quark, and another between the Wn̄[n ·An̄] Wilson line and the n̄-collinear quark

For the first diagram, we find
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One can easily show that the second collinear vertex diagram gives the same result as the first diagram.
Furthermore the collinear integral here is identical to the one for b ! s� in Eq. (8.14). The result in
Eq. (8.36) is for the naive integrand, since it does not include the 0-bin subtraction contribution. But the
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Next consider the ultrasoft loops in SCET. In Feynman gauge the ultrasoft wavefunction renormal-
ization of the collinear quark vanishes, since the couplings are both proportional to nµ, and n2 = 0. The
ultrasoft wavefunction renormalization of the heavy quark is just the HQET wavefunction renormalization.
We summarize these two results as:

Zus
⇠
n

/ nµnµ = 0 , Zus
h
v

= 1 +
↵sCF

4⇡

⇣2

✏
� 2

✏IR

⌘

. (8.9)

We can already note that the 1/✏IR pole in Zus
h
v

matches up with the IR pole in Z 
b

in full QCD (and this is
the only IR divergence that we are regulating with dimensional regularization). In addition to wavefunction
renormalization there is an ultrasoft vertex diagram for the SCET current. Using the on-shell condition
v · pb = 0 for the incoming b-quark, and the SCET propagator from Eq. (5.43) for a line with injected
ultrasoft momentum, we have

= V 1
us = (ig)2(�i)CF ūn�uv

Z

d�dk µ2✏◆✏ n · v
(v · k + i0)(n · k + p2/n̄ · p+ i0)(k2 + i0)

V 1
us = �↵sCF

4⇡



1
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⇣ µn̄ · p
�p2�i0

⌘

+ 2 ln2
⇣ µn̄ · p
�p2�i0

⌘

+
3⇡2

4

�

V 0
scet , (8.10)

where the tree level SCET amplitude is

V 0
scet = un�uv , (8.11)

and ◆✏ = (4⇡)�✏e✏�E ensures that the scale µ has the appropriate normalization for the MS scheme. Note
that this graph is independent of the current’s Dirac structure �. On the heavy quark side the heavy-
quark propagator gives a Pv = (1 + v/)/2, but this commutes with the HQET vertex Feynman rule and
hence yields a projector on the HQET spinor, Pvuv = uv. On the light quark side the propagator gives
a n//2 and the vertex gives a n̄//2 to yield the projector Pn = (n/n̄/)/4 acting on the light-quark spinor,
Pnun = un. Hence whatever � is inserted at the current vertex is also the Dirac structure that appears
between spinors in the answer for the loop graph. For this heavy-to-light current this feature is actually
true for all loop diagrams in SCET, the spin structure of the current is preserved by loops diagrams in
the EFT. For ultrasoft diagrams it happens by a simple generalization of the arguments above, while for
collinear diagrams the interactions only appear on the collinear quark side of the �, so we just need to
know that they do not induce additional Dirac matrices. (This is ensured by chirality conservation in the
EFT.)

Lets finally consider the one loop diagrams with a collinear gluon. There is no wavefunction renormal-
ization diagram for the heavy quark, since the collinear gluon does not couple to it. There is a wavefunction
renormalization graph for the light-collinear quark

= . . . =
n̄/

2

p2

n̄ · p
CF↵s

4⇡
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✏
� ln

�p2
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+ 1

⌘

, so Z⇠
n

= 1� CF↵s

4⇡
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✏
� ln

�p2

µ2
+ 1

⌘

.

(8.12)

We have not written out the SCET loop integrand, but it follows in a straightforward manner from using
the collinear quark and gluon propagators and vertex Feynman rules from Fig. (6). Note that the result for
Z⇠

n

is the same as the full theory Z . This occurs because for the wavefunction graph there is no connection
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As before, we next consider the loops in SCET. The wave function renormalization for the collinear
quark is the same as in the previous section, and we find

Zus
⇠ = 0 , Z⇠ = 1� CF↵s
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⌘

. (8.34)

The tree level amplitude in SCET is V 0
scet = ūn(pq)�i vn̄(pq̄), and to leading order V 0

qcd = V 0
scet. The

ultrasoft vertex graph in SCET involves an exchange between the n-collinear and n̄-collinear quarks,

and is given by
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There are two possible collinear vertex graphs which involve a contraction between the Wn[n̄ ·An] Wilson
line and a n-collinear quark, and another between the Wn̄[n ·An̄] Wilson line and the n̄-collinear quark

For the first diagram, we find
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One can easily show that the second collinear vertex diagram gives the same result as the first diagram.
Furthermore the collinear integral here is identical to the one for b ! s� in Eq. (8.14). The result in
Eq. (8.36) is for the naive integrand, since it does not include the 0-bin subtraction contribution. But the
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8 Wilson Coe�cients and Hard Dynamics

We now turn to the dynamics of SCET at one loop. An interesting aspect of loops in the e↵ective theory is
that often a full QCD loop graph has more than one counterpart with similar topology in SCET. We will
compare the SCET one loop calculation for a single hard interaction current with the one loop calculation
in QCD. Our goal is to understand the IR and UV divergences in SCET and the corresponding logarithms,
as well as understanding how the terms not associated to divergences are treated.

In our analysis we will use the same regulator for infrared divergences, and show that the IR divergences
in QCD and SCET exactly agree, which is a validation check on the EFT. The di↵erence determines
the Wilson coe�cient for the SCET operator that encodes the hard dynamics. This matching result is
independent of the choice of infrared regulator as long as the same regulator is used in the full and e↵ective
theories. Finally, the SCET calculation contains additional UV divergences, beyond those in full QCD,
and the renormalization and anomalous dimension determined from these divergences will sum up double
Sudakov logarithms.

We will give two examples of matching QCD onto SCET, the b ! s� transition, and e+e� ! 2-
jets. The first example has the advantage of involving only one collinear sector, but the disadvantage
of requiring some familiarity with Heavy Quark E↵ective theory for the treatment of the b quark and
involving contributions from two Dirac structures. The second example only involves jets with a single
Dirac structure, but has two collinear sectors. In both cases we will use Feynman gauge for all gluons, and
dimensional regularization with d = 4� 2✏ for all UV divergences (denoting them as 1/✏). To regulate the
IR divergences we will take the strange quark o↵shell, p2 6= 0. For IR divergences associated purely with
the heavy quark we will use dimensional regularization (denoting them 1/✏IR to distinguish from the UV
divergences).

8.1 b ! s�, SCET Loops and Divergences

As a 1-loop example consider the heavy-to-light currents for b ! s�. Although there are several operators
in the full electroweak Hamiltonian, for simplicity we will just consider the dominant dipole operator
JQCD
µ⌫ Fµ⌫ where Fµ⌫ is the photon field strength and the quark tensor current is

JQCD = s̄�b , � = �µ⌫PR . (8.1)

In SCET the corresponding current (for the original Lagrangian, prior to making the Yn field redefinition)
was

JSCET = (⇠̄nW )�hvC
�

v · n P†�
=

Z

d! C(!) �̄n,!�hv . (8.2)

In general because of the presense of the vectors vµ and nµ there can be a larger basis of Dirac structures
� for the SCET current (we will see below that at one-loop there are in fact two non-zero structures for
the SCET tensor current). Note that the factor of v · n makes it clear that the current preserves type-III
RPI. We will set v · n = 1 in the following.

Together with the QCD and (leading order) SCET Lagrangians, we can carry out loop calculations with
these two currents. First lets consider loop corrections in QCD. We have a wavefunction renormalization
graph for the heavy quark denoted b, and one for the massless (strange) quark denoted q:

b q
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As before, we next consider the loops in SCET. The wave function renormalization for the collinear
quark is the same as in the previous section, and we find
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The tree level amplitude in SCET is V 0
scet = ūn(pq)�i vn̄(pq̄), and to leading order V 0

qcd = V 0
scet. The

ultrasoft vertex graph in SCET involves an exchange between the n-collinear and n̄-collinear quarks,

and is given by
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There are two possible collinear vertex graphs which involve a contraction between the Wn[n̄ ·An] Wilson
line and a n-collinear quark, and another between the Wn̄[n ·An̄] Wilson line and the n̄-collinear quark

For the first diagram, we find
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One can easily show that the second collinear vertex diagram gives the same result as the first diagram.
Furthermore the collinear integral here is identical to the one for b ! s� in Eq. (8.14). The result in
Eq. (8.36) is for the naive integrand, since it does not include the 0-bin subtraction contribution. But the
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As before, we next consider the loops in SCET. The wave function renormalization for the collinear
quark is the same as in the previous section, and we find
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The tree level amplitude in SCET is V 0
scet = ūn(pq)�i vn̄(pq̄), and to leading order V 0

qcd = V 0
scet. The

ultrasoft vertex graph in SCET involves an exchange between the n-collinear and n̄-collinear quarks,

and is given by
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There are two possible collinear vertex graphs which involve a contraction between the Wn[n̄ ·An] Wilson
line and a n-collinear quark, and another between the Wn̄[n ·An̄] Wilson line and the n̄-collinear quark

For the first diagram, we find
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One can easily show that the second collinear vertex diagram gives the same result as the first diagram.
Furthermore the collinear integral here is identical to the one for b ! s� in Eq. (8.14). The result in
Eq. (8.36) is for the naive integrand, since it does not include the 0-bin subtraction contribution. But the
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Next consider the ultrasoft loops in SCET. In Feynman gauge the ultrasoft wavefunction renormal-
ization of the collinear quark vanishes, since the couplings are both proportional to nµ, and n2 = 0. The
ultrasoft wavefunction renormalization of the heavy quark is just the HQET wavefunction renormalization.
We summarize these two results as:
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We can already note that the 1/✏IR pole in Zus
h
v

matches up with the IR pole in Z 
b

in full QCD (and this is
the only IR divergence that we are regulating with dimensional regularization). In addition to wavefunction
renormalization there is an ultrasoft vertex diagram for the SCET current. Using the on-shell condition
v · pb = 0 for the incoming b-quark, and the SCET propagator from Eq. (5.43) for a line with injected
ultrasoft momentum, we have

= V 1
us = (ig)2(�i)CF ūn�uv

Z

d�dk µ2✏◆✏ n · v
(v · k + i0)(n · k + p2/n̄ · p+ i0)(k2 + i0)

V 1
us = �↵sCF

4⇡



1

✏2
+

2

✏
ln
⇣ µn̄ · p
�p2�i0

⌘

+ 2 ln2
⇣ µn̄ · p
�p2�i0

⌘

+
3⇡2

4

�

V 0
scet , (8.10)

where the tree level SCET amplitude is

V 0
scet = un�uv , (8.11)

and ◆✏ = (4⇡)�✏e✏�E ensures that the scale µ has the appropriate normalization for the MS scheme. Note
that this graph is independent of the current’s Dirac structure �. On the heavy quark side the heavy-
quark propagator gives a Pv = (1 + v/)/2, but this commutes with the HQET vertex Feynman rule and
hence yields a projector on the HQET spinor, Pvuv = uv. On the light quark side the propagator gives
a n//2 and the vertex gives a n̄//2 to yield the projector Pn = (n/n̄/)/4 acting on the light-quark spinor,
Pnun = un. Hence whatever � is inserted at the current vertex is also the Dirac structure that appears
between spinors in the answer for the loop graph. For this heavy-to-light current this feature is actually
true for all loop diagrams in SCET, the spin structure of the current is preserved by loops diagrams in
the EFT. For ultrasoft diagrams it happens by a simple generalization of the arguments above, while for
collinear diagrams the interactions only appear on the collinear quark side of the �, so we just need to
know that they do not induce additional Dirac matrices. (This is ensured by chirality conservation in the
EFT.)

Lets finally consider the one loop diagrams with a collinear gluon. There is no wavefunction renormal-
ization diagram for the heavy quark, since the collinear gluon does not couple to it. There is a wavefunction
renormalization graph for the light-collinear quark
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We have not written out the SCET loop integrand, but it follows in a straightforward manner from using
the collinear quark and gluon propagators and vertex Feynman rules from Fig. (6). Note that the result for
Z⇠

n

is the same as the full theory Z . This occurs because for the wavefunction graph there is no connection
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As before, we next consider the loops in SCET. The wave function renormalization for the collinear
quark is the same as in the previous section, and we find

Zus
⇠ = 0 , Z⇠ = 1� CF↵s

4⇡

⇣1

✏
� ln

�p2

µ2
+ 1

⌘

. (8.34)

The tree level amplitude in SCET is V 0
scet = ūn(pq)�i vn̄(pq̄), and to leading order V 0

qcd = V 0
scet. The

ultrasoft vertex graph in SCET involves an exchange between the n-collinear and n̄-collinear quarks,

and is given by
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There are two possible collinear vertex graphs which involve a contraction between the Wn[n̄ ·An] Wilson
line and a n-collinear quark, and another between the Wn̄[n ·An̄] Wilson line and the n̄-collinear quark

For the first diagram, we find
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ūn(pq)�i vn̄(pq̄) . (8.36)

One can easily show that the second collinear vertex diagram gives the same result as the first diagram.
Furthermore the collinear integral here is identical to the one for b ! s� in Eq. (8.14). The result in
Eq. (8.36) is for the naive integrand, since it does not include the 0-bin subtraction contribution. But the
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calculation with this regulator
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Homework #4:!
Compute the jet function!
at one-loop!
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