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The beta-function

The renormalized coupling is 

β(αren
s ) ≡ µ2αren

s

dµ2

β = −b0α
2
s(µ) + . . .

1

αs(µ)
= b0 ln

µ2

µ2
0

+
1

αs(µ0)

αs(µ) =
1

b0 ln µ2

Λ2

2

Integrating the differential equation one finds at lowest order
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Roughly speaking:
(a) quark loop vacuum polarization diagram gives a negative contribution 
to b0  ∼ nf

(b) gluon loop gives a positive contribution to b0  ∼ Nc

Since (b) > (a) ⇒	 b0,QCD > 0 ⇒	 overall negative beta-function in QCD  
While in QED (b) = 0 ⇒ b0,QED < 0 

More on the beta-function

(a)

(b)

�QED =
1
3�

�2 + . . .
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More on the beta-function
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• nf is the number of active flavours (depends on the scale)
• today, the beta-function known up to four loops, but only first two 

coefficients are independent of the renormalization scheme

Beta function
Running of the QCD coupling αS is determined by the β function, which has the
expansion

β(αS) = −bα2
S(1 + b′αS) + O(α4

S)

b =
(11CA − 2Nf )

12π
, b′ =

(17C2
A − 5CANf − 3CF Nf )

2π(11CA − 2Nf )
,

where Nf is number of “active” light flavours. Terms up to O(α5
S) are known.

1-loop and 2-loop
terms are scheme
independent

Quantum Chromodynamics at the LHCLecture I: Proton structure and Parton Showers – p.6/58
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Exercise: proof the above statement [hint: use the fact that at O(αs) the 
coupling in two different schemes is related by a finite change]



Active flavours & running coupling

The active field content of a theory modifies the running of the couplings  

Constrain New Physics by measuring the running at high scales? 
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Renormalization Group Equation

Consider a dimensionless quantity A, function of a single scale Q. The 
dimensionless quantity should be independent of Q. However in quantum 
field theory this is not true, as renormalization introduces a second scale µ 
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Renormalization Group Equation

But the renormalization scale is arbitrary. The dependence on it must cancel 
in physical observables up to the order to which one does the calculation. 

Consider a dimensionless quantity A, function of a single scale Q. The 
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field theory this is not true, as renormalization introduces a second scale µ 
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Renormalization Group Equation

But the renormalization scale is arbitrary. The dependence on it must cancel 
in physical observables up to the order to which one does the calculation. 

So, for any observable A one can write a renormalization group equation 
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Renormalization Group Equation

But the renormalization scale is arbitrary. The dependence on it must cancel 
in physical observables up to the order to which one does the calculation. 
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Consider a dimensionless quantity A, function of a single scale Q. The 
dimensionless quantity should be independent of Q. However in quantum 
field theory this is not true, as renormalization introduces a second scale µ 

Scale dependence of A enters through the running of the coupling: 
knowledge of                    allows one to compute the variation of A with 
Q given the beta-function 

A(1,�s(Q2))

6



Measurements of the running coupling

Current experimental results on αS

Bethke,hep-ph/0407021

αS(MZ) = 0.1182 ± 0.0027, MS, NNLO

jets & shapes 161 GeV
jets & shapes 172 GeV

0.08 0.10 0.12 0.14

(((( ))))s Z

-decays [LEP]

xF [ -DIS]
F [e-, µ-DIS]

decays

(Z --> had.) [LEP]

e e [ ]+
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_
e e [jets & shapes 35 GeV]+ _
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pp --> bb X

0

QQ + lattice QCD

DIS [GLS-SR]

2

3

pp, pp --> X

DIS [Bj-SR]

e e [jets & shapes 58 GeV]+ _
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e e [ ]+
had

_

jets & shapes 183 GeV

DIS [pol. strct. fctn.]

jets & shapes 189 GeV
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jets & shapes 91.2 GeV

e e F+ _
2

e e [jets & shapes 14 GeV]+ _

e e [4-jet rate]+ _

jets & shapes 195 GeV
jets & shapes 201 GeV
jets & shapes 206 GeV

DIS [ep –> jets]

αS is large at current scales.

Measurement αS is stable,
(αS(MZ) = 0.1183 ± 0.0027 in 2002).

The decrease of αS is quite slow – as the
inverse power of a logarithm.

Higher order corrections are and will con-
tinue to be important.

Quantum Chromodynamics at the LHCLecture I: Proton structure and Parton Showers – p.10/58

Summarizing:

• overall consistent picture: αs from very 
different observables compatible

• αs is not so small at current scales  

• αs decreases slowly at higher energies 
(logarithmic only) 

• higher order corrections are and will 
remain important 

�s(MZ0) = 0.1184± 0.007

World average
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Let’s consider again the R-ratio. This is determined by �� � qq̄

At leading order: 

Mµ
0 = ū(p1)(�ie�µ)v(p2)

p1

�ie�µ

The soft approximation

p2
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Emit one gluon:
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Let’s consider again the R-ratio. This is determined by �� � qq̄

At leading order: 

Mµ
0 = ū(p1)(�ie�µ)v(p2)
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�ie�µ

The soft approximation
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Consider the soft approximation: k � p1, p2 ⇒	 factorization of 
soft part (crucial 
for resummed 
calculations)
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Soft divergences

The squared amplitude becomes
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d⌅qq̄g = d⌅qq̄
2�sCF

⇤

d⌃

⌃
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sin ⇥

d⇧

2⇤

Cross section for producing a qq-pair and a gluon is infinite (IR divergent)

Soft & collinear divergences

ω →0: soft divergence

θ → 0: collinear divergence
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Cross section for producing a qq-pair and a gluon is infinite (IR divergent)

Soft & collinear divergences

ω →0: soft divergence

θ → 0: collinear divergence
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But the full O(αs) correction to R is finite, because one must include a 
virtual correction which cancels the divergence of the real radiation 

d⌅qq̄,v ⇥ �d⌅qq̄
2�sCF

⇤

d⌃

⌃

d⇥

sin ⇥

d⇧

2⇤

NB: here we kept only soft terms, if we do the full calculation one gets a 
finite correction of αs/π 



Soft & collinear divergences 

ω →0 soft divergence: the four-momentum of the emitted particle 
approaches zero, typical of gauge theories, even if matter (radiating 
particle) is massive 

θ → 0 collinear divergence: particle emitted collinear to emitter. 
Divergence present only if all particles involved are massless

11

NB: the appearance of soft and collinear divergences discussed in the 
specific contect of e+e- → qq are a general property of QCD  



Infrared safety (= finiteness)

So, the R-ratio is an infrared safe quantity. 

• are there other IR-safe quantities? 
• what property of R guarantees its IR-safety? 

In perturbation theory one can compute only IR-safe quantities, otherwise 
get infinities, which can not be renormalized away (why not?) 

So, the natural questions are: 
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Sterman-Weinberg jets

First formulation of cross-sections which are finite in perturbation theory 
and describe the hadronic final state

Introduce two parameters ε and δ: 
a pair of Sterman-Weinberg jets are 
two cones of opening angle δ that 
contain all the energy of the event 
excluding at most a fraction ε

4.1 Sterman–Weinberg jets

Sterman and Weinberg [14] first realized that one can define a cross section which is calculable and finite

in perturbation theory, and characterizes in some way the hadronic final state. The definition goes as

follows.

We define the production of a pair of Sterman–Weinberg jets, depending on the parameters ε
and δ, in the following way. A hadronic event in e+e− annihilation, with centre-of-mass energy E,
contributes to the Sterman–Weinberg jets cross section if we can find two cones of opening angle δ that
contain more than a fraction 1 − ε of the total energy E. In other words εE is the maximum energy

allowed outside of the cones. An example of Sterman-Weinberg jet event is illustrated in fig. 11. We

Fig. 11: Sterman–Weinberg jets.

will now show that the computation of the cross section for the production of Sterman–Weinberg jets, in

the approximation introduced in the previous chapter, is infrared finite. The various contributions to the

cross section (illustrated in fig. 12) are as follows

• All the Born cross section contributes to the Sterman–Weinberg cross section, for any ε and δ
(fig. 12a).

• All the virtual cross section contributes to the Sterman–Weinberg cross section, for any ε and δ
(fig. 12b).

• The real cross section, with one gluon emission, when the energy of the emitted gluon l0 is limited
by l0 < εE (fig. 12c), contributes to the Sterman–Weinberg cross section.

• The real cross section, when l0 > εE, when the emission angle with respect to the quark (or
antiquark) is less than δ (fig. 12d), contributes to the Sterman–Weinberg cross section.

The various contributions are given formally by

Born = σ0 (78)

Virtual = −σ0
4αSCF

2π

∫ E

0

dl0

l0

∫ π

θ=0

d cos θ

1 − cos2 θ
(79)

Real (c) = σ0
4αSCF

2π

∫ εE

0

dl0

l0

∫ π

θ=0

d cos θ

1 − cos2 θ
(80)

Real (d) = σ0
4αSCF

2π

∫ E

εE

dl0

l0

[∫ δ

θ=0

d cos θ

1 − cos2 θ
+

∫ π

θ=π−δ

d cos θ

1 − cos2 θ

]
. (81)

22
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Why finite? the cancelation between 
real and virtual is not destroyed in 
the soft/collinear regions
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Why finite? the cancelation between 
real and virtual is not destroyed in 
the soft/collinear regions

Kinoshita-Lee-Nauenberg (KLN) theorem:
final-state infrared divergences cancel in measurable quantities (transition 
probabilities, cross-sections summed over indistinguishable states... ) 
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Consider the soft approximation: 

The Sterman-Weinberg jet cross-section up to O(αs) is given by 

Sterman-Weinberg jets

⇧1 = ⇧0

�
1 +

2�sCF

⌅
ln ⇤ ln ⇥2

⇥

Effective expansion 
parameter in QCD is 
often αsCF/π not αs

αs-expansion enhanced by 
a double log: left-over from 
real-virtual cancellation

• if more gluons are emitted, one gets for each gluon
- a power of αsCF/π
- a soft logarithm lnε
- a collinear logarithm lnδ

• if ε and/or δ become too small the above result diverges
• if the logs are large, fixed order meaningless, one needs to resum large 

infrared and collinear logarithms to all orders in the coupling constant
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An observable     is infrared and collinear safe if

Infrared safety: definition 

On+1(k1, k2, . . . , ki, kj , . . . kn)� On(k1, k2, . . . ki + kj , . . . kn)

whenever one of the ki/kj becomes soft or ki and kj are collinear 

O

i.e. the observable is insensitive to emission of soft particles or to collinear 
splittings
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‣ energy of the hardest particle in the event

‣ multiplicity of gluons 

‣ momentum flow into a cone in rapidity and angle

‣ cross-section for producing one gluon with E > Emin and θ > θmin

‣ jet cross-sections

Infrared safety: examples 

16

Infrared safe ? 
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Partons in the initial state

• We talked a lot about final state QCD effects

• This is the only thing to worry about at e+e- colliders (LEP)

• Hera/Tevatron/LHC involve protons in the initial state

• Proton are made of QCD constituents

Next we will focus mainly on aspects related to initial state effects

17



Phenomenology: lecture 4 (p. 81)

PDF introduction Factorization & parton distributions

Recall Higgs production in
hadron-hadron collisions:

x
2 p
2

p1 p2

x 1
p 1

σ

Z H

σ =

∫

dx1fq/p(x1, µ
2)

∫

dx2fq̄/p̄(x2, µ
2) σ̂(x1p1, x2p2, µ

2) , ŝ = x1x2s

Total X-section is factorized into a ‘hard part’ σ̂(x1p1, x2p2, µ2) and
‘normalization’ from parton distribution functions (PDF).

Measure total cross section ↔ need to know PDFs to be able to test
hard part (e.g. Higgs electroweak couplings).

Picture seems intuitive, but
how can we determine the PDFs? NB: non-perturbative
does picture really stand up to QCD corrections?

The parton model

Basic idea of the parton model: intuitive picture where in a high transverse 
momentum scattering partons behave as quasi free in the collision 
⇒	 cross section is the incoherent sum of all partonic cross-sections 

            : parton distribution function (PDF) is the probability to find parton 
i in hadron j with a fraction xi of the longitudinal momentum (transverse 
momentum neglected), extracted from data

            : partonic cross-section for a given scattering process, computed in 
perturbative QCD
�̂(x1x2s)

NB: This formula is wrong/incomplete (see later)

� =
�

dx1dx2f
(P1)
1 (x1)f

(P2)
2 (x2)�̂(x1x2s) ŝ = x1x2s

f
(Pj)
i (xi)

18



Sum rules
Momentum sum rule: conservation of incoming total momentum
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Momentum sum rule: conservation of incoming total momentum
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� 1

0
dx

�

i

xf (p)
i (x) = 1

In the proton: u, d valence quarks, all other quarks are called sea-quarks 

Conservation of flavour: e.g. for a proton
� 1

0
dx

�
f (p)

u (x)� f (p)
ū (x)

�
= 2

� 1

0
dx

�
f (p)

d (x)� f (p)
d̄

(x)
�

= 1

� 1

0
dx

�
f (p)

s (x)� f (p)
s̄ (x)

�
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Sum rules
Momentum sum rule: conservation of incoming total momentum

How can parton densities be extracted from data? 
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In the proton: u, d valence quarks, all other quarks are called sea-quarks 

Conservation of flavour: e.g. for a proton
� 1

0
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�
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u (x)� f (p)
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�
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� 1

0
dx

�
f (p)

d (x)� f (p)
d̄

(x)
�

= 1

� 1

0
dx

�
f (p)

s (x)� f (p)
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Deep inelastic scattering

Easier than processes with two incoming hadrons is the scattering of a 
lepton on a (anti)-proton

20
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Partonic variables: 

p̂ = xp ŝ = (k + p̂)2 = 2k · p̂ ŷ =
p̂ · q
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Deep inelastic scattering

Easier than processes with two incoming hadrons is the scattering of a 
lepton on a (anti)-proton

Kinematics: 

Q2 = �q2 s = (k + p)2 xBj =
Q2

2p · q
y =

p · q

k · p

Partonic cross section: 

(just apply QED Feynman rules 

and add phase space)

d⇤̂

dŷ
= q2

l
ŝ

Q4
2 ⇥ �em

�
1 + (1� ŷ)2

⇥

e+

qk

k�

xp
p

proton
Partonic variables: 

p̂ = xp ŝ = (k + p̂)2 = 2k · p̂ ŷ =
p̂ · q

k · p̂
= y (p̂ + q)2 = 2p̂ · q �Q2 = 0

� x = xBj
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Deep inelastic scattering

Hadronic cross section:
d�

dy
=

⇥
dx

�

l

f (p)
l (x)

d�̂

dŷ
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Deep inelastic scattering

Hadronic cross section:
d�

dy
=

⇥
dx

�

l

f (p)
l (x)

d�̂

dŷ
Using x = xBJ

d�

dy dxBj
=

�

l

f (p)
l (x)

d�̂

dŷ

=
2⇥ �2

emsxBj

Q4

�
1 + (1� y)2

⇥ ⇤

l

q2
l f (p)

l (xBj)

e+

qk

k�

xp
p

proton
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Deep inelastic scattering

Hadronic cross section:
d�

dy
=

⇥
dx

�

l

f (p)
l (x)

d�̂

dŷ

1. at fixed xBj and y the cross-section scales with s 

2. the y-dependence of the cross-section is fully predicted and is typical of 
vector interaction with fermions ⇒Callan-Gross relation

3. can access (sums of) parton distribution functions

4. Bjorken scaling: pdfs depend on x and not on Q2

Using x = xBJ

d�

dy dxBj
=

�

l

f (p)
l (x)

d�̂

dŷ

=
2⇥ �2

emsxBj

Q4

�
1 + (1� y)2

⇥ ⇤

l

q2
l f (p)

l (xBj)

e+

qk

k�

xp
p

proton
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The structure function F2

F2 is called structure function (describes structure/constituents of nucleus)

For electron scattering on proton 

F2(x) = x

�
4
9
u(x) +

1
9
d(x)

⇥

NB: use perturbative language of quarks and gluons despite the fact that 

parton distribution are non-perturbative

Question: F2 gives only a linear combination of u and d. How can they be 

extracted separately?

d⇤

dydx
=

2⇥�2
ems

Q4

�
1 + (1� y2

⇥
F2(x) F2(x) =

⇤

l

xq2
l f (p)

l (x)
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Isospin

Neutron is like a proton with u & d exchanged
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NB: experimentally get F2 from deuteron: 
n

F d
2 (x) = F p

2 (x) + Fn
2 (x)



Sea quark distributions

An infinite number of pairs can be created as long as they have very low 

momentum, because of the momentum sum rules. 

We saw before that when we say that the proton is made of uud what 

we mean is 
⇤ 1

0
dx (up(x)� ūp(x)) = 2

⇤ 1

0
dx

�
dp(x)� d̄p(x)

⇥
= 1

Inside the proton there are fluctuations, and pairs of uu,dd,cc,ss ... can be 

created
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and antiparticle?      
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Sea quark distributions

An infinite number of pairs can be created as long as they have very low 

momentum, because of the momentum sum rules. 

We saw before that when we say that the proton is made of uud what 

we mean is 
⇤ 1

0
dx (up(x)� ūp(x)) = 2

⇤ 1

0
dx

�
dp(x)� d̄p(x)

⇥
= 1

Inside the proton there are fluctuations, and pairs of uu,dd,cc,ss ... can be 

created

Photons interact in the same way with u(d) and u(d) 

How can one measure the difference? 

Question:  What interacts differently with particle 

and antiparticle?      
proton

�µ

µ�

W+

 W+/W-  from neutrino scattering
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Check of the momentum sum rule

uv 0.267

dv 0.111

us 0.066

ds 0.053

ss 0.033

cc 0.016

total 0.546

➟ half of the longitudinal 
momentum carried by gluons

26
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Check of the momentum sum rule

uv 0.267

dv 0.111

us 0.066

ds 0.053

ss 0.033

cc 0.016

total 0.546

➟ half of the longitudinal 
momentum carried by gluons

γ/W+/- don’t interact with gluons
How can one measure gluon parton densities?
We need to discuss radiative effects first

26
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Radiative corrections

To first order in the coupling: 
need to consider the emission of one real gluon and a virtual one

zp̂
(1� z)p̂

p̂
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Radiative corrections

To first order in the coupling: 
need to consider the emission of one real gluon and a virtual one

zp̂
(1� z)p̂

p̂
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Adding real and virtual contributions, the partonic cross-section reads

Partial cancellation between real (positive), virtual (negative), but real 

gluon changes the energy entering the scattering, the virtual does not 

�(1) =
CF �s

2�

�
dz

dk2
�

k2
�

1 + z2

1� z

�
�(0)(zp̂)� �(0)(p̂)

�



Radiative corrections

Partonic cross-section: 

Soft limit: singularity at z=1 cancels between real and virtual terms

Collinear singularity: k⊥→ 0 with finite z. Collinear singularity does not 

cancel because partonic scatterings occur at different energies 

28

P (z) = CF
1 + z2

1� z
�(1) =

�s

2�

�
dz

� Q2

�2

dk2
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⇒	 naive parton model does not survive radiative corrections 
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Radiative corrections

Partonic cross-section: 

Soft limit: singularity at z=1 cancels between real and virtual terms

Collinear singularity: k⊥→ 0 with finite z. Collinear singularity does not 

cancel because partonic scatterings occur at different energies 

⇒	 naive parton model does not survive radiative corrections 

Similarly to what is done when renormalizing UV divergences, collinear 

divergences from initial state emissions are absorbed into parton 

distribution functions 

28
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The plus prescription

Partonic cross-section: 

⇤(1) =
CF �s

2⇥

⇤ Q2

�2

dk2
�

k2
�

⇤ 1

0
dz P (z)

�
⇤(0)(zp̂)� ⇤(0)(p̂)

⇥�s
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Plus prescription makes the universal cancelation of singularities explicit
� 1

0
dzf+(z)g(z) �

� 1

0
f(z) (g(z)� g(1))
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Plus prescription makes the universal cancelation of singularities explicit
� 1

0
dzf+(z)g(z) �

� 1

0
f(z) (g(z)� g(1))

The partonic cross section becomes

Collinear singularities still there, but they factorize.

P (z) = CF

�
1 + z2

1� z

⇥
�(1) =

�s

2�

�
dz

� Q2

�2

dk2
�

k2
�

P+(z)�(0)(zp̂) ,



Factorization scale

Schematically use 

⇧ = ⇧(0) + ⇧(1) =
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Factorization scale

Schematically use 

So we define
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Factorization scale

Schematically use 

So we define

⌅̂(p, µF ) =
�

1 +
�s

2⇤
ln

Q2

µ2
F

P (0)
qq

⇥
⌅(0)(p)fq(x, µF ) = fq(x)�

�
1 +

�s

2⌅
ln

µ2
F

⇥2
P (0)

qq

⇥

• universality, i.e. the PDF redefinition does not depend on the process

• choice of μF ∼ Q avoids large logarithms in partonic cross-sections

• PDFs and hard cross-sections don’t evolve independently

• the factorization scale acts as a cut-off, it allows to move the divergent 

contribution into non-pertubative parton distribution functions 

NB:

⇧ = ⇧(0) + ⇧(1) =
�
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⇥
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Improved parton model

⇥ =
�

dx1dx2f
(P1)
1 (x1, µ

2)f (P2)
2 (x2, µ

2)⇥̂(x1x2s, µ
2)

� =
�

dx1dx2f
(P1)
1 (x1)f

(P2)
2 (x2)�̂(x1x2s) ŝ = x1x2s

Naive parton model:

After radiative corrections:
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• With initial state parton collinear singularities don’t cancel

• Initial state emissions with k⊥ below a given scale are included in PDFs

• This procedure introduces a scale μF, the so-called factorization scale 

which factorizes the low energy (non-perturbative) dynamics from the 

perturbative hard cross-section

• As for the renormalization scale, the dependence of cross-sections on 

μF is due to the fact that the perturbative expansion has been truncated

• The dependence on μF becomes milder when including higher orders

Intermediate recap
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Evolution of PDFs

A parton distribution changes when

• a different parton splits and produces it

• the parton itself splits 

x’
x = z x’

(1-z)x’

x

(1-z)x’

z x
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Evolution of PDFs

A parton distribution changes when

• a different parton splits and produces it

• the parton itself splits 

x’
x = z x’

(1-z)x’

x

(1-z)x’

z x

The plus prescription
� 1

0
dzf+(z)g(z) ⇥

� 1

0
dzf(z) (g(z)� g(1))

µ2 ⌃f(z, µ2)
⌃µ2

=
� 1

0
dx�

� 1

x
dz

�s
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P̂ (z)f(x�, µ2)⇥(zx� � x)�

� 1

0
dz

�s

2⌅
P̂ (z)f(x, µ2)
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⇧ 1

x

dz

z

�s

2⇤
P̂ (z)f

⇤x

z
, µ2

⌅
�

⇧ 1

0
dz

�s
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P̂ (z)f

�
x, µ2

⇥

=
⇤ 1

x

dz

z

�s

2⇤
P (z)f

�x

z
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⇥
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x
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DGLAP equation

µ2 ⇧f(z, µ2)
⇧µ2

=
⇤ 1

x

dz

z

�s

2⇤
P (z)f

�x

z
, µ2

⇥

Master equation of QCD: we can not compute parton densities, but we 
can predict how they evolve from one scale to another

Universality of splitting functions: we can measure pdfs in one process 
and use them as an input for another process

 Altarelli, Parisi; Gribov-Lipatov; Dokshitzer ’77 

x
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Evolution
So, in perturbative QCD we can not predict values for 

• the coupling

• the masses

• the parton densities

• ... 
What we can predict is the evolution with the Q2 of those quantities.
These quantities must be extracted at some scale from data.

• not only is the coupling scale-dependent, but partons have a scale 
dependent sub-structure

• we started with the question of how one can access the gluon pdf:       
In DIS: because of the DGLAP evolution, we can access the gluon pdf 
indirectly, through the way it changes the evolution of quark pdfs. Today 
also direct measurements using Tevatron jet data and LHC tt production 

u

u

d u

u

g

g

d
u

dg
s

u g
s

u
u

-

-

increase Q2 increase Q2
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DGLAP Evolution

36

Measure PDFs at 10 GeV Evolve in Q2 and make LHC predictions

The DGLAP evolution is a key to precision LHC phenomenology: it 
allows to measure PDFs at some scale (say in DIS) and evolve upwards 
to make LHC (7, 8, 13, 14, 33, 100.... TeV) predictions 

Different PDFs evolve 
in different ways 
(different equations + 
unitarity constraint)



Parton density coverage

• most of the LHC x-range 
covered by Hera

• need 2-3 orders of 
magnitude Q2-evolution

• rapidity distributions probe 
extreme x-values

• 100 GeV physics at LHC: 
small-x, sea partons

• TeV physics: large x 
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Figure 1: Left plot: The LHC kinematic plane (thanks to J Stirling). Right plot: PDF
distributions at Q2 = 10, 000 GeV2.

Figure 2: Top row: e−, e+ and Ae rapidity spectra for the lepton from the W decay,
generated using HERWIG + k factors and CTEQ6.1 (red), ZEUS-S (green) and MRST2001
(black) PDF sets with full uncertainties. Bottom row: the same spectra after passing through
the ATLFAST [12] detector simulation and selection cuts.(Thanks to A Tricoli)

DIS 2007

DGLAP
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Parton densities: recent progress

Recent major progress:

• full NNLO evolution (previous approximate NNLO)

• improved treatment of heavy flavors near the quark mass

• more systematic use of uncertainties/correlations (e.g. 

dynamic tolerance, combinations of PDF + αs uncertainty)

• Neural Network (NN) PDFs 

ABM, CTEQ, MSTW, NN collaboration   

38

Still, considerable differences in predictions for benchmark process. 



Parton densities: benchmark processes

Uncertainty from PDFs (no αs) on benchmark processes NN col. 1303.1189 

4) different αs 

In general differences due to: 
1) different data in fits
2) different methodology
    [parametrization, theory]
3) treatment of heavy quarks
4) different αs
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Next: Perturbative calculations
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Next, we will focus on perturbative calculations

LO, NLO, NLO+MC, NNLO

techniques, issues with divergences

current status, sample results 

Perturbative calculations rely on the idea of an order-by-order expansion 
in the small coupling

� � A + B�s + C�2
s + D�3

s + . . .

LO NLO NNLO NNNLO



Perturbative calculations

• Perturbative calculations = fixed-order expansion in the coupling 
constant, or more refined expansions that include terms to all orders

• Perturbative calculations are possible because the coupling is small at 
high energy 

• In QCD (or in a generic QFT) the coupling depends on the energy 
(renormalization scale)

• So changing scale the result changes. By how much? What does this 
dependence mean? 

• Let’s consider some examples 
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Leading order n-jet cross-section

• Consider the cross-section to produce n jets.  The leading order result at 
scale µ result will be

�LO
njets(µ) = �s(µ)nA(pi, �i, . . .)
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• Instead, choosing a scale µ’ one gets 

So the change of scale is a NLO effect (∝αs), but this becomes more 
important when the number of jets increases (∝n) 
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Leading order n-jet cross-section

• Consider the cross-section to produce n jets.  The leading order result at 
scale µ result will be

�LO
njets(µ) = �s(µ)nA(pi, �i, . . .)

�LO
njets(µ)

�LO
njets(µ�)

=
�

�s(µ)
�s(µ�)

�n

• Notice that at Leading Order the normalization is not under control:
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NLO n-jet cross-section

Now consider n-jet cross-section at NLO.  At scale µ the result reads 

• So the NLO result compensates the LO scale dependence. The residual 
dependence is NNLO

• Notice also that a good scale choice automatically resums large 
logarithms to all orders, while a bad one spuriously introduces large 
logs and ruins the PT expansion 

• Scale dependence and normalization start being under control only 
at NLO, since a compensation mechanism kicks in  

• Scale variation is conventionally used to estimate the theory uncertainty, 
but the validity of this procedure should not be overrated (see later) 
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Leading order with Feynman diagrams

1. draw all Feynman diagrams

2. put in the explicit Feynman rules and get the amplitude

3. do some algebra, simplifications

4. square the amplitude

5. integrate over phase space + flux factor + sum/average over outgoing/

incoming states 

Get any LO cross-section from the Lagrangian

Automated tools for (1-3): FeynArts/Qgraf, Mathematica/Form etc. 
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Leading order with Feynman diagrams

1. draw all Feynman diagrams

2. put in the explicit Feynman rules and get the amplitude

3. do some algebra, simplifications

4. square the amplitude

5. integrate over phase space + flux factor + sum/average over outgoing/

incoming states 

Get any LO cross-section from the Lagrangian

Bottlenecks  

a) number of Feynman diagrams diverges factorially

b) algebra becomes more cumbersome with more particles

But given enough computer power everything can be computed at LO

Automated tools for (1-3): FeynArts/Qgraf, Mathematica/Form etc. 
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Techniques beyond Feynman diagrams 

✓Berends-Giele relations: compute 
helicity amplitudes recursively 
using off-shell currents

Berends, Giele ’88

× = +× ×∑ ∑
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Techniques beyond Feynman diagrams 

✓Berends-Giele relations: compute 
helicity amplitudes recursively 
using off-shell currents

Berends, Giele ’88

✓CSW relations: compute helicity 
amplitudes by sewing together 
MHV amplitudes [- - + + ... + ]

Cachazo, Svrcek, Witten ’04
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✓BCF relations: compute helicity 
amplitudes via on-shell recursions 
(use complex momentum shifts)
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Benefits and drawbacks of LO

fastest option; often the only one

test quickly new ideas with fully exclusive description

many working, well-tested approaches

highly automated, crucial to explore new ground, but no precision 
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Today’s high energy colliders

Collider Process status

HERA (A & B) e±p running

Tevatron (I & II) pp̄ running

LHC pp starts 2007

current and upcoming ex-

periments collide protons

⇒ all involve QCD

HERA: mainly measurements of parton densities and diffraction

Tevatron: mainly discovery of the top and related measurements

LHC designed to

discover the Higgs and measure it’s properties

unravel possible physics beyond the SM

Our ability to discover new particles and to measure their
properties limited by the quality of our understanding of QCD

The one-loop amplitude for six gluon scattering - April 2006 – p.2/20

Today’s high energy colliders

Collider Process status

HERA (A & B) e±p running

Tevatron (I & II) pp̄ running

LHC pp starts 2007

current and upcoming ex-

periments collide protons

⇒ all involve QCD

HERA: mainly measurements of parton densities and diffraction

Tevatron: mainly discovery of the top and related measurements

LHC designed to

discover the Higgs and measure it’s properties

unravel possible physics beyond the SM

Our ability to discover new particles and to measure their
properties limited by the quality of our understanding of QCD

The one-loop amplitude for six gluon scattering - April 2006 – p.2/20

Today’s high energy colliders

Collider Process status

HERA (A & B) e±p running

Tevatron (I & II) pp̄ running

LHC pp starts 2007

current and upcoming ex-

periments collide protons

⇒ all involve QCD

HERA: mainly measurements of parton densities and diffraction

Tevatron: mainly discovery of the top and related measurements

LHC designed to

discover the Higgs and measure it’s properties

unravel possible physics beyond the SM

Our ability to discover new particles and to measure their
properties limited by the quality of our understanding of QCD

The one-loop amplitude for six gluon scattering - April 2006 – p.2/20

Today’s high energy colliders

Collider Process status

HERA (A & B) e±p running

Tevatron (I & II) pp̄ running

LHC pp starts 2007

current and upcoming ex-

periments collide protons

⇒ all involve QCD

HERA: mainly measurements of parton densities and diffraction

Tevatron: mainly discovery of the top and related measurements

LHC designed to

discover the Higgs and measure it’s properties

unravel possible physics beyond the SM

Our ability to discover new particles and to measure their
properties limited by the quality of our understanding of QCD

The one-loop amplitude for six gluon scattering - April 2006 – p.2/20

46



Benefits and drawbacks of LO

fastest option; often the only one

test quickly new ideas with fully exclusive description

many working, well-tested approaches

highly automated, crucial to explore new ground, but no precision 

Benefits of LO:

Today’s high energy colliders

Collider Process status

HERA (A & B) e±p running

Tevatron (I & II) pp̄ running

LHC pp starts 2007

current and upcoming ex-

periments collide protons

⇒ all involve QCD

HERA: mainly measurements of parton densities and diffraction

Tevatron: mainly discovery of the top and related measurements

LHC designed to

discover the Higgs and measure it’s properties

unravel possible physics beyond the SM

Our ability to discover new particles and to measure their
properties limited by the quality of our understanding of QCD

The one-loop amplitude for six gluon scattering - April 2006 – p.2/20

Today’s high energy colliders

Collider Process status

HERA (A & B) e±p running

Tevatron (I & II) pp̄ running

LHC pp starts 2007

current and upcoming ex-

periments collide protons

⇒ all involve QCD

HERA: mainly measurements of parton densities and diffraction

Tevatron: mainly discovery of the top and related measurements

LHC designed to

discover the Higgs and measure it’s properties

unravel possible physics beyond the SM

Our ability to discover new particles and to measure their
properties limited by the quality of our understanding of QCD

The one-loop amplitude for six gluon scattering - April 2006 – p.2/20

Today’s high energy colliders

Collider Process status

HERA (A & B) e±p running

Tevatron (I & II) pp̄ running

LHC pp starts 2007

current and upcoming ex-

periments collide protons

⇒ all involve QCD

HERA: mainly measurements of parton densities and diffraction

Tevatron: mainly discovery of the top and related measurements

LHC designed to

discover the Higgs and measure it’s properties

unravel possible physics beyond the SM

Our ability to discover new particles and to measure their
properties limited by the quality of our understanding of QCD

The one-loop amplitude for six gluon scattering - April 2006 – p.2/20

Today’s high energy colliders

Collider Process status

HERA (A & B) e±p running

Tevatron (I & II) pp̄ running

LHC pp starts 2007

current and upcoming ex-

periments collide protons

⇒ all involve QCD

HERA: mainly measurements of parton densities and diffraction

Tevatron: mainly discovery of the top and related measurements

LHC designed to

discover the Higgs and measure it’s properties

unravel possible physics beyond the SM

Our ability to discover new particles and to measure their
properties limited by the quality of our understanding of QCD

The one-loop amplitude for six gluon scattering - April 2006 – p.2/20

46

Example:  W+4 jet cross-section ∝ αs(Q)4

Vary αs(Q) by ±10% via change of Q ⇒ cross-section varies by ±40%

large scale dependences, reflecting large theory uncertainty

no control on normalization

poor control on shapes

poor modeling of jets

Drawbacks of LO:



Next-to-leading order

Benefits of next-to-leading order

establish normalization and shape of

cross-sections

reduce unphysical scale dependences

new physics searches require good

knowledge of signals and backgrounds

get indirect information about sectors

not directly accessible
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small scale dependence at LO can be very misleading, small dependence 
at NLO robust sign that PT is under control 
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through loop effects get indirect information about sectors not 
directly accessible

• reduce dependence on unphysical scales 
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large NLO correction or large dependence at NLO robust sign 
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Ingredients at NLO

A full N-particle NLO calculation requires (e.g. for N=3):
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➔ divergence from loop integration,
    use e.g.  dimensional regularization Bottleneck for a long 
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how to compute this 
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set of subtraction terms to cancel divergences  

Ingredients at NLO

tree graph rates with N+1 partons 
➔ soft/collinear divergences 

A full N-particle NLO calculation requires (e.g. for N=3):

virtual correction to N-leg process 
➔ divergence from loop integration,
    use e.g.  dimensional regularization Bottleneck for a long 

time. Now understood 
how to compute this 

automatically

We won’t have time to do detailed NLO calculations, but let’s 
look a bit more in detail at the issue of divergences/subtraction

48

 



Regularization in QCD

Regularization: a way to make intermediate divergent quantities meaningful 
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Regularization in QCD

Regularization: a way to make intermediate divergent quantities meaningful 

• This procedure works both for UV divergences and IR divergences

Alternative regularization schemes: photon mass (EW), cut-offs, Pauli-Villard ... 
Compared to those methods, dimensional regularizatiom has the big virtue that it leaves 
the regularized theory Lorentz invariant, gauge invariant, unitary etc. 

• In QCD dimensional regularization is today the standard procedure, 
based on the fact that d-dimensional integrals are more convergent if 
one reduces the number of dimensions.
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Subtraction and slicing methods

• Consider e.g. an n-jet cross-section with some arbitrary infrared safe jet 
definition.  At NLO, two divergent integrals, but the sum is finite 

• Since one integrates over a different number of particles in the final 
state, real and virtual need to be evaluated first, and combined then 

• This means that one needs to find a way of removing divergences before 
evaluating the phase space integrals

• Two main techniques to do this
- phase space slicing ⇒ obsolete because of practical/numerical issues

- subtraction method ⇒ most used in recent applications

�J
NLO =

�

n+1
d�J

R +
�

n
d�J

V
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Subtraction method

• The real cross-section can be written schematically as 

where FJ is the arbitrary jet-definition 

51

d�J
R = d�n+1|Mn+1|2F J

n+1(p1, . . . , pn+1)



Subtraction method

• The real cross-section can be written schematically as 

where FJ is the arbitrary jet-definition 

• The matrix element has a non-integrable divergence 

|Mn+1|2 =
1
x
M(x)

where x vanishes in the soft/collinear divergent region  
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Subtraction method

• The real cross-section can be written schematically as 

where FJ is the arbitrary jet-definition 

• The matrix element has a non-integrable divergence 

|Mn+1|2 =
1
x
M(x)

where x vanishes in the soft/collinear divergent region  

2 Re{MV · M�
0} =

1
�
V

• IR divergences in the loop integration regularized by taking D = 4-2ε 
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• The n-jet cross-section becomes 

Subtraction method

52
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• KLN cancelation guarantees that 

lim
x�0

M(x) = V
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• Infrared safety of the jet definition implies 

lim
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• One can then add and subtract the analytically computed divergent part 
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Subtraction method

• This can be rewritten exactly as 

�J
NLO =

� 1

0

dx

x1+�
M(x)

�
F J

1 (x)� VF J
0

�
+O(1)VF J

0

⇒ Now both terms are finite and can be evaluated numerically

• Subtracted cross-section must be calculated separately for each process 
(but mostly automated now). It must be valid everywhere in phase space 

• Systematized in the seminal papers of Catani-Seymour (dipole 
subtraction, ’96) and Frixione-Kunszt-Signer (FKS method, ’96) 

• Subtraction used in all recent NLO applications and public codes 
(Event2, Disent, MCFM, NLOjet++, MC@NLO, POWHEG ... ) 
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Approaches to virtual (loop) part of NLO

Two complementary approaches:

‣ Numerical/traditional Feynman diagram methods: 
use robust computational methods [integration by parts, reduction 
techniques...], then let the computer do the work for you  

Bottleneck: 
factorial growth, 2 → 4 doable, difficult to go beyond

‣ Analytical approaches: 
improve understanding of field theory [e.g. generalized unitarity, 
recursions, OPP, Open Loops ... ]

Status: 
moving towards more legs (5 or 6 in the final state) + towards full 
automation [GoSam, MadLoop]
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Britto, Cachazo, Feng ’04

1) “... we show how to use generalized unitarity to read off the (box) 
coefficients. The generalized cuts we use are quadrupole cuts ...”

NB: non-zero 
because cut gives 
complex momenta

Aim: NLO loop integral without doing the integration

Two breakthrough ideas

Quadrupole cuts:  4 on-shell conditions on 4 dimensional loop 
momentum) freezes the integration. But rational part of the amplitude, 
coming from D=4-2ε not 4, computed separately
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Aim: NLO loop integral without doing the integration

Ossola, Pittau, Papadopolous ’06

2) The OPP method: “We show how to extract the coefficients of 4-, 3-, 2- and 
1-point one-loop scalar integrals....”

Contents

−gµν + kµkν
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1. Introduction

The current TEVATRON collider and the upcoming Large Hadron Collider need a good
understanding of the standard model signals to carry out a successful search for the Higgs
particle and physics beyond the standard model. At these hadron colliders QCD plays an
essential role. From the lessons learned at the TEVATRON we need fixed order calculations
matched with parton shower Monte Carlo’s and hadronization models for a successful
understanding of the observed collisions.

For successful implementation of numerical algorithms for evaluating the fixed order
amplitudes one needs to take into account the so-called complexity of the algorithm. That
is, how does the evaluation time grows with the number of external particles. An algo-
rithm of polynomial complexity is highly desirable. Furthermore algebraic methods can be
successfully implemented in efficient and reliable numerical procedures. This can lead to
rather different methods from what one would develop and use in analytic calculation.

The leading order parton level generators are well understood. Generators have been
constructed using algebraic manipulation programs to calculate the tree amplitudes directly
from Feynman diagrams. However, such a direct approach leads to an algorithm of double
factorial complexity. Techniques such as helicity amplitudes, color ordering and recursion

– 1 –

Two breakthrough ideas

Coefficients can be determined by solving system of equations: no 
loops, no twistors, just algebra!
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The 2007 Les Houches wishlist
Process Comments

(V ∈ {Z,W, γ})
Calculations completed since Les Houches 2005

1. pp → V V jet WW jet completed by Dittmaier/Kallweit/Uwer [3];

Campbell/Ellis/Zanderighi [4]

and Binoth/Karg/Kauer/Sanguinetti (in progress)

2. pp → Higgs+2jets NLO QCD to the gg channel
completed by Campbell/Ellis/Zanderighi [5];

NLO QCD+EW to the VBF channel

completed by Ciccolini/Denner/Dittmaier [6, 7]

3. pp → V V V ZZZ completed by Lazopoulos/Melnikov/Petriello [8]

andWWZ by Hankele/Zeppenfeld [9]

Calculations remaining from Les Houches 2005

4. pp → tt̄ bb̄ relevant for tt̄H
5. pp → tt̄+2jets relevant for tt̄H
6. pp → V V bb̄, relevant for VBF→ H → V V , tt̄H
7. pp → V V +2jets relevant for VBF→ H → V V

VBF contributions calculated by

(Bozzi/)Jäger/Oleari/Zeppenfeld [10–12]

8. pp → V +3jets various new physics signatures

NLO calculations added to list in 2007

9. pp → bb̄bb̄ Higgs and new physics signatures

Calculations beyond NLO added in 2007

10. gg → W ∗W ∗ O(α2α3
s) backgrounds to Higgs

11. NNLO pp → tt̄ normalization of a benchmark process

12. NNLO to VBF and Z/γ+jet Higgs couplings and SM benchmark

Calculations including electroweak effects

13. NNLO QCD+NLO EW forW/Z precision calculation of a SM benchmark

Table 1: The updated experimenter’s wishlist for LHC processes

5

}

The NLO multi-leg Working 
group report 0803.0494

with Feynman diagrams
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}with Feynman diagrams or 
unitarity/onshell methods
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SED
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‣ improved stability of NLO result [but no decays]

4 P.Uwer
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Figure 1. Scale dependence of the LO and NLO cross sections for tt̄+ 1-jet production at the Tevatron (left) and
the LHC (right) as taken from Ref. [34], with the renormalization scale (µr) and the factorization scale (µf ) set to µ.

section contributions σ(yt >
< 0) correspond to top-

quarks in the forward or backward hemispheres, re-

spectively, where incoming protons fly into the for-

ward direction by definition. Denoting the corre-

sponding NLO contributions to the cross sections by

δσ±NLO, we define the asymmetry at NLO by

AtFB,NLO =
σ−LO
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LO

(
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δσ−NLO
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NLO

σ+
LO

)

, (2)

i.e. via a consistent expansion in αs. Note, however,

that the LO cross sections in Eq. (2) are evaluated in

the NLO setup (PDFs, αs). The results for the asym-

metry for different scale choices are shown in Fig. 2.

At LO we find an asymmetry of about −8%. The
scale dependence is rather small. This is a conse-

quence of the fact that αs cancels exactly between the

numerator and the denominator. In addition the resid-

ual factorization scale dependence also cancels to a

large extent in the ratio. At NLO we find a large cor-

rection compared to the LO result. The asymmetry

is almost washed out at NLO. The scale dependence

is increased in NLO which seems natural given the

small dependence in LO. To investigate the origin of

the large NLO corrections to the asymmetry we stud-

ied the dependence on pcutT , the minimal pT used to

resolve the additional jet. The results are shown in

Tab. 1. A strong dependence of the cross section on

pcutT is observed. For all pcutT values we find that the

NLO corrections to the cross section are of moderate
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Figure 2. Scale dependence of the LO and NLO

forward–backward charge asymmetry of the top-

quark in pp̄→ tt̄+jet+X at the Tevatron as taken from
Ref. [34] with µ= µf = µr.
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Example of NLO result: tt+1jet

‣ forward-backward asymmetry at the Tevatron compatible with zero

‣ essential ingredient of NNLO tt production

Dittmaier, Kallweit, Uwer ’07-’08



Automated NLO
Alwall et al ’14
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Alwall et al ’14



• few years ago: each item in each table resulted in a paper. Now, as for 
leading order, just run a code and get the results (also for distributions) 

• possibility to do precise studies of signal and backgrounds using the 
same tool (very practical + avoid errors)

• what lead to this remarkable progress? the fact that 

1. leading order can be computed automatically and efficiently (e.g. via 
recursion relations) 

2.one can reduce the one-loop to product of tree-level amplitudes
3. it was well understood how to subtract singularities 
4. the basis of master integrals was known 

Automated NLO

70

But for item 2. everything was there since the time of Passarino-Veltman 
(even item 2. was understood, but no efficient/practical method exited). 
We will now compare this to the current status of NNLO 



NNLO: when is NLO not good enough?

when NLO corrections are large (NLO correction ∼ LO)
This may happens when

- process involve very different scales → large logarithms of ratio of 
scales appear 

- new channels open up at NLO (at NLO they are effectively LO)

- paramount example: Higgs production
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when high precision is needed to match small experimental error

- W/Z hadro-production, heavy-quark hadro-production, αs from 
event shapes in e+e- ...
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NNLO: when is NLO not good enough?

when NLO corrections are large (NLO correction ∼ LO)
This may happens when

- process involve very different scales → large logarithms of ratio of 
scales appear 

- new channels open up at NLO (at NLO they are effectively LO)

- paramount example: Higgs production

when high precision is needed to match small experimental error

- W/Z hadro-production, heavy-quark hadro-production, αs from 
event shapes in e+e- ...

when a reliable error estimate is needed 
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Some history of NNLO

first NNLO computation of a collider process was inclusive Drell-Yan  
production by Hamberg, van Neerven and Matsuura in ’91  

second NNLO calculation: Higgs production in gluon-gluon fusion by 
Harlander and Kilgore in ’02 

Both calculations refer to inclusive, total cross-sections that are not 
measurable 

first exclusive NNLO computation (for fiducial volume cross-sections) 
was Higgs → 𝛾𝛾 in ’04 by Anastasiou, Melnikov and Petriello, followed by 
other exclusive calculations of Higgs and Drell-Yan processes

only last year NNLO corrections to 2 → 2 processes also with QCD 
partons in the final state started to appear.  This indicates a more 
complete understanding of NNLO 

Many things at NNLO are new and took a while to understand. Today’s 
technology is likely not to be finalized yet
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Ingredients for NNLO 

73

Remember crucial steps for automated NLO were 

1. leading order can be computed automatically and efficiently (e.g. via 
recursion relations) 

2. one can reduce the one-loop to product of tree-level amplitudes
3. it was well understood how to subtract singularities 
4. the basis of master integrals was known 

At NNLO the situation is very different
1. leading order of very limited importance  
2. no procedure to reduce two-loop to tree-level (unitarity approaches 

at two face still many outstanding issues)
3. subtraction of singularities far from trivial 
4. basis set of master integrals not known, integrals not all/always 

known analytically
And all this for simple processes (no result exist, or has been attempted, 
for any 2 → 3 scattering process) 



Ingredients for NNLO
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What changed in the last years

1. technology to compute integrals
2. extension of systematic FKS subtraction to NNLO 



Collider processes known at NNLO

1. Drell-Yan (Z,W) (inclusive)

2. Higgs (inclusive)

3. Higgs differential

4. WH/ZH total cross-section 

5. di-photon production 

6. H+1jet 

7. top-pair production

8. inclusive jets 

9. Z/W + photon 

10.ZZ 

11.t-channel single top                
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X van Neerven ’90 

X Harlander et al ’02; Anastasiou et al  ’02; Ravindran et al ’03

X Anastasiou et al ’04; Catani et al ’07

 X Brein et al ’04; Ferrera et al ’11

X Catani et al ’11

X Boughezal et al. ’13

X Czakon et al ’13 

X Currie et al. ’13

X Grazzini et al. ’13-14

X Cascioli et al. ’14 

X Bruscherseifer ’14

NB: this list is growing really quickly now ... 



NNLO vs LHC data

Impressive agreement between experiment and NNLO theory  

76

CMS-PAS-SMP-14-003



Inclusive NNLO Higgs production

Inclusive Higgs production via gluon-gluon fusion in the large mt-limit:

NNLO corrections known since many years now:

virtual-virtual real-virtual real-real
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Inclusive NNLO Higgs production

3

the soft pieces are given in Eq. (25) of Ref. [2], while the

hard pieces, σ̂(n),h
ij (to order (1 − x)1) are:

σ̂(2),h
gg = σ0

{
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and

σ̂(2),h
qq̄,NS = σ̂(2),h

qq̄,S = σ̂(2),h
qq,NS = σ̂(2),h

qq,S =

σ0

{
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[
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16
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16

9
ζ2

]

+ . . .

}
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(10)

For the sake of brevity, we have suppressed explicitly
scale dependent terms by setting µF = µR = MH (they
can be readily reconstructed using scale invariance) and
displayed terms only to order (1 − x)1. Terms to order
(1−x)1 dominate the corrections (see Fig. (2)), but we in-
clude terms to order (1−x)16 for all sub-processes in our
numerical analysis. The labels “NS” and “S” in Eq. (10)
denote the flavor non-singlet and singlet quark contribu-
tions, respectively. The four contributions are equal only
to order (1− x)1; their expansions differ at higher orders

of (1 − x) (except that σ̂(2),h
qq̄,S = σ̂(2),h

qq,S exactly). We note
in passing that our explicit calculation confirms the value

for the coefficient c(2)
03 for the gluon-gluon subprocess de-

rived in Ref. [4].

HADRONIC RESULTS

The hadronic cross section σ is related to the partonic
cross section through a convolution with the parton dis-

tribution functions. It has been argued [10] that conver-
gence is improved by pulling out a factor of x from σ̂ij

before expanding in (1 − x). We indeed observe a more
stable behavior at low orders of (1 − x) and will adopt
this prescription in what follows. Beyond fifth order,
however, it is irrelevant which is used.

In Fig. (1), we show the cross section at LO, NLO and
NNLO. At each order, we use the corresponding MRST

parton distribution set [16] [11, 12]. The NNLO distri-
butions are based upon approximations of the three-loop
splitting functions [13]. Studies using other parton distri-
butions, including the NNLO distributions of Alekhin [14]
will be presented elsewhere.
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FIG. 1: LO (dotted), NLO (dashed) and NNLO (solid) cross
sections for Higgs production at the LHC (µF = µR = MH).
In each case, we weight the cross section by the ratio of the
LO cross section in the full theory (Mt = 175 GeV) to the LO
cross section in the effective theory (Eq. (2)).

We next look at the quality of the expansion that we
use for the evaluation of the NNLO corrections. Fig. (2)
shows the NNLO K-factor (KNNLO ≡ σNNLO/σLO) for
the LHC starting from the purely soft limit ∝ (1 − x)−1

and adding successively higher orders in the expansion in
(1− x) up to order (1− x)16. Clearly, the convergence is
very good: beyond order (1−x)1, the curves differ by less
than 1%. Observe that the purely soft contribution un-
derestimates the true result by about 10-15%, while the
next term in the expansion, ∝ (1 − x)0, overestimates it
by about 5%. Note that the approximation up to (1−x)0

is not the same as the “soft+sl”-result of Ref. [2] or
the “SVC”-result of Ref. [3], since these include only the
ln3(1 − x) terms at that order.

We next consider the renormalization scale (µR) and
factorization scale (µF ) dependence of the K-factors. At
the LHC, we observe that the µF and µR dependence has
the opposite sign. In order to arrive at a conservative
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FIG. 2: K-factor for Higgs production at the LHC. Each line
corresponds to a different order in the expansion in (1 − x).
The renormalization and factorization scales are set to MH .

estimate of the scale dependence, we display two curves
corresponding to the values (µR, µF ) = (2MH , MH/2)
and (MH/2, 2MH) (see Fig. (3)). The scale dependence
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FIG. 3: Scale dependence at the LHC. The lower curve of
each pair corresponds to µR = 2MH , µF = MH/2, the upper
to µR = MH/2, µF = 2MH . The K-factor is computed with
respect to the LO cross section at µR = µF = MH .

is reduced when going from NLO to NNLO and, in con-
trast to the results in Ref. [2], the perturbative series up
to NNLO appears to be well behaved. The reason is that
both the newly calculated contributions from hard ra-
diation and the effect of the previously unavailable set
of NNLO parton distribution functions reduce the NNLO

cross section. Detailed studies of the individual effects

will be presented in a forthcoming paper.

Fig. 4 shows the results for the Tevatron at a center-of-
mass energy of

√
s = 2 TeV. Here the dependence on µR

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

100 120 140 160 180 200 220 240 260 280 300

K(pp
_
 →H+X)

M
H

 [GeV]

LO
NLO
NNLO

√ s = 2 TeV

FIG. 4: Scale dependence for Tevatron Run II. The lower
curve of each pair corresponds to µR = µF = 2MH , the upper
to µR = µF = MH/2.

and µF has the same sign, so we set µR = µF ≡ µ and
vary µ between MH/2 and 2MH . The K-factor is larger
than for the LHC, but the perturbative convergence and
the scale dependence are satisfactory.

CONCLUSIONS

We have computed the NNLO corrections to inclusive
Higgs production at hadron colliders. We find reasonable
perturbative convergence and reduced scale dependence.
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[4] M. Krämer, E. Laenen, and M. Spira, Nucl. Phys. B511,
523 (1998), hep-ph/9611272.

[5] R. Hamberg, W. L. van Neerven, and T. Matsuura, Nucl.
Phys. B359, 343 (1991).

Kilgore, Harlander ’02
Anastasiou, Melnikov ’02
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Many improvements on this calculation over the last 10 years (EW 
corrections, NNLO+PS, resummations, exclusive decays...) 



Recent NNLO highlights:γγ
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⇒ no good convergence of PT (asymmetric cuts + new channels) 

[similar to gg → H] 

Catani et al. 1110.2375



Recent NNLO highlights: dijets
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⇒ no good convergence of PT  [similar to gg → H, pp → γγ]                    

Does this pattern survive once the full NNLO calculation is completed?

gluon only contribution
Gehrmann et al. 1301.7310 



Recent NNLO highlights: H+1jet
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Gluon fusion contribution to H+1jet

⇒ no good convergence of PT  [similar to gg → H, pp → γγ, pp → dijets] 

Does this pattern survive once the full NNLO calculation is completed?

Bouzhegal et al. 1302.6216 



Recent NNLO highlights: tt
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Czakon et al. 1303.6254 
[+ previous refs...]

First full NNLO calculation with colored particles in the initial 
and final state. Paves the way to a number of other calculations



Beyond NNLO
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First approximate N3LO calculation of inclusive Higgs production
Anastasiou et al 1403.4616

�̂ij(ŝ,mH) =
�C(µ2)2

8v2

��

k=0

��s

�

�k
�(k)

ij (z)

where                   is the effective Hgg coupling and z = m2
H/ŝC(µ2)/(4v)

New! Result for delta and plus terms at N3LO in the threshold expansion

�̂(3)(z) � �2.2%

Reminder:

large cancellations between 
different terms lead to:  



Beyond NNLO
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Problem threshold expansion ambiguous (can multiply and divide out 
by any function that goes to 1 for z →1) 

Take different form for g(z) and look at the N3LO correction relative 
to the fixed order 

g(z) 1 z z2 1/z

𝜹N3LO/LO -2.2% 8.2% 30.2% 7.7%

Too premature for phenomenology ... ?

Anastasiou et al 1403.4616



Beyond NNLO
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Comparison of several approximate N3LO  
Bonvini et al 1404.3204

Exact NNNLO may not be that far ... 

Large N3LO corrections + large spread in the predictions 



Recap of fixed order
Leading order

• everything can be computed in principle today (practical edge: 8 
particles in the final state), many public codes

• techniques: standard Feynman diagrams or recursive methods 
(Berends-Giele, BCF, CSW, ...) 

Next-to-leading order

• automation realized for QCD corrections

• next: NLO EW corrections and NLO for BSM

Next-to-next-to-leading order 

• 2→1 processes available since a while (Higgs, Drell-Yan) 

• a number of new results for 2→2 processes. More to come soon. 

Next-to-next-to-next-to-leading order

• very first steps ... 
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Parton shower & Monte Carlo methods
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the probability for emitting a gluon above kt is given by

useful to look at the probability of not emitting a gluon 

P (no emission above kt) � 1� 2�sCF

�

�
dE

E

�
d�

�
�(E� � kt)

P (emission above kt) �
2�sCF

�

�
dE

E

�
d�

�
�(E� � kt)

NB: based on soft-collinear approximation

the probability of nothing happening to all orders is the exponential of 
the first order result -- this is called Sudakov form factor 

�(kt, Q) � exp

�
�2�sCF

�

�
dE

E

�
d�

�
�(E� � kt)

�

Done properly: αs in the integration and use full splitting function

Parton shower: use above to generate many emissions in the soft-
collinear approximation + add hadronization model 



NLO + parton shower
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Two main working examples: 

NLO + parton shower combines the best features of the two methods: 
correct rates (NLO) and hadron-level description of events (PS) 
Difficult because need to avoid double counting 

1.MC@NLO (aMC@NLO) 2.POWHEG (POWHEG-BOX)
Frixione&Webber ’02 and later refs. Nason ’04 and later refs.

First only processes with no light jets in the final state, now large number 
of processes implemented. In fact, almost automated procedures reached 
in the POWHEG BOX and in aMC@NLO 

‣explicitly subtract double 
counting

‣hardest emission from NLO 
(good for pt ordered shower)



MC@NLO: W+W- production (LHC)

HERWIG

W+

W�

d

u

u

+  
parton shower

Herwig too soft in 
the high-pt region
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NLO

W+

W�

d

u

u

g

MC@NLO: W+W- production (LHC)

NLO divergent 
in the soft region
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MC@NLO

W+

W�

d

u

u

g

+  
parton shower

W+

W�

d

u

u

g

MC@NLO: W+W- production (LHC)

MC@NLO correctly interpolates 
between the two regimes
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NNLO+PS

New challenge given the many recent NNLO results, natural to look for 
matching NNLO and parton shower

92

It turns out that this problem is intimately related to merging of NLO+PS 
for different jet multiplicities. Lots of activity in this direction recently.   



Jets: about 10 years ago...

Cones are IR 
unsafe!

IR unsafety affects jet 
cross-sections by less 
than 1%, so don’t need 

to care!

Jet area not well 
defined in kt: U.E. and 
pile-up subtraction too 

difficult!

kt collects too 
much soft 
radiation! 

The Cone 
is too 
rigid!

After all, if D=1.35 R 
Cone and kt are 

practically the same 
thing....

Cones have a 
well-defined 
circular area!

What 
about dark 
towers??
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Where do jets enter ?

Essentially everywhere at colliders!

Jets are an essential tool for a variety of studies:

top reconstruction 

mass measurements

most Higgs and New Physics searches 

instrumental for QCD studies, e.g. inclusive-jet measurements 
⇒ important input for PDF determinations 

general tool to attribute structure to an event
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Jets

Jets provide a way of projecting away the multiparticle dynamics of an 
event ⇒ leave a simple quasi-partonic picture of the hard scattering

The projection is fundamentally ambiguous ⇒ jet physics is a rich subject
Phenomenology: lecture 4 (75/101)

Understanding jets Understanding jets

Previous lecture

Divergent matrix element for
emission of soft and collinear
gluons.

‘Good’ observables are
insensitive to this — infrared
and collinear safe.

But complex event structure is
still present (and must be
understood for many practical
uses of QCD).

This lecture

Try to see how event structure builds up.

See when that information is relevant

Phenomenology: lecture 4 (75/101)

Understanding jets Understanding jets

Previous lecture

Divergent matrix element for
emission of soft and collinear
gluons.

‘Good’ observables are
insensitive to this — infrared
and collinear safe.

But complex event structure is
still present (and must be
understood for many practical
uses of QCD).

This lecture

Try to see how event structure builds up.

See when that information is relevantAmbiguities: 
1) Which particles should belong to a same jet ?
2) How does recombine the particle momenta to give the jet-momentum? 
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Two broad classes of jet algorithms

Cone type
(UA1,JetCLU, Midpoint, 

SISCone..)

Sequential
 (kt-type, Jade, Cambridge/

Aachen...)

top down approach:
cluster particles according to 
distance in coordinate-space
Idea: put cones along dominant 
direction of energy flow 

bottom up approach: cluster 
particles according to distance 
in momentum-space
Idea: undo branchings occurred 
in the PT evolution

Jet algorithms

Today many extensions of the original Sterman-Weinberg jets. 
Modern jet-algorithms divided into two broad classes

96



Inclusive kt/Durham-algorithm
Catani et. al ’92-’93; Ellis&Soper ’93

1. For any pair of final state particles i,j define the distance 

dij =
�y2

ij + ��2
ij

R2
min{k2

ti, k
2
tj}

Inclusive algorithm:
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Inclusive kt/Durham-algorithm
Catani et. al ’92-’93; Ellis&Soper ’93

diB = k2
ti

2. For each particle i define a distance with respect to the beam 
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Inclusive kt/Durham-algorithm
Catani et. al ’92-’93; Ellis&Soper ’93

diB = k2
ti

2. For each particle i define a distance with respect to the beam 

1. For any pair of final state particles i,j define the distance 

dij =
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ij + ��2
ij
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min{k2

ti, k
2
tj}

Inclusive algorithm:

97

3. Find the smallest distance. If it is a dij recombine i and j into a new 
particle (⇒ recombination scheme); if it is diB declare i to be a jet and 
remove it from the list of particles 

NB: if                                    then partons (ij) are 
always recombined, so R sets the minimal interjet angle   

�Rij � �y2
ij + ��2

ij < R22



Inclusive kt/Durham-algorithm
Catani et. al ’92-’93; Ellis&Soper ’93

diB = k2
ti

2. For each particle i define a distance with respect to the beam 

1. For any pair of final state particles i,j define the distance 

dij =
�y2

ij + ��2
ij

R2
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ti, k
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Inclusive algorithm:
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4. repeat the procedure until no particles are left 

3. Find the smallest distance. If it is a dij recombine i and j into a new 
particle (⇒ recombination scheme); if it is diB declare i to be a jet and 
remove it from the list of particles 

NB: if                                    then partons (ij) are 
always recombined, so R sets the minimal interjet angle   

�Rij � �y2
ij + ��2

ij < R22



Exclusive kt/Durham-algorithm
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Inclusive algorithm gives a variable number of jets per event, according to 
the specific event topology  



Exclusive kt/Durham-algorithm
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Exclusive version:  run the inclusive algorithm but stop when either 

• all dij, diB > dcut or 

• when reaching the desired number of jets n

Inclusive algorithm gives a variable number of jets per event, according to 
the specific event topology  



The CA and the anti-kt algorithm

99

The Cambridge/Aachen: sequential algorithm like kt, but uses only 

angular properties to define the distance parameters 

�R2
ij = (�i � �j)2 + (yi � yj)2dij =

�R2
ij

R2
diB = 1

Dotshitzer et. al ’97; Wobisch and  Wengler ’99
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The Cambridge/Aachen: sequential algorithm like kt, but uses only 

angular properties to define the distance parameters 

�R2
ij = (�i � �j)2 + (yi � yj)2dij =

�R2
ij

R2
diB = 1

Dotshitzer et. al ’97; Wobisch and  Wengler ’99

The anti-kt algorithm: designed not to recombine soft particles together 

dij = min{1/k2
ti, 1/k2

tj}�R2
ij/R2 diB = 1/k2

ti

Cacciari, Salam, Soyez ’08



The CA and the anti-kt algorithm
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The Cambridge/Aachen: sequential algorithm like kt, but uses only 

angular properties to define the distance parameters 

�R2
ij = (�i � �j)2 + (yi � yj)2dij =

�R2
ij

R2
diB = 1

Dotshitzer et. al ’97; Wobisch and  Wengler ’99

The anti-kt algorithm: designed not to recombine soft particles together 

dij = min{1/k2
ti, 1/k2

tj}�R2
ij/R2 diB = 1/k2

ti

Cacciari, Salam, Soyez ’08

anti-kt is the default algorithm for ATLAS and CMS
unfortunately with different default R 0.4 & 0.6 [ATLAS] 0.5 & 0.7 [CMS]

First time only IR-safe algorithms are used systematically at a collider 



Cone algorithms 

1. A particle i at rapidity and azimuthal angle (yi, Φi) ⊂ cone C iff 
�

(yi � yC)2 + (�i � �C)2 ⇥ Rcone

Théorie des jets (p. 23)

Mainstream jet algorithms

Cone
Cone basics

Modern cone algs have two main steps:

! Find some/all stable cones
≡ cone pointing in same direction as the momentum of its contents

! Resolve cases of overlapping stable cones
By running a ‘split–merge’ procedure

[Blazey et al. ’00 (Run II jet physics)]
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2. Define

1. A particle i at rapidity and azimuthal angle (yi, Φi) ⊂ cone C iff 
�

(yi � yC)2 + (�i � �C)2 ⇥ Rcone

3. If weighted and geometrical averages coincide                                                          
a stable cone (⇒ jet) is found, otherwise set                           & iterate 
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! Find some/all stable cones
≡ cone pointing in same direction as the momentum of its contents
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By running a ‘split–merge’ procedure
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Cone algorithms 

�̄C ⇥
�

i�C �i · pT,i�
i�C pT,i

ȳC ⇥
�

i�C yi · pT,i�
i�C pT,i

2. Define

1. A particle i at rapidity and azimuthal angle (yi, Φi) ⊂ cone C iff 
�

(yi � yC)2 + (�i � �C)2 ⇥ Rcone

3. If weighted and geometrical averages coincide                                                          
a stable cone (⇒ jet) is found, otherwise set                           & iterate 

(yC ,�C) = (ȳC , �̄C)
(yC ,�C) = (ȳC , �̄C)

4. Stable cones can overlap. Run a split-merge on overlapping jets: merge 
jets if they share more than an energy fraction f, else split them and 
assign the shared particles to the cone whose axis they are closer to.
Remark: too small f (<0.5) creates large jets, not recommended 

Théorie des jets (p. 23)

Mainstream jet algorithms

Cone
Cone basics

Modern cone algs have two main steps:

! Find some/all stable cones
≡ cone pointing in same direction as the momentum of its contents

! Resolve cases of overlapping stable cones
By running a ‘split–merge’ procedure

[Blazey et al. ’00 (Run II jet physics)]
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Cone algorithms 

• The question is where does one start looking for stable cone ? 

• The direction of these trial cones are called seeds 

• Ideally, place seeds everywhere, so as not to miss any stable cone

• Practically, this is unfeasible. Speed of recombination grows fast with the 
number of seeds. So place only some seeds, e.g. at the (y, Φ)-location of 

particles. 
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Cone algorithms 

• The question is where does one start looking for stable cone ? 

• The direction of these trial cones are called seeds 

• Ideally, place seeds everywhere, so as not to miss any stable cone

• Practically, this is unfeasible. Speed of recombination grows fast with the 
number of seeds. So place only some seeds, e.g. at the (y, Φ)-location of 

particles. 

Seeds make cone algorithms infrared unsafe 
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Jets: infrared unsafety of cones

3 hard ⇒ 2 stable cones 3 hard + 1 soft  ⇒ 3 stable cones

 Soft emission changes the hard jets ⇒ algorithm is IR unsafe
➟(a)
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Figure 1: Stable cones found by the midpoint algorithm for a 3-particle event (left) and for
the same event with an additional infinitely soft gluon (right).

SISCone as a replacement for the midpoint algorithm. Let us consider the
3-particle event displayed in Fig. 1(a). When clustered with the midpoint algorithm, 2
stable cones are found, leading to two jets: one with particles 1 and 2 and a second one with
particle 3. If one adds to that hard event an infinitely soft gluon as shown in Fig. 1(b),
a third stable cone is found and the three hard particles are clustered in a single jet. This
change in the jet structure upon addition of soft particles, a phenomenon which happens
with infinite probability in perturbative QCD, gives rise to divergences in the perturbative
expansion and proves that the midpoint algorithm is infrared unsafe.

This problem arises from the fact that the seeded approach misses stable cones — here
the one containing particles 2 and 3 in Fig. 1(a). The workaround to restore IR safety
is thus to find a seedless method that provably identifies all the stable cones. This is
notoriously complex: a naive approach testing the stability of all subsets of particles [4] has
a complexity of order N2N for N particles which is much slower than the O(N3) complexity
of the midpoint algorithm, making this solution unusable for experimental purposes.
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anti-kt (fastjet)

Figure 2: Clustering time for SIS-
Cone compared to typical implemen-
tations of the midpoint algorithm
and the anti-kt algorithm [5].

The solution [6] is to use the geometrical obser-
vation that any enclosure in the y − φ plane can be
moved without changing its contents until it touches
two points. Browsing all pairs of particles allows thus
to enumerate all possible cones and to check their sta-
bility at an overall cost of O(N3). Additional efforts
can even bring the final complexity to O(N2 log(N))
i.e. faster than the midpoint algorithm. This is il-
lustrated on Fig. 2 where we observe that in practice
SISCone runs faster than the typical implementations
of the midpoint algorithm without a seed threshold
and at least as fast as when a 1 GeV seed threshold
is used.

This has been implemented [6, 7, 5] in a C++ code
named SISCone (Seedless Infrared Safe Cone) which
is the first cone algorithm to satisfy the SNOWMASS
requirements, that is to be at the same time IR and
collinear safe, and to be fast enough to be used in
experimental analysis.

DIS 2008

Seed!

Midpoint algorithm: take as seed position of emissions and midpoint 
between two emissions (postpones the infrared safety problem)
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Seedless cones

Blazey ’00

Solution: 
use a seedless algorithm, i.e. consider all possible combinations of 
particles as candidate cones, so find all stable cones [⇒ jets] 
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Seedless cones

Blazey ’00

The problem: 
clustering time growth as N2N. So for an event with 100 particles need 
1017 ys to cluster the event  ⇒ prohibitive beyond PT (N=4,5)

Solution: 
use a seedless algorithm, i.e. consider all possible combinations of 
particles as candidate cones, so find all stable cones [⇒ jets] 
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Seedless cones

Blazey ’00

The problem: 
clustering time growth as N2N. So for an event with 100 particles need 
1017 ys to cluster the event  ⇒ prohibitive beyond PT (N=4,5)

Solution: 
use a seedless algorithm, i.e. consider all possible combinations of 
particles as candidate cones, so find all stable cones [⇒ jets] 

Better solution: 
SISCone recasts the problem as a computational geometry problem, the 
identification of all distinct circular enclosures for points in 2D and finds a 
solution to that  ⇒ N2 ln N time IR safe algorithm  
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Figure 3: (a) Some initial circular enclosure; (b) moving the circle in a random direction
until some enclosed or external point touches the edge of the circle; (c) pivoting the circle
around the edge point until a second point touches the edge; (d) all circles defined by pairs
of edge points leading to the same circular enclosure.

4.2 The two-dimensional case

4.2.1 General approach

The solution to the full problem can be seen as a 2-dimensional generalisation of the
above procedure.6 The key idea is again that of trying to identify all distinct circular
enclosures, which we also call distinct cones (by ‘distinct’ we mean having a different point
content), and testing the stability of each one. In the one-dimensional example there was a
single degree of freedom in specifying the position of the segment and all distinct segment
enclosures could be obtained by considering all segments with an extremity defined by a
point in the set. In 2 dimensions there are two degrees of freedom in specifying the position
of a circle, and as we shall see, the solution to finding all distinct circular enclosures will
be to examine all circles whose circumference lies on a pair of points from the set.

To see in detail how one reaches this conclusion, it is useful to examine fig. 3. Box (a)
shows a circle enclosing two points, the (red) crosses. Suppose, in analogy with fig. 2 that
one wishes to slide the circle until its point content changes. One might choose a direction
at random and after moving a certain distance, the circle’s edge will hit some point in the
plane, box (b), signalling that the point content is about to change. In the 1-dimensional
case a single point, together with a binary orientation (taking it to be the left or right-hand
point) were sufficient to characterise the segment enclosure. However in the 2-dimensional
case one may orient the circle in an infinite number of ways. We can therefore pivot the
circle around the boundary point. As one does this, at some point a second point will then
touch the boundary of the circle, box (c).

The importance of fig. 3 is that it illustrates that for each and every enclosure, one
can always move the corresponding circle (without changing the enclosure contents) into
a position where two points lie on its boundary.7 Conversely, if one considers each circle

6We illustrate the planar problem rather than the cylindrical one since for R < π/2 the latter is a
trivial generalisation of the former.

7There are two minor exceptions to this: (a) for any point separated from all others by more than 2R,
the circle containing it can never have more than that one point on its edge — any such point forms a

10

Salam, Soyez ’07
103



Jet-substructure at the LHC

104

Triggered by a paper in 2008 by Butterworth, Davison Rubin, 
Salam [“Jet substructure as a new Higgs search channel at the 
LHC”] vibrant new sub-field emerged using jet-substructure to 
discover boosted heavy new particles 

• well over 100 papers in the past 5 years
• dedicated conferences and write-ups (see e.g. 1012.5412, 

1311.2708 or 1312.2708)
• upcoming BOOST2014 conference in August at UCL 
• new nomenclature (trimming, pruning, filtering, mass-drop, N 

subjettiness, shower deconstruction ... )     



Jet-substructure at the LHC
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Jet-mass is a natural variable 
to look for massive particles, 
but very large smearing from 
QCD radiation, hadronization, 
underlying event/pileup ... 



Jet-substructure at the LHC
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Two main handles to  
• signal prefer symmetric splittings, while background (QCD) 

prefers soft radiation, i.e. asymmetric splitting
• large angle radiation from color singlet is suppressed (angular 

ordering) → cutting wide angle radiation kills the background 
and does not affect much the signal   

QCD backgroundBSM signal

A large variety of methods (10-20?) to achieve these goals.
Typically: performance of new method tested with Monte Carlo  

P (z) � 1 P (z) � 1 + z2

1� z



Mass-drop tagger for H → bb
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Jets, G. Salam, LPTHE (p. 8)

The method #3: jet filtering

Rfilt

filter

Rbb

Rbb

mass drop

b

g

b

R

UE

At moderate pt , Rbb is quite large; UE & pileup degrade mass resolution
δM ∼ R4ΛUE

pt

M [Dasgupta, Magnea & GPS ’07]

Filter the jet

! Reconsider region of interest at smaller Rfilt = min(0.3,Rbb̄/2)

! Take 3 hardest subjets b, b̄ and leading order gluon radiation

1.  cluster the event 
with e.g. CA algo 
and large-ish R

2.  undo last recomb: 
large mass drop + 
symmetric + b tags

3.filter away the UE: 
take only the 3 
hardest sub-jets

Exploit the specific pattern of H → bb vs g → gg, q → gg  

- QCD partons prefer soft emissions (hard → hard + soft)
- Higgs decay prefers symmetric splitting
- try to beat down contamination from underlying event
- try to capture most of the perturbative QCD radiation 

Butterworth, Davison, Rubin, Salam ’08

Subsequently changed (modified mass-drop tagger) to follow the 
higher pt branch 

Dasgupta, Marzani, Fergoso, Salam ’13



Pruning and trimming
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Pruning fixes a radius R=m/pt and reclusters the jet such that if two 
object are separated by angles larger then this and the branching is 
asymmetric, i.e. min(pt,a, pt,b) < zcut pt,a+b, then the softer object is 
discarded. 

Trimming uses a fixed radius Rtrim 



Jet-substructure at the LHC
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Typical procedure: 
introduce a way to analyze/deconstruct the event . Methods 
introduce energy/angular constraints, cuts (fixed or dynamical) 

As a consequence: 
• many parameters, complicated procedure, transparency lost 
• potential of duplication/redundancy

Important questions 
• how to judge/optimize performance? obvious answer: run 

Monte Carlo. But only a limited number of studies can be 
performed 

• robustness: how much do results depend on parameters? 
• how can one chose parameters a priori (without knowing 

where/what BSM physics might show up?) 



Monte Carlo comparison of taggers

110

Taggers look quite similar ... 



Monte Carlo comparison of taggers
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Taggers look quite similar ... but only in a limited region 

Can one understand the shapes, kinks, peaks analytically ? 
NB: kinks particularly dangerous for data-driven background estimate



First analytic approaches ...  

112

Simple analytic calculation allows to understand these features !

This means: have control and predict. Then use MC only to check/validate ...

Much more to come in the next years ...  

Dasgupta, Fregoso, Marzani, Salam, Powling 1307.007



My top ten QCD theory challenges

Theory challenge

1. automated NLO

2. reliable PDF error

3. PDF with EW effects

4. NNLO for generic 2 → 2 processes

5. analytic understanding of jet-substructure 

6. NNLO + parton shower

7. N3LO for Higgs and Drell Yan (differential?) 

8. multi-jet merging 

9. automated NNLL resummations

10. improve Monte Carlo (+reliable error estimate)
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👏

Status

(✔) 

(✔)

✘
4-5 years?

first results

Higgs, Drell Yan

partial results

2-3 years?

✔ at NLL

only some ideas

 


