Introduction to the Soft - Collinear Effective Theory

An effective field theory for energetic hadrons & jets

Lecture 1

Symmetry Breaking Summer School on Lake Chiemsee, Germany September, 2014

Outline (Lecture I)

EFT concepts
 Intro to SCET
 SCET degrees of freedom

Done on the Board (See the lecture notes below.)

- SCET1, momentum scales and regions
- Field power counting in SCET
- Wilson lines, W, from off shell propagators
- Gauge Symmetry
- Hard-Collinear Factorization
- eg. Deep Inelastic Scattering

Soft - Collinear Effective Theory (SCET) Iain Stewart Symm Breaking 20 EFT Concepts Decoupling heavy or offshell particles -> decouple MW >> Pi > X min AHI Sw EXnew > X I SM as an EFT EFT or Z = Z (0) + Z (1) + Z (power counting I mass M. Ddim() large mon exchange $q^2 >> Pi^2 \rightarrow e$ (power counting not in moso dim) Any EFT · degrees of freedom ? -> what fields (low energy /on-shell modes) · symmetries -> constrain interactions / operators · expansions, leading > power counting description Renormalization LEFT = E Cilp) Oilp) AH2. Split HI From LO short dist. couplings long dist. operators (cutoff or RL0 renormalization 5 cale . SHI & JEFT have some IR, differ in UV · Cilp) indep. of IR scale

C (Know ZHE "top-down FFT" Calculate C [perturbatively (including SCET) Construct O LEFT eq. ds (m) in QCD $\mu \frac{d}{d\mu} ds (\mu) = -\frac{\beta o}{2\pi} \left[ds (\mu) \right]^2$ 25 (r) Mt_ $\beta_{0}^{(06)} = 11 - 2.05$ ds A L(5) (p) ··· (5) ds (6) EHomework mi _ Mc ML mt Naco -+ SCET describe soft & collineor infrared physics BO of hard collisions in QCD Noco, PIR « Q -> jets, energetic hadrons, soft partons / hadrons [ete > 2 jets, DIS ep > ex, pp > H+1-jet, B>ππ,... Goals: Factorization -> colculate o, understand how nonperturbative effects (eg. PDFs) enter Sun Sudakos Pouble Logs with RGE -> higher precision , Wilson Lines, Operator Universality Power Corrections Coordinates nº=1 $\frac{\text{Coordinates}}{n^{\mu} = (1, \hat{n})} \qquad \begin{array}{c} \hat{n}^{2} = 1 \\ n^{\mu} = -\frac{1}{2} \end{array} \qquad \begin{array}{c} p^{\mu} = -\frac{1}{2} \cdot p^{\mu} + n \cdot p \cdot \overline{n}^{\mu} + p \cdot p^{\mu} \\ m^{2} = -\frac{1}{2} \cdot p^{2} \end{array} \qquad \begin{array}{c} p^{\mu} = -\frac{1}{2} \cdot p^{\mu} + p \cdot p^{\mu} \\ m^{2} = -\frac{1}{2} \cdot p^{\mu} \end{array}$ $\overline{n}^{\mu} = (1, -\hat{n}) \qquad n \cdot \overline{n} = 2 \qquad p^{2} = (\overline{n} \cdot p)(n \cdot p) + p_{\perp}^{2} \qquad -p_{\perp}^{2} \qquad -p_{\perp}^{2}$

(3) etet >> 2 jets Degrees of freedom >> has collimated radiation Jet Ejet NQ callinade 5 1 massless 2 massless $P_{i}^{\mu} = \overline{n} \cdot P_{i} \underline{n}^{\mu} + P_{i\perp} + n \cdot P_{i} \overline{n}^{\mu} \quad (i=)$ $\rho^{\mu} = \overline{\alpha} \cdot \rho \cdot \frac{\alpha^{\mu}}{2}$ ~ 2 a say 2 << 1 NQ (collimated) $\Pi P_i = \lambda^2$ since on-shell $P_i^2 = \overline{\Pi} P_i (\Pi P_i) + P_{\perp i}^2 = 0$ 2° × 22/ 22 A massess: same n.p n.p PL Collinear Fields guark 2n pt ~ Q(2,1,2) gluon An back to back jets, 27 AT Zn An $(2^{2}, 1, 2)$ (1,2,2) 3 hard jets ? Measure something to forbid it (P1+P3)2 ~ 2P1.P3 ~ Q2 eg measure henisphere mass $M_a^2 = (\Sigma P_{e}^{M})^2$ 0 3 M6 = take Maib ~ Q222 K Q2 a Callows splittings (PaitPaz)2 Pst ~ Q (2, 2, 2) homogeneous Soft Ma = (PatPs) ~ Pr.Ps ~ T.Pa n.Ps + ... (suppressed) 3° 2° ⇒ ~= 2 "ultrasoft" Continue with slides

Another SCET: SCET_{II}

(not covered here)

Two jets and soft radiation with p_{\perp} -type measurement

 $p^2 = p^+ p^$ for picture

soft $p_s^{\mu} \sim Q\lambda$

instead of ultrasoft $p_{us}^{\mu} \sim Q \lambda^2$

$\begin{array}{cccc} \text{modes} & p^{\mu} = (+, -, \bot) & p^{2} & \text{fields} \\ \hline n\text{-collinear} & Q(\lambda^{2}, 1, \lambda) & Q^{2}\lambda^{2} & \xi_{n}, A_{n}^{\mu} \\ \hline \bar{n}\text{-collinear} & Q(1, \lambda^{2}, \lambda) & Q^{2}\lambda^{2} & \xi_{\bar{n}}, A_{\bar{n}}^{\mu} \\ & \text{soft} & Q(\lambda, \lambda, \lambda) & Q^{2}\lambda^{2} & q_{s}, A_{s}^{\mu} \end{array}$

n-Collinear Propagators

$$p^{2} + i\epsilon = \bar{n} \cdot p \ n \cdot p - \vec{p}_{\perp}^{2} + i\epsilon$$
$$\sim \lambda^{0} * \lambda^{2} - (\lambda)^{2} \qquad \text{same}$$
size

Collinear Fermions

$$\frac{i\not p}{p^2 + i\epsilon} = \frac{i\not h}{2} \frac{\bar{n}\cdot p}{p^2 + i\epsilon} + \dots$$
$$= \frac{i\not h}{2} \frac{1}{n\cdot p - \frac{\vec{p}_{\perp}^2}{\bar{n}\cdot p} + i\epsilon \operatorname{sign}(\bar{n}\cdot p)} + \dots$$

thus we expect

power counting for the field

 $d^4x \sim (dp^+ dp^- d^2 p_\perp)^{-1}$ $\lambda^2 \quad \lambda^0 \quad (\lambda)^2$

This also implies: $\hbar \xi_n = 0$ since $\hbar^2 = n^2 = 0$

Projection: Take $\xi_n = \frac{\eta \vec{\eta}}{4} \psi$ for spin

 $\frac{\eta \vec{\eta}}{4} \xi_n = \xi_n \quad , \quad \eta \xi_n = 0$

For spinors:

$$u_n = \frac{\cancel{n} \cancel{n}}{4} \ u^{\text{QCD}}$$

$$e^{\pm i\phi_p} = \frac{p_\perp^1 \pm ip_\perp^2}{\sqrt{p^+p^-}}$$

$$\underline{\text{QCD}} \qquad \underline{\text{SCET}} \qquad p^+ \ll p^-$$
$$u_+(p) = |p+\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{p^-} \\ \sqrt{p^+ e^i \phi_p} \\ \sqrt{p^-} \\ \sqrt{p^+ e^i \phi_p} \end{pmatrix} \Longrightarrow u_n^+ = \sqrt{\frac{p^-}{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

$$u_{-}(p) = |p-\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{p^+} e^{i\phi_p} \\ -\sqrt{p^-} \\ -\sqrt{p^+} e^{i\phi_p} \\ \sqrt{p^-} \end{pmatrix} \Longrightarrow u_n^- = \sqrt{\frac{p^-}{2}} \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}$$

Check:

$$\sum_{s} u_{n}^{s} \bar{u}_{n}^{s} = \frac{\cancel{n} \vec{m}}{4} \sum_{s} u^{s} \bar{u}_{n}^{s} = \frac{\cancel{n} \vec{m}}{4} \not p \frac{\cancel{n} \vec{m}}{4} = \frac{\cancel{n}}{2} \bar{n} \cdot p$$

agrees with numerator of propagator

$$\frac{1}{2}\frac{n}{p^2} \frac{\bar{n}\cdot p}{p^2 + i\epsilon}$$

Gauge Fields for SCET_I

Collinear Gluons - same propagator as QCD

covariant
gauges
$$\int d^4x \, e^{ip \cdot x} \, \langle 0 | T A_n^{\mu}(x) A_n^{\nu}(0) | 0 \rangle = \frac{-i}{p^2} \left(g^{\mu\nu} - \tau \frac{p^{\mu} p^{\nu}}{p^2} \right) \qquad \begin{array}{c} \text{components} \\ \text{scale} \\ \text{differently} \end{array}$$
solution
$$\left((A_n^+, A_n^-, A_n^\perp) \sim (\lambda^2, 1, \lambda) \sim p^{\mu} \right)$$

Usoft Gluon A_{u}^{μ} Usoft Quark q_{u}

$$\begin{aligned} A^{\mu}_{us} \sim (\lambda^2, \lambda^2, \lambda^2) \sim p^{\mu}_{us} \\ q_{us} \sim \lambda^3 \end{aligned}$$

Power Counting Summary

Туре	(p^+,p^-,p^\perp)	Fields	Field Scaling
collinear	$(\lambda^2, 1, \lambda)$	$\xi_{n,p}$	λ
		($A^+_{n,p}$, $A^{n,p}$, $A^\perp_{n,p}$)	$(\lambda^2, 1, \lambda)$
soft	$(\lambda,\lambda,\lambda)$	$q_{s,p}$	$\lambda^{3/2}$
		$A^{\mu}_{s,p}$	λ
usoft	$(\lambda^2,\lambda^2,\lambda^2)$	q_{us}	λ^3
		A^{μ}_{us}	λ^2

Power counting of fields and derivatives gives a power counting for operators Power counting of operators yields a power counting for any Feynman graph

The power counting can be associated entirely to vertices and is then gauge invariant

 $(A_n^+, A_n^-), A_n^\perp) \sim (\lambda^2 (1, \lambda) \sim p^\mu$

Gauge symmetry

$$U(x) = \exp\left[i\alpha^A(x)T^A\right]$$

need to consider U'scollinear $i\partial^{\mu}\mathcal{U}_{c}(x) \sim p_{c}^{\mu}\mathcal{U}_{c}(x) \leftrightarrow A_{n,q}^{\mu}$ which leave us in the EFTusoft $i\partial^{\mu}U_{us}(x) \sim p_{us}^{\mu}U_{us}(x) \leftrightarrow A_{us}^{\mu}$

Object	Collinear \mathcal{U}_c	Usoft U_{us}
ξ_n	$\mathcal{U}_c \ \xi_n$	$U_{us}\xi_n$
gA_n^μ	$\mathcal{U}_c g A^{\mu}_n \mathcal{U}^{\dagger}_c + \mathcal{U}_c \big[i \mathcal{D}^{\mu}, \mathcal{U}^{\dagger}_c \big]$	$U_{us}gA^{\mu}_nU^{\dagger}_{us}$
W	$\mathcal{U}_c W$	$U_{us} W U_{us}^{\dagger}$
q_{us}	q_{us}	$U_{us} q_{us}$
gA^{μ}_{us}	gA^{μ}_{us}	$U_{us}gA^{\mu}_{us}U^{\dagger}_{us} + U_{us}[i\partial^{\mu}, U^{\dagger}_{us}]$
Y	Y	$U_{us} Y$

our current is invariant:

 $(\bar{\xi}_n W)\Gamma\psi \longrightarrow (\bar{\xi}_n \mathcal{U}_c^{\dagger} \mathcal{U}_c W)\Gamma\psi = (\bar{\xi}_n W)\Gamma\psi$ $\longrightarrow (\bar{\xi}_n U_{us}^{\dagger} U_{us} W)U_{us}^{\dagger}\Gamma U_{us}\psi = (\bar{\xi}_n W)\Gamma\psi$

Wilson Coefficients and Hard - Collinear Factorization

can exchange momenta

 $i\bar{n}\cdot\partial_n\sim\lambda^0$

Constrained by gauge invariance:

 $C(i\bar{n} \cdot \partial_n)$ coefficients depend on large collinear momenta

eg.
$$C(i\bar{n}\cdot\partial_n) \ \chi_n = \int d\omega \ C(\omega) \ \delta(\omega - i\bar{n}\cdot\partial_n) \chi_n$$

only the product is gauge invariant $\chi_n = W_n^{\dagger} \ \xi_n$
implies convolutions between

coefficients and operators

 $\int d\omega \ C(\omega,\mu) \ O(\omega,\mu)$

Deep Inelastic Scattering

 $e^- p \to e^- X$

inclusive factorization

[full analysis requires bit more knowledge, eg. SCET Lagrangian, here we cover the key conceptual part, skipping softs, prefactors, tensor indices, etc.]

 $q = (0, 0, 0, Q) = \frac{Q}{2}(\bar{n} - n) \quad \text{picked a frame (Breit frame),} \quad \text{Bjorken} \quad x = \frac{Q^2}{2p_p \cdot q}$ $q^2 = -Q^2 \text{ spacelike} \qquad Q^2 \gg \Lambda_{\text{QCD}}^2 \qquad \lambda = \frac{\Lambda_{\text{QCD}}}{Q} \ll 1$ Proton $p_p^{\mu} = \frac{n^{\mu}}{2}\bar{n} \cdot p_p + \frac{\bar{n}^{\mu}}{2}\frac{m_p^2}{\bar{n} \cdot p_p} \qquad n\text{-collinear}$ $\bar{n} \cdot p_p = \frac{Q}{x}$ $X \qquad p_X^{\mu} = p_p^{\mu} - q^{\mu} = \frac{n^{\mu}}{2}\frac{Q(1-x)}{x} + \frac{\bar{n}^{\mu}}{2}Q \qquad \text{hard, offshell}$

A more detailed set of SCET lecture notes can be found under "textbooks" in the 8.EFTx course.

To access the materials in 8.EFTx: first sign up for an edX account here, then register for 8.EFTx here.