<u>Measurement:</u>  $E1_{PNC}$  with another forbidden amplitude such as *M*1, *E*2 or  $E1_{Stark}$ 

$$\begin{array}{ll}
\underline{\text{Theory:}} & |\Psi_{n}(n,J)\rangle = \left|\Psi_{n}^{(0)}(n,J,\pi)\rangle + G_{F} \left|\Psi_{n}^{(1)}(n,J,\pi')\rangle \\
E1_{PNC}^{NSI} = \frac{\langle \Psi_{f} | D | \Psi_{i} \rangle}{\langle \Psi_{f} | \Psi_{i} \rangle} = G_{F} & \frac{\left[\langle \Psi_{f}^{(0)} | D | \Psi_{i}^{(1)} \rangle + \langle \Psi_{f}^{(1)} | D | \Psi_{i}^{(0)} \rangle\right]}{\sqrt{\langle \Psi_{f}^{(0)} | \Psi_{f}^{(0)} \rangle \langle \Psi_{i}^{(0)} | \Psi_{i}^{(0)} \rangle}} & \xrightarrow{\rightarrow \text{Our}} \\
= \frac{G_{F}}{N} \left[ \sum_{I \neq i} \frac{\langle \Psi_{f}^{(0)} | D | \Psi_{I}^{(0)} \rangle \langle \Psi_{I}^{(0)} | H_{PNC}^{NSI} | \Psi_{i}^{(0)} \rangle}{E_{i}^{(0)} - E_{I}^{(0)}} + \sum_{I \neq f} \frac{\langle \Psi_{f}^{(0)} | H_{PNC}^{NSI} | \Psi_{I}^{(0)} \rangle \langle \Psi_{I}^{(0)} | D | \Psi_{i}^{(0)} \rangle}{E_{f}^{(0)} - E_{I}^{(0)}} \\
\xrightarrow{\rightarrow \text{Others}} \end{array}$$

 $= Q_W X^{Theory} \rightarrow < 0.5\%$ 

<u>Combination:</u> Nuclear weak charge " $Q_W$ ".

# **Calculation for <sup>133</sup>Cs in 10**<sup>-11</sup> $(-Q_W/N)iea_0$

$$E1_{PNC}^{NSI}(6S \rightarrow 7S) = \sum_{np_{1/2}} \frac{\langle 7S|D|np_{1/2}\rangle\langle np_{1/2}|H_{PNC}^{NSI}|6S\rangle}{E_{6S}^{(0)} - E_{nP_{1/2}}^{(0)}} + \sum_{np_{1/2}} \frac{\langle 7S|H_{PNC}^{NSI}|np_{1/2}\rangle\langle np_{1/2}|D|6S\rangle}{E_{7S}^{(0)} - E_{np_{1/2}}^{(0)}}$$

= Core (n<6) + Main (n=6-9) + Tail

 -0.002(2) + 0.893(7) + 0.018(5)
 → 1%
 [Blundell et al, Phys. Rev. Lett. 65, 1411 (1990)]
 -0.0020 + 0.8823(17) + 0.0195
 → 0.27 %
 [Porsev et al, Phys. Rev. Lett. 102, 181601 (2009)]
 +0.0018(8) + 0.8823(17) + 0.0238(35)
 → 0.5 %
 [Dzuba et al, Phys. Rev. Lett. 109, 203003 (2012)]

The main objective of the present work is to address the issue of large differences in the core-contribution.

# **Commonly used many-body methods**

## Random phase approximation (RPA):

 $|\Psi_n^{(0)}\rangle \to |\Phi_n\rangle$  and  $|\Psi_n^{(1)}\rangle \to \Omega_{I,CP}^{(\infty,1)}|\Phi_n\rangle = \Omega_{RPA}^{(1)}|\Phi_n\rangle$ 

# Configuration interaction (CI) method:

$$\left|\Psi_{n}^{(0)}\right\rangle = C_{0}\left|\Phi_{n}\right\rangle + C_{I}\left|\Phi_{I}\right\rangle + C_{II}\left|\Phi_{II}\right\rangle + \cdots$$

Coupled-cluster (CC) method (all-order perturbation):  $\begin{aligned} |\Psi_n^{(0)}\rangle &= C_0 |\Phi_n\rangle + C_I |\Phi_I\rangle + C_{II} |\Phi_{II}\rangle + \cdots \\ &= |\Phi_n\rangle + T_I^{(0)} |\Phi_n\rangle + T_{II}^{(0)} |\Phi_n\rangle + \frac{1}{2} T_I^{(0)^2} |\Phi_n\rangle + \cdots \\ &= e^{T_I^{(0)} + T_{II}^{(0)} + \cdots} |\Phi_n\rangle = e^{T^{(0)}} |\Phi_n\rangle \end{aligned}$ 

# **First-order perturbed RCC method**

 $H = H_{at} + G_F H_{PNC}^{NSI}$  and  $|\Psi_n\rangle \simeq |\Psi_n^{(0)}\rangle + G_F |\Psi_n^{(1)}\rangle$ First-order eqn.:  $(H_{at} - E_n^{(0)}) |\Psi_n^{(1)}\rangle = (E_n^{(1)} - H_{PNC}^{NSI}) |\Psi_n^{(0)}\rangle$  $\Rightarrow \qquad \left| \Psi_n^{(1)} \right\rangle = e^{T^{(0)}} \left( 1 + T^{(1)} \right) \left| \Phi_n \right\rangle$ It yields:  $E1_{PNC}^{NSI} = \langle \Phi_f | e^{T^{(0)+}} D e^{T^{(0)}} T^{(1)} | \Phi_i \rangle$  $+\langle \Phi_{f}|T^{(1)+}e^{T^{(0)}+}De^{T^{(0)}}|\Phi_{i}\rangle$ 

### Advantages:

- 1. Treats "Core", "Main" and "Tail" contributions on an equal footing unlike the "Sum-over-states" approach; thus enables to estimate errors consistently.
- 2. Incorporates all physical effects including double-core-polarization (DCP) effects implicitly to all orders in correlation effects at a given level of particle-hole excitation.

#### PHYSICAL REVIEW D 82, 036008 (2010)

#### Precision determination of weak charge of <sup>133</sup>Cs from atomic parity violation

S. G. Porsev,<sup>1,2,3</sup> K. Beloy,<sup>1,4</sup> and A. Derevianko<sup>1</sup>

<sup>1</sup>Physics Department, University of Nevada, Reno, Nevada 89557, USA

<sup>2</sup>School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia

<sup>3</sup>Petersburg Nuclear Physics Institute, Gatchina, Leningrad District 188300, Russia

<sup>4</sup>Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland,



#### **Revisiting Parity Nonconservation in Cesium**

V. A. Dzuba, J. C. Berengut, V. V. Flambaum, and B. Roberts

School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia (Received 24 July 2012; published 13 November 2012)

| TABLE I.        | Partial      | contributions      | to     | the     | $E_{\rm PNC}$ | [in |
|-----------------|--------------|--------------------|--------|---------|---------------|-----|
| $10^{-11}i(-Q)$ | $_W/N)$ a.u. | ] for Cs in differ | rent a | pproxir | nations.      |     |

| Approximation                                              | Core    | Main   | Tail   | Total  |
|------------------------------------------------------------|---------|--------|--------|--------|
| <b>RPA</b> <sup>a</sup>                                    | 0.0026  | 0.8705 | 0.0192 | 0.8923 |
| $\mathrm{BO}(\hat{\Sigma}^{(2)})^{\mathrm{b}}$             | 0.0015  | 0.8641 | 0.0272 | 0.8928 |
| $\mathrm{BO}(\lambda\hat{\Sigma}^{(2)})^{\mathrm{c}}$      | 0.0018  | 0.8709 | 0.0244 | 0.8971 |
| $\mathrm{BO}(\hat{\Sigma}^{(\infty)})^{\mathrm{d}}$        | 0.0018  | 0.8711 | 0.0238 | 0.8967 |
| $\mathrm{BO}(\lambda\hat{\Sigma}^{(\infty)})^{\mathrm{e}}$ | 0.0018  | 0.8678 | 0.0242 | 0.8938 |
| Ref. [10] <sup>f</sup>                                     | -0.0020 | 0.8823 | 0.0195 | 0.8998 |

<sup>a</sup>Core polarization but no correlations beyond it. <sup>b</sup>Brueckner orbitals (BO) calculated with the second-order  $\hat{\Sigma}$ . <sup>c</sup>BO calculated with rescaled second-order  $\hat{\Sigma}$ . <sup>d</sup>BO calculated with the all-order  $\hat{\Sigma}$ . <sup>e</sup>BO calculated with rescaled all-order  $\hat{\Sigma}$ . <sup>f</sup>DHF for the core term; coupled cluster for the main term. TABLE IV. All significant contributions to the  $E_{PNC}$  [in  $10^{-11}i(-Q_W/N)$  a.u.] for Cs.

| Contribution         | Value       | Source      |  |  |
|----------------------|-------------|-------------|--|--|
| Core ( <i>n</i> < 6) | 0.0018 (8)  | This work   |  |  |
| Main $(n = 6-9)$     | 0.8823 (17) | Ref. [10]   |  |  |
| Tail $(n > 9)$       | 0.0238 (35) | This work   |  |  |
| Subtotal             | 0.9079 (40) | This work   |  |  |
| Breit                | -0.0055 (1) | Refs. [5,6] |  |  |
| QED                  | -0.0029 (3) | Ref. [7]    |  |  |
| Neutron skin         | -0.0018 (5) | Ref. [5]    |  |  |
| Total                | 0.8977 (40) | This work   |  |  |

# **Calculation for <sup>133</sup>Cs in 10<sup>-11</sup>** $(-Q_W/N)iea_0$

| RCC term                                               | RLCCSD                                                                  | RCCSD                         | RCCSDT       | Matha                            | l Coro                                                                         | Main                                                       | <br>                             | Fytro       |
|--------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------|--------------|----------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------|-------------|
|                                                        | Core cont                                                               | tributions                    |              | Method                           | i Core                                                                         | Main                                                       | Tall                             | Extra       |
| $\overline{D}T_1^{(1)}$                                | -0.0534                                                                 | -0.0410                       | -0.0410      | This w                           | ork (ab initio                                                                 | values)                                                    |                                  |             |
| $T_1^{(1)\dagger}\overline{D}$                         | 0.0519                                                                  | 0.0392                        | 0.0392       | DHF                              | -0.0017                                                                        | 0.7264                                                     | 0.0137                           |             |
| Others                                                 | -0.0001                                                                 | -0.0001                       | $\sim 0.0$   | RCCSI                            | 0 -0.0019                                                                      | 0.8623                                                     | 0.0357                           |             |
| Total                                                  | -0.0016                                                                 | -0.0019                       | -0.0018      | RCCSI                            | DT - 0.0018                                                                    | 0.8594                                                     | 0.0391                           | 0.0026      |
| $\overline{D}S_{1i}^{(1)}$                             | Valence (Main+T<br>-0.1663                                              | `ail) contribution<br>-0.1913 | s<br>-0.1874 | Ref. [1]<br>Ref. [1]<br>Ref. [1] | $6]^{\dagger} -0.002(2)$<br>$3]^{\dagger} -0.0020$<br>$4]^{\dagger} 0.0018(8)$ | 0.893(7)<br>0.8823(17)<br>$0.8678$ $0.8823(17)^{\ddagger}$ | 0.018(5)<br>0.0195<br>0.0238(35) | 5)          |
| $S_{1f}^{(1)\dagger}\overline{D}$                      | 2.0603                                                                  | 1.8064                        | 1.7925       | † Cont                           | sing additions                                                                 | l contribution from                                        | the $0\pi^2 P$                   |             |
| $S_{1f}^{(0)\dagger} \overline{D} S_{1i}^{(1)}$        | -0.3045                                                                 | -0.2336                       | -0.2288      | TADLE                            | IN D                                                                           | i contribution from                                        | the $9p P_1$                     | 1/2 state.  |
| $S_{1f}^{(1)\dagger}\overline{D}S_{1i}^{(0)}$          | -0.5529                                                                 | -0.4218                       | -0.4147      | TABLE                            | IX. Progress                                                                   | es in the atomic c                                         | alculations                      | over the    |
| $\overline{DS}_{2i}^{(1)}$                             | -0.0357                                                                 | -0.0263                       | -0.0257      | years.                           |                                                                                |                                                            |                                  |             |
| $S_{2t}^{(1)\dagger}\overline{D}$                      | 0.0006                                                                  | 0.0009                        | 0.0004       | Year                             | Result                                                                         | Approach                                                   | F                                | Reference   |
| $T_{2}^{(b)\dagger}DS_{2i}^{(1)}$                      |                                                                         |                               | -0.0019      | 1989                             | 0.908(9)                                                                       | $Ab \ initio$                                              | ]                                | Ref. [15]   |
| $S_{24}^{(1)\dagger}DT_{2}^{(0)}$                      |                                                                         |                               | -0.0007      | 1990                             | 0.909(4)                                                                       | Sum-over-stat                                              | les                              | Ref. [16]   |
| $T_{(1)\dagger}^{(1)\dagger}\overline{D}S_{(0)}^{(0)}$ |                                                                         |                               | -0.0004      | 2001                             | 0.901                                                                          | Scaled optimal en                                          | nergy l                          | Ref. [19]   |
| $S^{(0)\dagger}\overline{D}T^{(1)}$                    |                                                                         |                               | -0.0004      | 2002                             | 0.904(5)                                                                       | $Ab \ initio$                                              | ]                                | Ref. [41]   |
| $C_{3f}^{(0)\dagger} \overline{D} C_{2}^{(1)}$         |                                                                         |                               | -0.0000      | 2005                             | 0.904                                                                          | Ref. $[41]$ +QED                                           | corr.                            | Ref. [20]   |
| $S_{2f} DS_{3i}$                                       |                                                                         |                               | -0.0006      | 2009                             | 0.8906(24)                                                                     | Sum-over-sta                                               | te l                             | Ref. [13]   |
| $S_{3f}^{(c)}DS_{2i}^{(c)}$                            | 0.0000                                                                  | 0.0000                        | 0.0007       | 2012                             | 0.8977(40)                                                                     | Ref. $[13]$ +core of                                       | corr. I                          | Ref. [14]   |
| Others                                                 | -0.0608                                                                 | -0.0363                       | -0.0343      | 2020                             | 0.8914(27)                                                                     | $Ab \ initio$                                              | Г                                | This work   |
| Total                                                  | 0.9407                                                                  | 0.8980                        | 0.8985       |                                  |                                                                                |                                                            |                                  |             |
| OFD                                                    |                                                                         |                               | -0.0055(5)   | Our                              | orror octi                                                                     | mation is may                                              |                                  | ictont      |
| Extra                                                  | -0.0026(3) OUP error estimation is more consistent                      |                               |              |                                  |                                                                                |                                                            | Istent                           |             |
| e = e PNC                                              | e = e PNC correction [40] 0.0003 as we treat all three contributions on |                               |              |                                  |                                                                                |                                                            | on                               |             |
| Final                                                  | correction [10]                                                         |                               | 0.8914(27)   | an e                             | nual-footi                                                                     | ng in the RCC                                              | ` metho                          | h           |
|                                                        |                                                                         |                               | . /          |                                  | γμαι-ιυυιί                                                                     | ing in the NCC                                             | , memo                           | / <b>u.</b> |

### New value for nuclear weak charge

Combining our results of  $E1_{PNC}$  and  $\beta$  with the precisely measured  $Im(E1_{PNC}/\beta) = 1.5935(56)$ mV/cm [11], where Im means imaginary part, for the  $6s \ ^2S_{1/2} - 7s \ ^2S_{1/2}$  transition in  $^{133}$ Cs, we get  $Q_W^{\text{at}} =$  $-73.43(25)_{ex}(23)_{th}$ . After taking into account nuclear skin effect [43], we get

$$Q_W = Q_W^{\text{at}} + \Delta Q_W^{N-P}$$
  
= -73.43(25)<sub>ex</sub>(23)<sub>th</sub> + 0.064  
= -73.37(25)<sub>ex</sub>(24)<sub>th</sub> (45)

This results in the difference between the value of  $Q_W$ obtained from our calculation and the SM value  $Q_W^{\text{SM}} = -73.23(1)$  [4] as  $\Delta Q_W \equiv Q_W - Q_W^{\text{SM}} = -0.14(35)$ .

# **Summary & Outlook**

- Our RCC method treats the ``Core", ``Main" and ``Tail" contributions to E1<sub>PNC</sub> on an equal footing.
- ✤ It also accounts for DCP contributions implicitly.
- Our calculation demonstrates ``Core" contribution is agreeing with Porsev et al (2009 & 2010).
- It estimates uncertainties to ``Core", ``Main" and ``Tail" in a consistent manner and unambiguously.
- We are developing RCC methods to remove nonterminating series in the calculations.
- $\Leftrightarrow$  S  $\rightarrow$  D transition or experiments in other systems.
- A novel technique using optical lattices is proposed.

### Acknowledgement



B. P. Das

A. Kastberg

T. Aoki

Y. Sakemi



# **Thank You!**