Towards neutron skin and anapole moment measurements in atomic ytterbium

D. Antypas

MITP virtual workshop "Parity Violation and Related Topics", 30.07.2020

Outline

- Atomic parity violation background & motivations
- Yb parity violation experiment
- Isotopic variation of parity violation in Yb
- Current status, prospects for neutron skin and anapole measurements

Atomic Parity Violation

Main Source: Z exchange

Weak interaction (violates parity)

P-odd, T-even effect: $\vec{\sigma} \cdot \vec{p}$

The weak interaction mixes atomic states of opposite nominal parity (s & p)

The weak interaction mixes atomic states of opposite nominal parity (s & p)

Atomic Parity Violation Enhancement:

- Heavy atoms (high Z)
- Small ΔE

How to measure parity violation on forbidden transitions?

Several reversals available to extract PV signal

Nuclear spin-independent atomic PV

 $Q_W \approx -N + Z(1-4\sin^2\theta_W)$

Davoudiasl et al, Phys. Rev. D 89, 1402.3620

- Probe of the nuclear weak charge Q_W
- Constrain beyond Standard Model scenarios

Isotopic ratios & new physics > APV measures: $E1_{PV} = k_{PV}Q_W$

Isotopic ratios & new physics> APV measures: $E1_{PV} = k_{PV}Q_W$ $|f\rangle$ Element δk_{PV} $E1_{PV} = \langle f | D | i \rangle$ Element δk_{PV} Vb10 %

Atomic PV calculation errors cancel in isotopic ratios Dzuba, Flambaum, and Khriplovich, Z. Phys. D 1, 243 (1986)

$$R = \frac{E \mathbf{1}_{PV}'}{E \mathbf{1}_{PV}} = \frac{Q'_W}{Q_W}$$

Isotopic ratios & neutron skins

- > How well does k_{PV} cancel in the ratio?
- Limitation to isotopic ratio method: enhanced sensitivity to the neutron distribution Fortson, Pang, Wilets, PRL 65, 2857 (1990)

$$\frac{E1_{PV}}{E1'_{PV}} = 1 + \frac{\Delta N}{N} +$$

$$+\frac{3}{7}(aZ)^2\frac{\Delta R'_{ns}-\Delta R_{ns}}{R_p}$$

Skin contribution for 170 Yb - 176 Yb Isotopes ~ 10^{-3}

Physics Today 72, 30 (2019)

 $E1_{PV} = k_{PV}Q_W$

Nuclear-spin-dependent PV: anapole moment

- P-odd E/M moment from intranuclear PV
- Probe of weak meson-nucleon couplings (hadronic PV)

Why PV with ytterbium

• Large PV effect (DeMille, 1995 - Tsigutkin et al, 2009)

Why PV with ytterbium

- Large PV effect (DeMille, 1995 Tsigutkin et al, 2009)
- 7 stable isotopes (A=168, 170-174, 176)

Isotope	NA (%)	Ι
¹⁷⁴ Yb	31.8	0
¹⁷² Yb	21.8	0
¹⁷⁶ Yb	12.8	0
¹⁷³ Yb	16.1	5/2
¹⁷¹ Yb	14.3	1/2
¹⁷⁰ Yb	3.04	0
¹⁶⁸ Yb	0.13	0

• PNC on chain of isotopes \rightarrow neutron distributions

Why PV with ytterbium

- Large PV effect (DeMille, 1995 Tsigutkin et al, 2009)
- 7 stable isotopes (A=168, 170-174, 176)

Isotope	NA (%)	Ι
¹⁷⁴ Yb	31.8	0
¹⁷² Yb	21.8	0
¹⁷⁶ Yb	12.8	0
¹⁷³ Yb	16.1	5/2
¹⁷¹ Yb	14.3	1/2
¹⁷⁰ Yb	3.04	0
¹⁶⁸ Yb	0.13	0

- PNC on chain of isotopes \rightarrow neutron distributions
- Two isotopes with nuclear spin \rightarrow spin-dependent PV effects

The Yb PV experiment

• Reverse electric field: $E = E_0 \cos(\omega t)$, measure harmonics ratio

 $r(\theta) = (4\zeta/\beta E_0)\cot\theta$

• Extract ζ/β from the asymmetry: $r(\pi/4) - r(-\pi/4)$

• Reverse electric field: $E = E_0 \cos(\omega t)$, measure harmonics ratio

 $r(\theta) = (4\zeta/\beta E_0)\cot\theta$

• Extract ζ/β from the asymmetry: $r(\pi/4) - r(-\pi/4)$

Apparatus schematic

The atomic-beam apparatus

Harmonics ratio & θ-reversal

Asymmetry= $r(\theta = \pi/4) - r(\theta = -\pi/4)$

Mapping out the θ -dependence

Some sanity checks

TABLE II. Results of auxiliary experiment

Isotope mass number	Transition	Type of experiment	$\zeta/\beta \text{ (mV/cm)}$
174	$m = 0 \rightarrow m' = 0$	Actual isotopic comparison data	-23.89(11)
174	$m = 0 \rightarrow m' = \pm 1$		23.30(26)ª
174	$m = 0 \rightarrow m' = 0$	Measurement of r_0 vs $\theta^{\rm b}$	-24.65(80)
174	$m = 0 \rightarrow m' = 0$	Enhanced $e_{\nu}^{r}/E_{0} = -0.03$	-24.30(48)
174	$m = 0 \rightarrow m' = 0$	Enhanced $e_v^r/E_0 = 0.03$	-23.93(40)
174	$m = 0 \rightarrow m' = 0$	Enhanced $e_z^r/E_0 = -0.029$	-23.98(57)
174	$m = 0 \rightarrow m' = 0$	Enhanced $\tilde{e}_{z}^{\prime}/E_{0} = 0.029$	-23.76(57)
174	$m = 0 \rightarrow m' = 0$	Enhanced $e_z/E_0 = -0.076$	-24.67(57)
174	$m = 0 \rightarrow m' = 0$	Enhanced $e_z/E_0 = 0.076$	-23.83(57)
174	$m = 0 \rightarrow m' = 0$	Measurement on secondary transition peak	-24.14(44)
174	$m = 0 \rightarrow m' = 0, \pm 1$	Line-shape fitting	-21(4)
171	$F = 1/2 \rightarrow F' = 1/2$		-0.59(57)
174	$m = 0 \rightarrow m' = 0$	408-nm excitation using circularly polarized light	-0.2(12)
174	$m = 0 \rightarrow m' = 0$	Measurement with different field plates ^c	-25.2(12)
174	$m = 0 \rightarrow m' = 0$	Measurement without PBC	-26(7)

^aThe PV-mimicking terms $e_y^r(e_z/E_0)$ and $e_z^r(e_y/E_0)$ were not compensated prior to the measurement [see Appendix A and Eq. (A24)]. ^bSee Fig. 10.

^cDone without the high degree of 408-nm polarization control implemented in the isotopic comparison runs.

First observation of isotopic variation in atomic PV

SM: $Q_W \approx -N + Z(1 - 4 \sin^2 \theta_W) \rightarrow 1\%$ change per neutron around N=103 Observation: 0.96(15) % change per neutron

Constraints on light Z´-mediated e-proton & e-neutron interactions

In collaboration with V. Flambaum

Dzuba, Flambaum and Stadnik, PRL 119, 223201 (2017)

Nature Physics 15, 120 (2019)

Nearly shot-noise-limited sensitivity

Single isotope measurement uncertainties

	Systematic uncertainties	Contribution(%)
	Harmonics ratio calibration	0.22
	Polarization angle	0.1
	High-voltage measurements	0.06
	Transition saturation correction	0.05 (0.09 for ¹⁷⁰ Yb)
	Field-plate spacing	0.04
	Photodetector response calibration	0.02
False-PV	Stray fields & field-misalignments	0.02
	Total systematic	0.26
	Statistical uncertainty	0. 42 (0.9 for ¹⁷⁰ Yb)
	Total uncertainty	0.5 (0.9 for ¹⁷⁰ Yb)

Effect comparison **bonus**:

decreased sensitivity to systematics

Progress with signal enhancement

Progress with signal enhancement (cont'd)

- Boost the Yb oven flux ($\times 2$ flux is stable)
- Power build-up cavity mirror upgrade
 - ($\times 2$ more power with stable operation)
- Transverse-cool the atomic beam (×3 ?) *Tricky*
- Integrate longer....?

Next: Probing variation of Yb neutron skin

- 2018 Run: a total 200 hr to measure each of Yb-172 and Yb-176 to 0.4%
- ×60 signal enhancement: 0.05% uncertainty in ratio in 475 hr

Next: spin-dependent PV and anapole moment

TABLE II. PNC amplitudes (*z* components) for the $|6s^2, {}^1S_0, F_1\rangle \rightarrow |6s5d, {}^3D_1, F_2\rangle$ transitions in 171 Yb and 173 Yb in units of $E'Q_W$ and $10^{-9}iea_0$.

				PNC amplitude	
A	Ι	F_1	F_2	units: $E'Q_W$	units: $10^{-9}iea_0$
171	0.5	0.5	0.5	$-(1/3)(1-0.0161\varkappa)$	$6.15(1 - 0.0161\varkappa)$
		0.5	1.5	$\sqrt{2/9}(1+0.0081\varkappa)$	$-8.70(1+0.0081\varkappa)$
173	2.5	2.5	1.5	$-\sqrt{4/45}(1-0.0111\varkappa)$	$5.61(1 - 0.0111\varkappa)$
		2.5	2.5	$-\sqrt{5/21}(1-0.0032\varkappa)$	$9.18(1 - 0.0032\varkappa)$
		2.5	3.5	$\sqrt{2/21}(1+0.0079\varkappa)$	$-5.81(1+0.0079\varkappa)$

Dzuba & Flambaum, PRA 83, 042514 (2011)

- "Best guess" PV difference between 171 Yb F'=3/2 and F'=1/2 ~ 0.1%
- Systematics don't necessarily cancel out in PV effect difference

Summary

- Measured PV on a chain of Yb isotopes
- 0.5% accuracy per isotope
- Constrained light Z'-mediated
 e-nucleon couplings
- Next: precision isotopic comparison
 & neutron skins

A. Frabricant

Dr. K. Tsigutkin

Prof. J. Stalnaker

Prof. D. Budker

Prof. V. Flambaum