

Perspective on EOS studies in the Laboratory

JG U Concettina Sfienti Johannes Gutenberg-Universität - Institut für Kernphysik, Mainz

Rei aspeia ad astia ...

Omen Nomen

< Mon 2	7/07 Tue 28/07 Wed 29/07 Thu 30/07 All days		>
	🔤 Print PDF Full screen	Detailed view	Filter
15:00			
	PREX-II and MREX in the New Era of Multimessenger Astronomy		Jorge Piekarewicz
16:00			15:30 - 16:20
	Goals and Status of PREX, PREX-II, CREX, and MREX		Juliette Mammel
17:00			16:20 - 17:10
	New Transverse Beam Asymmetry Measurements for 208Pb, 48Ca, 40Ca, and 12C		Dustin E. McNulty
			17:10 - 18:00
18:00	Nuclear Weak Charges and Weak Radii at MESA	c	leksandr Koshchii

JG U Concettina Sfienti Johannes Gutenberg-Universität - Institut für Kernphysik, Mainz

Once upon a time...

A.W. Steiner, M. Prakash, J.M. Lattimer and P.J. Ellis, Physics Reports, 411 (2005) 325

"Multi-messengers Physics"

A.W. Steiner, M. Prakash, J.M. Lattimer and P.J. Ellis, Physics Reports, 411 (2005) 325

Observable + Model = S_v,L

Constraints on $E_{sym}(\rho_0)$ and L based on 29 analyses of some data, Aug. 2013

Constraints on $E_{sym}(\rho_0)$ and L based on 29 analyses of some data, Aug. 2013

(or the highway to hell, depending on your level of optimism)

pet aspeta ad astia

The stairway to heaven (or the highway to hell, depending on your level of optimism)

(Personal selection) **PV-Asymmetry** long. polarized unpolarized γ, **Ζ**⁰ target Resonance **PVES** Strength ????.. **Cross-section** Collective **Excitation** BUP STRAND Hadronic **EM Probes Probes** Theo. uncertainties (a.u) per aspera ad astria ..

(or the highway to hell, depending on your level of optimism)

Coherent π⁰ photoproduction: easy and quick (A2 Coll. Phys. Rev. Lett. 112, 242502)

... shine light on the nucleus!

 $\begin{array}{c} \gamma + A_{(g.s.)} \rightarrow \pi^0 + A_{(g.s.)} \\ & \hookrightarrow \gamma \gamma \end{array}$

Advantages:

- Same amplitude for n and p
 - → Sensitivity to nucleon dist.
- Photon is neutral
 - \rightarrow Whole volume is probed
- Quick measurement

Drawbacks:

- Final state interactions
 - \rightarrow |Model dependence
- Delta resonance region
 - → Model dependence

Coherent π⁰ photoproduction: easy and quick (A2 Coll. Phys. Rev. Lett. 112, 242502)

... shine light on the nucleus!

 $\begin{array}{c} \gamma + A_{(g.s.)} \rightarrow \pi^0 + A_{(g.s.)} \\ \hookrightarrow \gamma \gamma \end{array}$

Neutron Skin of $^{208}\mathrm{Pb}$ from Coherent Pion Photoproduction

C. M. Tarbert *et al.* (Crystal Ball at MAMI and A2 Collaboration) Phys. Rev. Lett. **112**, 242502 – Published 18 June 2014

PhySICS See Synopsis: Neutron Skin Turns Out to Be Soft

tagger at the MAMI electron beam facility. On exploitation of an interpolated fit of a theoretical model to the measured cross sections, the half-height radius and diffuseness of the neutron distribution are found to be $c_n = 6.70 \pm 0.03$ (stat.) fm and $a_n = 0.55 \pm 0.01$ (stat.) $^{+0.02}_{-0.03}$ (sys.) fm, respectively, corresponding to a neutron skin thickness $\Delta r_{np} = 0.15 \pm 0.03$ (stat.) $^{+0.01}_{-0.03}$ (sys.) fm. The results give the first successful extraction of a neutron skin thickness with an electromagnetic probe and indicate that the skin of 208 Pb has a halo character. The measurement provides valuable new constraints on both the structure of nuclei and the equation of state for neutron-rich matter.

Coherent π⁰ photoproduction: easy and quick (A2 Coll. Phys. Rev. Lett. 112, 242502)

TO DO: Reconstruct π^0 from $\pi^0 \rightarrow 2\gamma$ decay

The stairway to heaven

ONCETTINASFIENTI

2222 ...

Coherent π⁰ photoproduction: easy and quick (A2 Coll. Phys. Rev. Lett. 112, 242502)

Coherent π⁰ photoproduction: easy and quick (A2 Coll. Phys. Rev. Lett. 112, 242502)

Coherent π⁰ photoproduction: easy and quick (A2 Coll. Phys. Rev. Lett. 112, 242502)

PhD M. Ferretti-Bondy (exp), F. Colomer (theo), S. Tsaran (theo)

Coherent π⁰ photoproduction: easy and quick (A2 Coll. Phys. Rev. Lett. 112, 242502)

Coherent π⁰ photoproduction: easy and quick (A2 Coll. Phys. Rev. Lett. 112, 242502)

P. Capel, F. Colomer, S. Tsaran, M. Vanderhagen

- Solution Working code for PWIA amplitudes for photoproduction $V_{\pi\gamma}^{(\lambda)}(\mathbf{k}_{\pi},\mathbf{k}_{\gamma})$
- Solution Working code for scattering matrix $F_{\pi A}$ of π^0
 - Resolution of the Lippmann-Schwinger equation
 - Singularity of Coulomb solved : better constrains on $U^{\rm Nucl}(k',k)$
- $\hfill\square$ DWIA amplitudes calculation

aspera ad astra

- Off-shell photoproduction amplitudes $V^{(\lambda)}_{\pi\gamma}({f k}'_\pi,{f k}_\gamma)$
- $\hfill\square$ Devise a better form for $U^{\rm Nucl}(k',k)$
 - + a.o. Treatment of Resonances,
 - + Use Effective Potentials (J. Piekarewicz)
 - FSU000 (NSkin = 0.284 fm)
 - FSU040 (NSkin = 0.189 fm)

"...at the extremes of models that I feel comfortable do not "brake" the nuclear chart. " (JP)

per aspera ad astra

comfortable do not "brake" the nuclear chart. " (JP)

The -REX family

2818

The -REX family

ONCETTINASFIENTI

P2@MESA: 2023+ Commissioning (¹²C): 2023-2024 First Weinberg Run: 2024-2025 MREX: 2025+

What if in 2025+ there is no need for a 0.5% measurement?

The -REX family

PV-Asymmetry long. e polarized unpolarized γ, **Ζ⁰** target **PVES** measured Apr known charge Coulomb corrections form factor F_{ct}(Q²) weak form factor F_w(Q² weak density $\rho_w(Q^2)$ assume surface thickness good to 25% weak radius R_w corrections for G,", G,*, MEC known neutron radius R_m charge radius R_{ab} neutron skin R_{stin}

ONCETTINASFIENTI

P2@MESA: 2023+ Commissioning (¹²C): 2023-2024 First Weinberg Run: 2024-2025 MREX: 2025+

What if in 2025+ there is no need for a 0.5% measurement?

Chen, Piekarewicz arXiv:2006.08405

Medium-Range Program@MAMI

Medium-Range Program@MAMI

Scenario 1:									
$\mathbf{E}_{\mathbf{Beam}}$	$\mathbf{I}_{\mathbf{Beam}}$	Scattering Angle θ		Four-Momentum Transfer \mathbf{Q}^2		Running Time			
		SpecA	SpecB	SpecA	SpecB				
855 MeV	20 µA	23.50°	10.35°	$0.12\text{GeV}^2/\text{c}^2$	$0.02\text{GeV}^2/\text{c}^2$	78 days			
Scenario 2:									
		Scattering Angle θ		Four-Momentum Transfer \mathbf{Q}^2		Running Time			
${ m E}_{ m Beam}$	$\mathbf{I}_{\mathbf{Beam}}$	Scatteri	ing Angle θ	Four-Moment	tum Transfer ${ m Q}^2$	Running Time			
${ m E}_{ m Beam}$	\mathbf{I}_{Beam}	Scatteri SpecA	ing Angle θ SpecB	Four-Moment	tum Transfer Q ² SpecB	Running Time			

10% measurement of surface thickness

per aspera ad astria ...

... per astra da astra

JP: "MREX measures pure neutron matter at saturation density and nobody can do it better"

...waiting eagerly for a new plot of my (second) favourite theory colleagues!

