

Cluster of Excellence Precision Physics, Fundamental Interactions and Structure of Matter

Oleksandr Koshchii

Parity Violation and Related Topics Workshop, July 29th, 2020

In collaboration with J. Erler, M. Gorchtein, C. J. Horowitz, J. Piekarewicz, X. Roca-Maza, C.-Y. Seng, H. Spiesberger

OUTLINE

- PV asymmetry on spin-0 nuclei and implications of future measurements of the asymmetry at MESA.
- Theory of calculation of PV asymmetry on nuclei and corresponding uncertainties.
- Feasibility study of a simultaneous sub-percent extraction of the weak charge and the weak radius of Carbon-12 at MESA.

• Conclusions.

PV ASYMMETRY ON SPIN-0 NUCLEI

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \frac{F_{wk}(Q^2)}{F_{ch}(Q^2)} \frac{Q_W}{Z} = -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \frac{Q_W}{Z} (1+\Delta)$$

Weak charge of the nucleus at tree level: $Q_W = Z(1 - 4\sin^2\theta_W) - N$

SUMMARY OF PVES EXPERIMENTAL PROGRAM

WEAK CHARGES AT MESA

• Nucleus at tree level:

 $Q_{W}^{n} \approx -1$

$$Q_W = Z \left(1 - 4\sin^2 \theta_W \right) - N$$

• Proton: The weak charge is highly sensitive to the weak mixing angle.

$$Q_W^p \approx 1 - 4\sin^2 \theta_W \approx 0.08 \implies \Delta \sin^2 \theta_W / \sin^2 \theta_W \approx 0.09 \Delta Q_W^p / Q_W^p$$

Carbon-12: Reduced beam time, theoretically easy to handle.

 $Q_W^{^{12}C} \approx -24\sin^2\theta_W \approx -5.52; \quad \Delta \sin^2\theta_W / \sin^2\theta_W = \Delta Q_W^{^{12}C} / Q_W^{^{12}C}$

• Neutron: Weak interactions probe neutrons inside the nucleus.

WEAK CHARGES AT MESA

• Nucleus at tree level:

 $Q_{W}^{n} \approx -1$

$$Q_W = Z \left(1 - 4\sin^2 \theta_W \right) - N$$

- Proton: The weak charge is highly sensitive to the weak mixing angle. $Q_W^p \approx 1 - 4\sin^2 \theta_W \approx 0.08 \implies \Delta \sin^2 \theta_W / \sin^2 \theta_W \approx 0.09 \Delta Q_W^p / Q_W^p \approx 0.15\%$
- Carbon-12: Reduced beam time, theoretically easy to handle.

 $Q_W^{^{12}C} \approx -24\sin^2\theta_W \approx -5.52; \quad \Delta \sin^2\theta_W / \sin^2\theta_W = \Delta Q_W^{^{12}C} / Q_W^{^{12}C}$

• Neutron: Weak interactions probe neutrons inside the nucleus.

WEAK CHARGES AT MESA

• Nucleus at tree level:

 $Q_{W}^{n} \approx -1$

$$Q_W = Z \left(1 - 4\sin^2 \theta_W \right) - N$$

- Proton: The weak charge is highly sensitive to the weak mixing angle. $Q_W^p \approx 1 - 4\sin^2 \theta_W \approx 0.08 \implies \Delta \sin^2 \theta_W / \sin^2 \theta_W \approx 0.09 \Delta Q_W^p / Q_W^p \approx 0.15\%$
- Carbon-12: Reduced beam time, theoretically easy to handle.

 $Q_W^{^{12}C} \approx -24\sin^2\theta_W \approx -5.52; \quad \Delta \sin^2\theta_W / \sin^2\theta_W = \Delta Q_W^{^{12}C} / Q_W^{^{12}C} \approx 0.3\%$

• Neutron: Weak interactions probe neutrons inside the nucleus.

WEAK (NEUTRON) SKINS AT MESA

PV asymmetry:

Form factors:

$$A_{PV} = A_0 \frac{Q_W}{Z} \frac{F_{wk}(Q^2)}{F_{ch}(Q^2)} \approx A_0 \frac{Q_W}{Z} \left(1 - \frac{Q^2}{3} R_{wskin} R_{ch} \right)$$

$$F_{ch}(Q^2) = \int d^3 r \rho_{ch}(\vec{r}) e^{i\vec{q}\cdot\vec{r}} = 1 - \frac{Q^2}{3!} R_{ch}^2 + \dots$$

$$F_{wk}(Q^2) = \int d^3 r \rho_{wk}(\vec{r}) e^{i\vec{q}\cdot\vec{r}} = 1 - \frac{Q^2}{3!} R_{wk}^2 + \dots$$

$$R_{ch}^2 = \int r^2 \rho_{ch}(r) d^3 r \qquad R_{wk}^2 = \int r^2 \rho_{wk}(r) d^3 r$$

$$R_{wk} = R_{wk} - R_{wk} = R_{wk} - R_{wk} - R_{wk} = R_{wk} - R_{wk} - R_{wk} = R_{wk} - R_{$$

RMS radii:

Weak skin:

 $\Lambda_{\text{wskin}} = \Lambda_{\text{wk}} - \Lambda_{\text{ch}}$ $K_{\text{nskin}} = K_n - K_p$

The weak skin can be related to the neutron skin. Neutron skin of symmetric nuclei can help quantifying generic isospin symmetrybreaking effects, important in superallowed nuclear beta decays.

CALCULATION OF PV ASYMMETRY USING PARTIAL WAVES

www.tcm.phy.cam.ac.uk

The Dirac equation:

$$\left[-i\vec{\alpha}\cdot\vec{\nabla}+\beta m_{e}+V(\vec{r})\right]\psi=E\psi$$

Parametrize the potential realistically:

$$V_{\rm ch}(r) = -Z\alpha \int d^3r' \rho_{\rm ch}(r') / \left| \vec{r} - \vec{r}' \right|$$

Solve the Dirac equation:

$$\Psi \sim \sum_{\kappa,m} \Psi_{\kappa,m} \qquad \qquad \Psi \underset{r \to \infty}{\sim} e^{i\vec{k}\cdot\vec{r}} + F(\theta,\varphi) \frac{e^{ikr}}{r}$$

Determine scattering amplitudes and CS.

COULOMB DISTORTION AND PV ASYMMETRY

The Dirac equation for scattering of massless electron:

 $\begin{bmatrix} -i\vec{\alpha}\cdot\vec{\nabla} + V_{R(L)}(r) \end{bmatrix} \psi_{R(L)} = E\psi_{R(L)}$ $V_{R(L)}(r) = V_{ch}(r) \pm V_{wk}(r) \quad \text{[Horowitz, PRC, 1998]}$

Weak potential:
$$V_{wk}(r) = \frac{G_F Q_{wk}}{2\sqrt{2}} \rho_{wk}(r)$$

Modified the ELSEPA package to account for Coulomb distortions.

[Salvat, Jablonski, Powell, Comp. Phys. Com., 2004]

Studied nuclear structure uncertainty encoded in the weak charge density distribution.

COULOMB DISTORTION AND PV ASYMMETRY

The Dirac equation for scattering of massless electron:

 $\begin{bmatrix} -i\vec{\alpha}\cdot\vec{\nabla} + V_{R(L)}(r) \end{bmatrix} \psi_{R(L)} = E\psi_{R(L)}$ $V_{R(L)}(r) = V_{ch}(r) \pm V_{wk}(r) \quad \text{[Horowitz, PRC, 1998]}$

Weak potential:
$$V_{wk}(r) = \frac{G_F Q_{wk}}{2\sqrt{2}} \rho_{wk}(r)$$

The Dirac equation for beamnormal single-spin asymmetry:

$$\left[-i\vec{\alpha}\cdot\vec{\nabla}+\beta m+V_{\rm ch}(r)+i\beta V_{\rm abs}(E,r)\right]\psi=E\psi$$

[**Off topic**, in progress, 2020]

Modified the ELSEPA package to account for Coulomb distortions.

[Salvat, Jablonski, Powell, Comp. Phys. Com., 2004]

Studied nuclear structure uncertainty encoded in the weak charge density distribution.

PV ASYMMETRY ON CARBON-12 AT MESA

Introduce weak skin parameter:

 $\lambda \equiv (R_{\rm wk} - R_{\rm ch})/R_{\rm ch} = R_{\rm wskin}/R_{\rm ch}$

PV asymmetry using plane waves:

$$A_{PV} = A_0 \frac{Q_W}{Z} \frac{F_{wk}(Q^2)}{F_{ch}(Q^2)} = A_0 \frac{Q_W}{Z} \left(1 - \lambda \frac{Q^2 R_{ch}^2}{3} + \dots \right)$$

PV asymmetry using partial wave expansion:

$$A_{PV} = A_0 \frac{Q_W}{Z} (p_0 - \lambda p_1 + ...) ; \quad A_0 = -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha}$$

Effects due to Coulomb distortion and non-zero weak skin are clearly significant for a sub-percent asymmetry measurement on 12 C.

FORWARD ANGLE MEASUREMENT AT P2

- In order to measure PV asymmetry to 0.3% we need to know the weak skin of Carbon-12 to 0.6% of the charge radius.
- Nuclear models suggest a larger uncertainty in the skin ⇒ with a single measurement and theory input alone 0.3% measurement is not feasible.
- Additional (backward) measurement can help achieving such precision.

BACKWARD ANGLE MEASUREMENT AT P2

- The backward measurement would be much more sensitive to the weak skin than the forward one. With 7% measurement we can determine the weak skin to 0.35% of the charge radius.
- Can be implemented in a relatively simple manner at P2 using the experimental setup designed for the measurement on the proton.

RESULTS

- x² fit of the combined forward and backward measurements of PV asymmetry with respect to free parameters of our parametrization.
- An additional 3-7% measurement at a backward angle of 145° will ensure a largely model-independent extraction of the weak mixing angle with a relative precision of 0.32-0.35% and the weak skin within 0.19-0.35% of the charge radius.

CONCLUSIONS

- Obtained prediction for the PV asymmetry including Coulomb distortions.
- Studied sensitivity of the forward measurement to nuclear structure.
 Observed considerable effect of the weak skin on extraction of the weak mixing angle in forward kinematics.
- Showed an enhancement of the contribution due to the weak skin in backward kinematics. This enhancement can be used to determine experimentally the weak skin of Carbon-12 at MESA.
- Simultaneous sub-percent extraction of the weak charge and the weak radius of the Carbon-12 nucleus is possible with two measurements of the asymmetry.

BACK UP SLIDES

PARAMETRIZATIONS OF DENSITY DISTRIBUTIONS

 Parametrization providing the best description of experimental data – a sum of Gaussians (SG):

$$\rho_{\rm ch}(r) = \sum_{i=1}^{12} A_i \left[\exp\left(-\frac{(r-R_i)^2}{\gamma^2}\right) + \exp\left(-\frac{(r+R_i)^2}{\gamma^2}\right) \right]$$

[H. de Vries et al., ADNDT, 1987]

• 2 parameter symmetrized Fermi (SF):

$$\rho_{\rm SF}(r) = \frac{3}{4\pi c \left(c^2 + \pi^2 a^2\right)} \frac{\sinh\left(c/a\right)}{\cosh\left(r/a\right) + \cosh\left(c/a\right)}$$

[J. Piekarewicz et al., PRC, 2016]

Can be used to parametrize the distribution of the weak charge.

WEAK SKIN PARAMETRIZATION

The choice of a particular form for the weak charge distribution introduces model dependence that may be difficult to quantify. To avoid this, use:

$$\rho_{\rm wk}(r) = \rho_{\rm ch}(r) + \rho_{\rm wskin}(r)$$
$$\rho_{\rm wskin}(r) = \lambda / \lambda_{\rm SF} \left(\rho_{\rm SF}(r) - \rho_{\rm ch}(r) \right)$$

$$\rho_{\rm SF}(r) = \frac{3}{4\pi c \left(c^2 + \pi^2 a^2\right)} \frac{\sinh\left(c/a\right)}{\cosh\left(r/a\right) + \cosh\left(c/a\right)}$$

PV ASYMMETRY ON PROTON AND CARBON-12 AT MESA

	P2	C-12: Forward	C-12: Backward
A _{PV}	$2 \cdot 10^{-8}$	$5.4 \cdot 10^{-7}$	$1 \cdot 10^{-5}$
ΔA_{PV}	2%	0.3%	7%
Ν	$6.25 \cdot 10^{18}$	$3.82 \cdot 10^{17}$	$2.04 \cdot 10^{12}$
Meas. Time	11000 h	2500 h	5000 h

BEAM-NORMAL SINGLE-SPIN ASYMMETRY

BEAM-NORMAL SINGLE-SPIN ASYMMETRY

ENERGY DEPENDENCE OF B_n AT FIXED MOMENTUM TRANSFER

$$B_n(E_{beam}, |t|) = B_0(A, |t|) \times \frac{1}{E_{beam}^2} \int_{\omega_{\pi}}^{E_{beam}} d\omega \ \omega \ \sigma_{\gamma p}(\omega) \ln\left[\frac{|t|}{m^2} \left(\frac{E_{beam}}{\omega} - 1\right)^2\right]$$

$$I_{0} = \frac{1}{E_{beam}^{2}} \int_{\omega_{\pi}}^{E_{beam}} d\omega \ \omega \ \sigma_{\gamma p}(\omega) \ln \left[\frac{|t|}{m^{2}} \left(\frac{E_{beam}}{\omega} - 1 \right)^{2} \right]$$

