Electroweak Physics at the LHeC

MITP Virtual Workshop on Parity Violation and Related Topics 27.-30. 7. 2020

H. Spiesberger

PRISMA⁺ Cluster of Excellence, Institut für Physik,

Johannes Gutenberg-Universität Mainz

Overview

- The Large Hadron electron Collider project
- Deep Inelastic Scattering, ep at very high energy
 - SM mass parameters
 - the weak mixing angle
 - quark neutral-current couplings
- other beyond SM parameters
- → arXiv:2007.11799 with D. Britzger and M. Klein see also LHeC design report update arXiv:1206.2913 and http://cds.cern.ch/record/2706220

Motivation

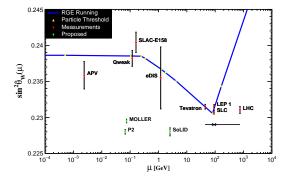
Lepton-nucleon scattering – the goal:

High-precision measurements of the 'nucleon structure'

→ measure form factors, structure functions, (generalized) parton distribution functions, ...

- at low Q² elastic and quasi-elastic scattering
 → form factors, response functions, polarizabilities, ...
- at high Q² deep inelastic scattering
 - → parton distribution functions, GPDs, GDAs, ...

Test the dynamics of the strong interaction: QCD at high energies


Lepton scattering: only via electromagnetic and weak interaction

→ well-controlled and separable perturbative treatment

Motivation

Also: Electroweak Physics at HERA, SoLid, EIC, LHeC, ...

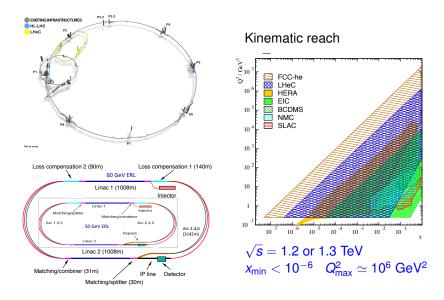
... the weak mixing angle at scales above the Z-resonance

The running weak mixing angle, $\sin^2 \hat{\theta}_W(\mu)$, provides the link between low- and high-energy PV experiments

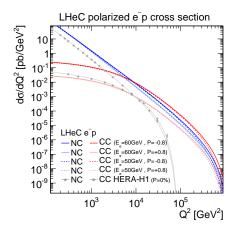
LHeC Study Group arXiv:1206.2913 and CERN-ACC-Note-2020-0002 Update to appear

(see also LEP & LHC, Aachen workshop, 1990)

Deliberation Document on the 2020 update of the European Strategy for Particle Physics (CERN-ESU-014): "realistic option"


Data taking possible in the 2030s

New electron linac (ERL): $E_e = 50 \text{ or } 60 \text{ GeV}, \quad \sqrt{s} = 1.2 \text{ or } 1.3 \text{ TeV}$


Integrated luminosity per year: up to 180 fb⁻¹

Other plans: EIC, SoLID, FCC-eh

LHeC layout

Cross sections for high-energy DIS ($P_e = \pm 0.8$)

Reach to high Q^2 :

Opportunity for electroweak physics

interactions strengths: QED \simeq weak NC \simeq CC Previous studies at HERA

Final electroweak physics analysis of H1 data: arXiv: 1806.01176, EPJC 78

The strategy:

Fits to electroweak parameters simultaneously with PDF fits:

All fits are also PDF fits

i.e. correlations of EW parameters and PDFs are under control

(4 combinations of quark PDFs plus gluon PDF, total of 13 parameters)

Data simulation

Summary data and uncertainties, inclusive NC and CC DIS

Processes	E_p	Q_e	P_e	\mathcal{L}	Q^2 range	No. of data points (NC, CC)	
	$[\mathrm{TeV}]$			$[\rm{fb}^{-1}]$	$[GeV^2]$	LHeC-60	LHeC-50
NC, CC	7	-1	-0.8	1000	$5 - 10^{6}$	150, 114	150, 123
NC, CC	7	$^{-1}$	+0.8	10	$5 - 10^{6}$	150, 113	146, 117
NC, CC	7	$^{+1}$	0	10	$5 - 5 \cdot 10^{5}$	148, 109	145, 111
NC, CC	1	-1	0	1	$5 - 10^5$	128, 93	120, 92

several hundred data points

Source of uncertainty	Size of uncertainty	Uncertainty on cross section	
		$\Delta \sigma_{\rm NC}$	$\Delta \sigma_{\rm CC}$
Scattered electron energy scale $\Delta E'_e/E'_e$	0.1 %	0.1 - 1.7 %	
Scattered electron polar angle	0.1 mrad	0.1-0.7%	
Hadronic energy scale $\Delta E_h/E_h$	0.5%	0.1 - 4%	1.0 - 8.6%
Calorimeter noise (only $y < 0.01$)	1-3~%	0.0 - 1.1~%	
Radiative corrections		0.3%	
Photoproduction background $(y > 0.5)$	1 %	$0.0~{\rm or}~1.0\%$	
Uncorrelated uncertainty (efficiency)		0.5%	0.5%
Luminosity uncertainty (normalization)		1.0%	1.0%

measurement uncertainties O(1%)

Scenario	E_e	Uncorrelated uncertainty
LHeC-50a	$50{ m GeV}$	0.5%
LHeC-50b	$50{ m GeV}$	0.25~%
LHeC-60a	$60{ m GeV}$	0.5 %
LHeC-60b	$60{\rm GeV}$	0.25%

4 scenarios $E_e = 50$ or 60 GeV finer binning

H. Spiesberger (Mainz)

Many data points Data fix normalization Data fix PDFs (mainly from lower Q^2 , 1 γ -exchange)

- → correlated normalization uncertainties strongly suppressed
- → uncorrelated uncertainties reduced (several hundred data points)
- → per mille uncertaintites for the measurement of cross section ratios

Equivalent to the measurement of cross section ratios, like

$$\begin{aligned} R_{CC/NC} &= \frac{d\sigma_{CC}}{d\sigma_{NC}}, \quad B_c = \frac{d\sigma(e^-) - d\sigma(e^+)}{d\sigma(e^-) - d\sigma(e^+)} \\ A_{LR} &= \frac{d\sigma_L - d\sigma_R}{d\sigma_L - d\sigma_R} \\ &= \frac{d\sigma_{NC}(\text{large} Q^2)}{d\sigma_{NC}(\text{small} Q^2)} \end{aligned}$$

DIS at large Q²: Neutral Current

Neutral current at tree level (LO), polarized e^{\pm} p scattering, inclusive

$$\frac{d^2\sigma_{NC}(e^{\pm}p)}{dxdQ^2} = \frac{2\pi\alpha^2}{Q^4x} \left(Y_{+}\mathbf{F}_2^{\pm} \mp Y_{-}x\mathbf{F}_3^{\pm} - y^2\mathbf{F}_L^{\pm} \right)$$

 $\begin{aligned} \mathbf{F}_{\mathbf{2}}^{\pm} &= F_{\mathbf{2}}^{\gamma} + \kappa_{Z}(-v_{e} \mp Pa_{e})F_{\mathbf{2}}^{\gamma Z} + \kappa_{Z}^{2}(v_{e}^{2} + a_{e}^{2} \pm 2Pv_{e}a_{e})F_{\mathbf{2}}^{Z} \\ x\mathbf{F}_{\mathbf{3}}^{\pm} &= +\kappa_{Z}(-a_{e} \pm Pv_{e})xF_{\mathbf{3}}^{\gamma Z} + \kappa_{Z}^{2}(2v_{e}a_{e} \pm P(v_{e}^{2} + a_{e}^{2}))xF_{\mathbf{3}}^{Z} \\ \kappa_{Z}(\mathbf{Q}^{2}) &= \frac{\mathbf{Q}^{2}}{\mathbf{Q}^{2} + m_{Z}^{2}} \frac{1}{4\sin^{2}\theta_{W}\cos^{2}\theta_{W}} \end{aligned}$

$$(F_2^{\gamma}, F_2^{\gamma Z}, F_2^{Z}) = x \sum (Q_q^2, 2Q_q v_q, v_q^2 + a_q^2)(q + \bar{q})$$
$$x(F_3^{\gamma Z}, F_3^{Z}) = 2x \sum (Q_q a_q, v_q a_q)(q - \bar{q})$$

 $v_f = I_f^{(3)} - 2Q_f \sin^2 \theta_w, \quad a_f = I_f^{(3)} \quad (f = e, u, d, \ldots)$

On-shell scheme: $\sin^2 \theta_W = 1 - \frac{m_W^2}{m_Z^2}$ Independent SM paramters: α , m_Z , m_W + PDFs

H. Spiesberger (Mainz)

Charged current at tree level

$$\frac{d^2\sigma_{CC}(e^{\pm})}{dxdQ^2} = \frac{1\pm P}{2} \frac{2\pi\alpha^2}{Q^4x} \kappa_W^2 \left(Y_+ \mathbf{W}_2^{\pm} \pm Y_- x \mathbf{W}_3^{\pm} - y^2 \mathbf{W}_L^{\pm}\right)$$
$$\kappa_W(Q^2) = \frac{Q^2}{Q^2 + m_W^2} \frac{1}{4\sin^2\theta_W}$$

$$W_2^- = x(U + \bar{D}), \quad xW_3^- = x(U - \bar{D})$$
$$W_2^+ = x(\bar{U} + D), \quad xW_3^+ = x(D - \bar{U})$$
$$U = u + c, \ \bar{U} = \bar{u} + \bar{c}, \ D = d + s, \ \bar{D} = \bar{d} + \bar{s}$$
SM paramters: $\alpha, \ m_W, \sin^2 \theta_W + \text{PDFs}$

Note: we include NLO EW and NNLO QCD corrections

SM parameters

at LO:

 $d\sigma_{NC} = d\sigma_{NC}(\alpha, m_Z, m_W)$ and $d\sigma_{CC} = d\sigma_{CC}(\alpha, m_Z, m_W)$

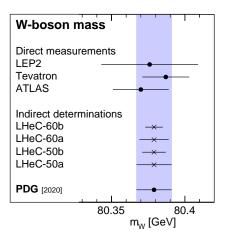
On-shell scheme:

$$\sin^2 \theta_W = 1 - \frac{m_W^2}{m_Z^2}$$
Note: $\frac{\delta m_W}{m_W} = \frac{\sin^2 \theta_W}{2 \cos^2 \theta_W} \frac{\delta \sin^2 \theta_W}{\sin^2 \theta_W} \simeq 0.15 \frac{\delta \sin^2 \theta_W}{\sin^2 \theta_W}$

at NLO:

$$\boldsymbol{d}\sigma_{NC} = \boldsymbol{d}\sigma_{NC}(\alpha, \boldsymbol{m}_{Z}, \boldsymbol{m}_{W}, \boldsymbol{m}_{t}, \boldsymbol{m}_{H}, \ldots)$$

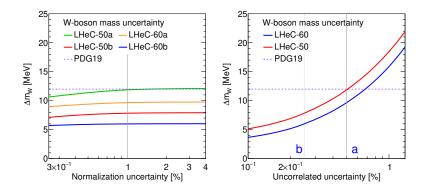
Beyond the SM:

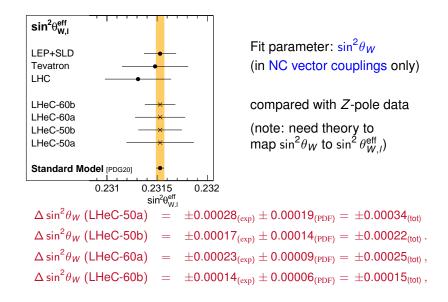

$$d\sigma_{NC} = d\sigma_{NC}(\alpha, m_Z, m_W, \dots, v_f, a_f)$$

$$d\sigma_{NC} = d\sigma_{NC}(\alpha, m_Z, m_W, \dots, \rho, \kappa)$$

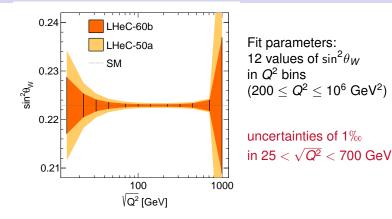
$$d\sigma_{NC} = d\sigma_{NC}(\alpha, m_Z, m_W, \dots, S, T, U)$$

Results: *m*_W+PDF fit

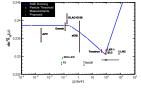

Fit parameter: m_W (and PDFs), all other parameters fixed


```
\begin{array}{l} \delta m_W = \pm 6 \; {\rm MeV} \; ({\rm LHeC}\text{-}60b) \\ \delta m_W = \pm 12 \; {\rm MeV} \; ({\rm LHeC}\text{-}50a) \\ (= \pm 9_{\rm exp} \pm 8_{\rm PDF} \; {\rm MeV}) \end{array}
```

measurement errors: O(1%)expected parameter uncertainties: O(1%)for m_W , from error propagation: $O(10^{-4})$


This is an indirect determination of a SM parameter, m_W (cf. global EW fits)

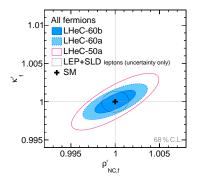
 $\sin^2 \theta_W + \text{PDF fit}$



$\sin^2 \theta_W$ +PDF fit: Scale dependence

Note: on-shell scheme, $\sin^2 \theta_W$ is only one parameter In the $\overline{\text{MS}}$ scheme: this corresponds to a measurement of the running effective $\sin^2 \theta_W$

(never measured before in one single experiment)

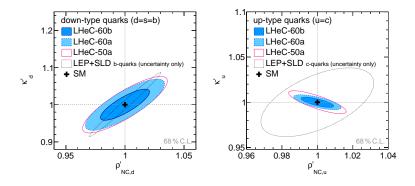


Beyond the SM: (ρ, κ) +PDF fit

• Parametrize new (heavy) physics by modified couplings

$$v_f = \sqrt{\rho'_f} \left(I_f^{(3)} - 2Q_f \, \kappa'_f \, \sin^2 \theta_w \right), \quad a_f = \sqrt{\rho'_f} \, I_f^{(3)} \quad (f = e, u, d, \ldots)$$

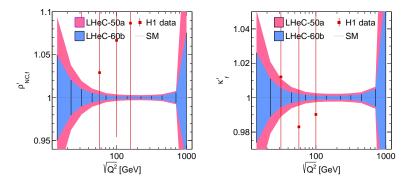
ho: NC/CC ratio, κ : effective weak mixing angle can be flavor- and scale-dependent



Precision similar to LEP, SLD and D0 measurements from a single experiment

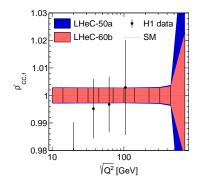
Beyond the SM: (ρ, κ) +PDF fit

$$v_q = \sqrt{
ho_q'} \left(I_q^{(3)} - 2Q_q \kappa_q' \sin^2 \theta_w
ight), \quad a_q = \sqrt{
ho_q'} I_q^{(3)} \quad (q = u, d, \ldots)$$


4-parameter fit of quark couplings

Separate light-quark flavor couplings (mainly u and d)
 Similar to c- or b-tagged quark couplings from Z-pole

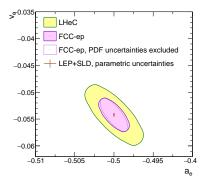
H. Spiesberger (Mainz)


(ρ, κ) +PDF fit: scale dependence

Best sensitivity at $Q^2 \simeq 20,000 \text{ GeV}^2$, 1 to 2 permille

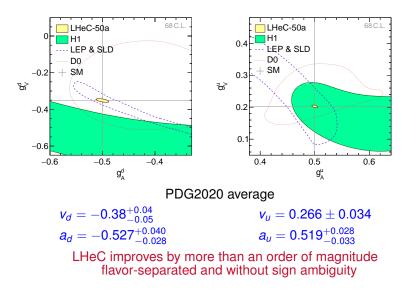
(Note: κ'_{f} corresponds to effective weak mixing angle, $\sin^{2} \theta_{W,f}^{\text{eff}} = \kappa'_{f} \sin^{2} \theta_{W}$)

Charged-current coupling: ρ_{CC} +PDF fit



Fit parameters: 12 values of ρ'_{CC} in Q^2 bins

0.3 % for $Q^2 < (500 \text{ GeV})^2$


 ρ_{CC}^{\prime} : normalization of the CC cross section

distinguished from ρ'_{NC}

from PDG 2020 $v_e = 0.03817 \pm 0.00047$ $a_e = -0.50111 \pm 0.00035$

LHeC not competitive (but only a factor 3 off)

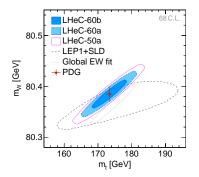
Theory predictions

DIS at the LHeC

expect high experimental precision for EW parameters

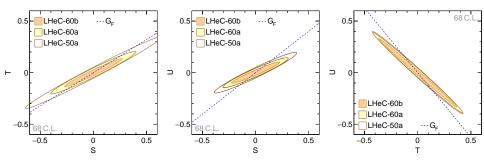
- ➔ Motivation for theory:
 - 2-loop calculation
 - calculation in the MS scheme
 - theory uncertainties in parameter relations:
 - on-shell $\sin^2 \theta_W$ versus leptonic effective $\sin^2 \theta_W$

Summary


• LHeC:

High-precision measurements of inclusive DIS

- Precision of electroweak parameters in general similar to Z-pole observables
- ... but from space-like scattering covering a large range of Q²
- Scale dependence of couplings
- Separated light-quark couplings
- Not only a "realistic", but also an "interesting option"


More details, see arXiv:2007.11799

Appendix

 m_W from LO (mainly, $\sin^2 \theta_W$) m_t through 1-loop

similar to indirect m_t determinations from *Z*-pole observables

From single-parameter fits: factor 2 - 5 better than present PDG values