

Coherent elastic neutrino scattering for ⁴⁰Ar from first principles

Sonia Bacca

Johannes Gutenberg Universität Mainz

July 27th, 2020

Outline • Motivation

- The electroweak sector:
 - coherent elastic neutrino scattering
 - inelastic lepton scattering
- Outlook

Motivation

• How does the nucleus respond to external electroweak excitations?

- Interesting in nuclear physics and useful in other fields of physics, where nuclear physics plays a crucial role:
 - Astrophysics:
 - Atomic physics
 - Particle physics

Nuclear structure theory

Several particle physics experiments that look for BSM physics use nuclei as targets. Hence, we need a solid theory to study/quantify nuclear structure effects.

Ab initio approach

- Start from neutrons and protons as building blocks (centre of mass coordinates, spins, isospins)
- Solve the (non-relativistic) quantum mechanical problem of A-interacting nucleons
- $H|\psi\rangle = E|\psi\rangle$ $H = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + \dots$

• Find numerical solutions with no approximations or controllable approximations

Nuclear structure theory

Several particle physics experiments that look for BSM physics use nuclei as targets. Hence, we need a solid theory to study/quantify nuclear structure effects.

Chiral effective field theory

- Systematic approach (order-by-order)
- There are NN and 3NF starting from N2LO
- Low energy constants (LEC) are fit to experiment
- Once Hamiltonian has been calibrated it can be used to predict a variety of observables using a few- or many-body method

Nuclear structure theory

Several particle physics experiments that look for BSM physics use nuclei as targets. Hence, we need a solid theory to study/quantify nuclear structure effects.

Coupled-cluster theory

In collaboration with ORNL group

Electroweak sector

Measuring the elusive neutrinos ...

Various materials including, ⁴⁰Ar

Short and Long-baseline neutrino experiments

T2K

DUNE

Can ab-initio nuclear theory impact these fields?

Coherent elastic neutrino scattering

CEvNS

The neutrino exchanges a Z-boson with the nucleus, that recoils as a whole (no internal excitation).

This is valid for neutrino energies up to 50 MeV

Experimental signature: tiny energy deposited by nuclear recoils in the target material

If you measure it you can probe BSM physics.

COHERENT@SNS-ORNL

Science

REPORTS

Cite as: D. Akimov *et al.*, *Science* 10.1126/science.aao0990 (2017).

Observation of coherent elastic neutrino-nucleus scattering

Nuclear structure information needed: elastic weak form factor

Sonia Bacca

CEvNS cross section

Cross section (10⁻⁴⁰ cm²)

⁴⁰Ar Charge Form Factor

C. Payne et al., Phys. Rev. C 100, 061304(R) (2019)

NNLO_{sat} CCSD-T1 exp exp CCSDT-1 10⁰ 10⁰ $\Delta NNLO_{GO}(450)$ CCSD 2.0/2.0 (EM) 2.0/2.0 (PWA) 10^{-1} 2.2/2.0 (EM) 10^{-1} $|F_{ch}|$ $|F_{ch}|$ 10^{-2} 10^{-2} 10⁻³ 10⁻³ 10^{-4} 10^{-4} 2.5 0.5 2 1.5 0.5 2 2.5 1.5 1 1 0 $q \, [\mathrm{fm}^{-1}]$ $q \,[{\rm fm}^{-1}]$

exp: in Mainz, Ottermann et. al., Nucl. Phys. A **379**, 396 (1982)

⁴⁰Ar Weak Form Factor

C. Payne et al., Phys. Rev. C 100, 061304(R) (2019)

NNLO_{sat} 10^{0} $\Delta NNLO_{GO}(450)$ 10⁻³⁹ (EM)-(PWA) $\sigma [cm^2]$ 0.9 $|F_W|$ 0.8 10^{-2} $|F_W|$ 10⁻⁴⁰ 0.7 0.6 0.5 40 60 80 100 20 0 $q \, [MeV]$ 10^{-41} 10^{-4} 2.5 0.5 2 10 20 30 1 1.5 40 50 0 $q \, [\text{fm}^{-1}]$ E_{v} [MeV]

Small nuclear structure uncertainties in the cross section, in contrast to what originally estimated in Sierra, Liao, Malfatia, JHEP 1906:141 (2019)

Comparison to other calculations

See also RMF Yang et al., Phys. Rev. C 100, 054301 (2019) and RPA calculations in Co' et al., arXiv:2001.04684.

Confirm small nuclear structure uncertainties in the cross section.

Sonia Bacca

Perhaps Rn and Rskin can be extracted from coherent elastic neutrino scattering

Amanik and McLaughlin, J. Phys. G: Nucl. Part. Phys. **36** 015105 (2009) Cadeddu et al., Phys. Rev. Lett. **120**, 072501 (2018)

DFT from N. Schunck, private communication, HFB9, SKI3, SKM*, SKO, SKX, SLY4, SLY5, UNEDF0, UNEDF1

⁶⁸Ni neutron skin thickness

Neutron rich nucleus: ⁶⁸Ni, unstable (Z=28 and N=40)

Hamiltonian	$\alpha_{ m D}$	$R_{\rm p}$	R _n	$R_{ m skin}$	$R_{\rm c}$
$1.8/2.0~({ m EM})$	3.58(18)	3.62(1)	3.82(1)	0.201(1)	3.70(1)
$2.0/2.0~({ m EM})$	3.83(23)	3.69(2)	3.89(2)	0.202(3)	3.77(1)
$2.2/2.0~({ m EM})$	4.04(28)	3.74(2)	3.94(2)	0.203(4)	3.82(2)
2.0/2.0 (PWA)	4.87(40)	3.97(2)	4.17(3)	0.204(8)	4.05(2)
NNLO _{sat}	4.65(49)	3.93(4)	4.11(5)	0.183(8)	4.00(4)

S. Kaufmann, J. Simonis, S.B. et al., PRL 124 132502 (2020)

Sonia Bacca

Neutron radius and skin thickness

Cadeddu et al., Phys. Rev. Lett. **120**, 072501 (2018)

Csl $R_n = 5.5^{+0.9}_{-1.1} \text{ fm}$ $R_{\text{skin}} = 0.7^{+0.9}_{-1.1} \text{ fm}$

For discussion: what are the prospects to extract R_{skin} for ⁴⁰Ar from COHERENT?

Inelastic neutrino scattering

Long baseline neutrino experiments aim at measuring fundamental neutrino properties. Detectors are made by complex nuclei (¹²C, ¹⁶O, ⁴⁰Ar, ...)

MiniBooNE, Minerva, ...

DUNE

Can we perform ab initio calculations of neutrino nucleus cross sections?

 $R(\omega,q)
ightarrow$ See work by Lovato et al.

Lepton-nucleus scattering

Neutrino scattering \Rightarrow electron scattering

Window of opportunity for our ab initio nuclear theory

Sonia Bacca

Neutrino Deuteron scattering

B. Acharya and S.B., PRC **101**, 015505 (2019)

- Consider the simplest nucleus to simplify structure part and focus on the multipole expansion of the electroweak operators
- Benchmark previous results with oneand two-body currents (up to N2LO)
- For the deuteron we find that the largest source of uncertainty at low energy is coming from "single nucleon physics"

$$G_A(Q^2) = g_A[1 - \langle r_A^2 \rangle Q^2/6]$$

B. Acharya

Total strength of inelastic longitudinal response function

$$\operatorname{CSR}(q) = \int d\omega \ R_L^{in}(\omega, \mathbf{q})$$

$$R_L^{in}(\omega, \mathbf{q}) = \sum_f |\langle f | \rho(\mathbf{q}) | \mathbf{0} \rangle|^2 \delta(\omega - \mathbf{E_f} + \mathbf{E_0})$$

Can be measured from electron scattering

Theory methods:

- 1) Expand charge operator in multipoles and compute CSR $\rho(\mathbf{q}) = \sum_{i}^{A} e^{i\mathbf{q}\mathbf{r}_{i}} = \sum_{T} C^{T}(\mathbf{q})$
- 2) Calculate CSR as expectation value

$$CSR(q) = Z + \langle 0 | \sum_{i \neq j} e^{i\mathbf{q} \cdot (\mathbf{r}_i - \mathbf{r}_j)} | 0 \rangle - |F_{el}(\mathbf{q})|^2 Z^2$$

$$||_{Z(Z-1)f_2(|\mathbf{q}|)} \leftarrow Fourier transform of the proton-proton correlation function$$

JGU

Coulomb sum rule

Unpublished

Recursive sum in method 1

JG U JOHANNES GUTENBERG UNIVERSITÄT MAINZ q [MeV/c]

Outlook

- Ab initio nuclear theory is has done enormous progress in the last decade.
- This theory has been validated against electromagnetic and weak data.
- Ab initio theory can now contribute to searches for BSM physics and can calculate the neutron skin thickness, at least in selected nuclei.

We could look at ²³Na, using deformed CC, see S. Novario et al., <u>arXiv:2007.06684</u>

Thanks to all my collaborators

B. Acharya, N. Barnea, G. Hagen, **W. Jiang**, **M. Miorelli**, G. Orlandini, T. Papenbrock, **C. Payne**, **J. Simonis**, A. Schwenk, **J.E. Sobcyk** and many more

Thanks for your attention!