

Interplay of Nuclear Physics and Precision Tests of the Standard Model

Misha Gorshteyn

Virtual MITP Workshop "Parity Violation and Related Subjects" — July 27, 2020

Outline

- Precision tests of the SM and beyond with nuclei: This Workshop & Global Context
- V_{ud}, CKM unitarity and nuclear structure
- Neutron skins as a signal of ISB effects: sub-% measurement of weak radii of selected daughter nuclei as an independent constraint on δ_C

Sidilada Model

Precision tests of the weak sector of SM

Precision tests at this workshop

Coherent ν -Nucleus Scattering

July 27
MondayKate Scholberg — CEvNS Experiments
Baha Balantekin — Theory of (B)SM for CEvNS
Sonia Bacca — CEvNS on Ar-40 from first principles

Ayres Freitas — SM radiative corrections to PVESJuly 28David Armstrong — Qweak beyond the proton's weak chargeTuesdayPaul Souder — MOLLER, SOLID, P2Hubert Spiesberger — EW physics at LHeCJorge Piekarewicz — PREX (II) in the multimessenger eraJuly 29Juliette Mammei — Meet the REXesWednesdayDustin McNulty — Beam normal spin asymmetry from REXesSasha Koshchii — Weak charge & radius of C-12 at P2Witek Krasny — Tertiary $\nu(\bar{\nu})$ beams at Gamma Eactory@CEBN

Witek Krasny — Tertiary $\nu(\bar{\nu})$ beams at Gamma Factory@CERN Concettina Sfienti — Nuclear EOS studies in the Laboratory Dionysis Antipas — R_{n-p} and anapole moment in Yb atoms Andrei Derevianko — Atomic PV: Quo Vadis?

July 30

Thursday

Postponed to the presence workshop "Precision Tests with NC coherent interactions with nuclei" June 7-11, 2021

Neutrino oscillation experiments

$$P_{\nu_{\mu} \to \nu_{e}} = \sin^{2} 2\theta \sin^{2} \left(\frac{\Delta m^{2} L}{2E_{\nu}} \right)$$

Neutrino interactions in the nuclear/hadronic energy range used for energy reconstruction

Neutrinoless double-beta decay — if neutrinos are Majorana

$$T_{1/2}^{0\nu\beta\beta} = (G |M|^2 \langle m_{\beta\beta} \rangle^2)^{-1} \sim 10^{27-28} \left(\frac{0.01 \, eV}{\langle m_{\beta\beta} \rangle}\right)^2 y$$
$$\langle m_{\beta\beta} \rangle = |\sum_i U_{ei}^2 m_i|$$

Nuclear matrix element M — central ingredient for predicting rates

All the more reasons to meet again next year in Mainz in person (hopefully)

Precision tests of SM with charged weak current: V_{ud}, CKM unitarity and nuclear structure

Standard Model Precise beta decays: universality of weak interaction

Rates close but not the same: CKM mixing matrix + Radiative Corrections Crucial ingredients for establishing the Standard Model

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix} = V_{CKM} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

CKM - Determines the relative strength of the weak CC interaction of quarks vs. that of leptons

CKM unitarity - measure of completeness of the SM: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$

PDG 2018: $|V_{ud}|^2 + |V_{ub}|^2 = 0.9994(4)_{V_{ud}}(2)_{V_{us}}$

Main reason: re-evaluation of radiative corrections Application of dispersion theory to γW -box Use of neutrino data (purely theoretical before) Uncertainty ~halved but central value shifted

C-Y Seng_{(Recommed} Reverse R

Status of $V_{ud} \label{eq:Vud}$

0+-0+ nuclear decays

$$V_{ud}|^2 = \frac{2984.43s}{\mathcal{F}t(1+\Delta_R^V)}$$

$$V_{ud}|^2 = \frac{5024.7 \text{ s}}{\tau_n (1 + 3g_A^2)(1 + \Delta_R)}$$

$$|V_{ud}^{0^+-0^+}| = 0.9737 \,(1)_{exp,\,nucl} \,(1)_{RCn}$$

$$|V_{ud}^{\text{free n}}| = 0.9733(3)_{\tau_n}(3)_{g_A}(1)_{RCn}$$

Pion decay
$$\pi^+ \to \pi^0 e^+ \nu_e$$
 $|V_{ud}|^2 = \frac{0.9799}{(1+\delta)} \frac{\Gamma_{\pi\ell3}}{0.3988(23) \,\mathrm{s}^{-1}}$ $|V_{ud}^{\pi\ell3}| = 0.9739 \, (27)_{exp} \, (1)_{RC\pi}$

Major reduction of uncertainties in the past 2 years:

 $\Delta_R^V = 0.02467(22) \quad \text{DR} + \text{Exp} + \text{Lattice: Factor 2}$

C-Y Seng et al., Phys.Rev.Lett. 121 (2018) 24, 241804; C-Y Seng, MG, M.J. Ramsey-Musolf, Phys.Rev. D 100 (2019) 1, 013001; MG, Phys.Rev.Lett. 123 (2019) 4, 042503;

C-Y Seng, X. Feng, MG, L-C Jin, Phys.Rev. D 101 (2020) 11, 111301; A. Czarnecki, B. Marciano, A. Sirlin, Phys.Rev. D 100 (2019) 7, 073008 $g_A = -1.27641(56)$ Exp.: Factor 4

B. Märkisch et al [PERKEO-III], Phys.Rev.Lett. 122 (2019) 24, 242501

 $\delta = 0.0332(3)$ Lattice: Factor 3

X. Feng, MG, L-C Jin, P-X Ma, C-Y Seng, Phys.Rev.Lett. 124 (2020) 19, 192002

Main contributor to top-row CKM unitarity constraint — V_{ud}

Value dominated by nuclear 0^+ — 0^+ decays — prone to nuclear effects Nuclear corrections — (almost) purely theoretical — room for major contribution

Why are superallowed decays special?

Superallowed 0+-0+ nuclear decays:

- only conserved vector current (unlike the neutron decay and other mirror decays)
- many decays (unlike pion decay)
- all decay rates should be the same modulo phase space

Experiment: **f** - phase space (Q value) and **t** - partial half-life ($t_{1/2}$, branching ratio)

• 8 cases with *ft*-values measured to <0.05% precision; 6 more cases with 0.05-0.3% precision.

 ~220 individual measurements with compatible precision

ft values: same within ~2% but not exactly! Reason: SU(2) slightly broken

- a. QED RC depends on nuclear charge
- b. Nuclear WF are not SU(2) symmetric

Why are superallowed decays special?

$$|V_{ud}|^2 = \frac{2984.432(3)}{\mathcal{F}t(1+\Delta_R^V)}$$

Modified ft-values to include these effects

$$\mathcal{F}t = ft(1 + \delta'_R)(1 - \delta_C + \delta_{NS})$$

 δ'_R - "outer" correction (depends on e-energy) - QED

 δ_{C} - SU(2) breaking in the nuclear matrix elements

- mismatch of radial WF in parent-daughter
- mixing of different isospin states

 δ_{NS} - RC (γW -box) depending on the nuclear structure δ_{C} , δ_{NS} - energy independent

Average

 $\overline{\mathcal{F}t} = 3072.1 \pm 0.7$

To identify where an improvement can be achieved — review theory ingredients

Isospin symmetry breaking in superallowed β -decay

J. Hardy, I. Towner, Phys.Rev. C 91 (2014), 025501

Fermi matrix element:

$$M_F = \sum_{\alpha,\beta} \langle f | a_{\alpha}^{\dagger} a_{\beta} | i \rangle \langle \alpha | \tau_{+} | \beta \rangle$$

 a_{α}^{\dagger} creates a neutron in the state α a_{β} annihilates a proton in the state β

Single-particle m. e.

Without ISB: $M_F = M_0$, $R^n_\alpha = R^p_\beta$, $r_\alpha = 1$

With ISB: $|M_F|^2 = |M_0|^2(1 - \delta_C)$

HT: shell model with phenomenological Woods-Saxon potential locally adjusted to:

- Masses of the isobaric multiplet T=1, 0+
- Neutron and proton separation energies
- Known proton radii of stable isotopes

TABLE X. Corrections δ'_R , δ_{NS} , and δ_C that are applied to experimental ft values to obtain $\mathcal{F}t$ values.

Parent	δ'_R	$\delta_{\rm NS}$	δ_{C1}	δ_{C2}	δ_C
nucleus	(%)	(%)	(%)	(%)	(%)
$T_{z} = -1$					
${}^{10}C$	1.679	-0.345(35)	0.010(10)	0.165(15)	0.175(18)
¹⁴ O	1.543	-0.245(50)	0.055(20)	0.275(15)	0.330(25)
¹⁸ Ne	1.506	-0.290(35)	0.155(30)	0.405(25)	0.560(39)
²² Mg	1.466	-0.225(20)	0.010(10)	0.370(20)	0.380(22)
²⁶ Si	1.439	-0.215(20)	0.030(10)	0.405(25)	0.435(27)
³⁰ S	1.423	-0.185(15)	0.155(20)	0.700(20)	0.855(28)
³⁴ Ar	1.412	-0.180(15)	0.030(10)	0.665(55)	0.695(56)
³⁸ Ca	1.414	-0.175(15)	0.020(10)	0.745(70)	0.765(71)
⁴² Ti	1.427	-0.235(20)	0.105(20)	0.835(75)	0.940(78)
$T_z = 0$					
26m Al	1.478	0.005(20)	0.030(10)	0.280(15)	0.310(18)
³⁴ Cl	1.443	-0.085(15)	0.100(10)	0.550(45)	0.650(46)
^{38m} K	1.440	-0.100(15)	0.105(20)	0.565(50)	0.670(54)
⁴² Sc	1.453	0.035(20)	0.020(10)	0.645(55)	0.665(56)
^{46}V	1.445	-0.035(10)	0.075(30)	0.545(55)	0.620(63)
⁵⁰ Mn	1.444	-0.040(10)	0.035(20)	0.610(50)	0.645(54)
⁵⁴ Co	1.443	-0.035(10)	0.050(30)	0.720(60)	0.770(67)
⁶² Ga	1.459	-0.045(20)	0.275(55)	1.20(20)	1.48(21)
⁶⁶ As	1.468	-0.060(20)	0.195(45)	1.35(40)	1.55(40)
70 Br	1.486	-0.085(25)	0.445(40)	1.25(25)	1.70(25)
⁷⁴ Rb	1.499	-0.075(30)	0.115(60)	1.50(26)	1.62(27)

ISB in superallowed β -decay: nuclear model comparison

J. Hardy, I. Towner, Phys. Rev. C 91 (2014), 025501

TABLE XI. Recent δ_C calculations (in percent units) based on models labeled SM-WS (shell-model, Woods-Saxon), SM-HF (shell-model, Hartree-Fock), RPA (random phase approximation), IVMR (isovector monopole resonance), and DFT (density functional theory). Also given is the χ^2/ν , χ^2 per degree of freedom, from the confidence test discussed in the text.

			RPA				
	SM-WS	SM-HF	PKO1	DD-ME2	PC-F1	IVMR ^a	DFT
$T_{z} = -1$							
^{10}C	0.175	0.225	0.082	0.150	0.109	0.147	0.650
^{14}O	0.330	0.310	0.114	0.197	0.150		0.303
^{22}Mg	0.380	0.260					0.301
³⁴ Ar	0.695	0.540	0.268	0.376	0.379		
³⁸ Ca	0.765	0.620	0.313	0.441	0.347		
$T_z = 0$							
26m Al	0.310	0.440	0.139	0.198	0.159		0.370
³⁴ Cl	0.650	0.695	0.234	0.307	0.316		
^{38m} K	0.670	0.745	0.278	0.371	0.294	0.434	
⁴² Sc	0.665	0.640	0.333	0.448	0.345		0.770
⁴⁶ V	0.620	0.600					0.580
⁵⁰ Mn	0.645	0.610					0.550
⁵⁴ Co	0.770	0.685	0.319	0.393	0.339		0.638
⁶² Ga	1.475	1.205					0.882
⁷⁴ Rb	1.615	1.405	1.088	1.258	0.668		1.770
χ^2/ν	1.4	6.4	4.9	3.7	6.1		4.3 ^b

PKO1, DD-ME2: H. Liang et al., Phys. Rev. C 79, 064316 (2009)
PC-F1: Z. X. Li et al., Sci. China Phys. Mech. Astron. 54, 1131 (2011)
IVMR: N. Auerbach, Phys. Rev. C 79, 035502 (2009)
DFT: W. Satula et al., Phys. Rev. C 86, 054316 (2012)

L. Xayavong, N.A. Smirnova, Phys.Rev. C 97 (2018), 024324

HT: χ^2 as criterium to prefer SM-WS; V_{ud} and limits on BSM strongly depend on nuclear model

ISB in superallowed β -decay and test of CVC

Conserved vector current hypothesis —> Ft constant

However: to achieve this precision the model was adjusted locally in each iso-multiplet

- Is this formalism the right tool to assess consistency amongst all the measurements?
- Shell model operates in a limited model space
- HT method criticized for using incorrect isospin formalism (G. Miller, A. Schwenk)
- Ab initio methods do not warrant such high precision

Limits on BSM crucially depend on nuclear structure corrections!

Neutron Lifetime Puzzle and Nuclear Corrections

If combining 0+-0+ nuclear and neutron decay: Neutron lifetime and g_A tightly constrained $\tau_n(1 + 3g_A^2) = 5172.0(1.1) s$ A. Czarnecki, B. Marciano, A. Sirlin, Phys.Rev.Lett. 120 (2018) 20, 202002 "Trap" and "beam" τ_n discrepancy: $\tau_n^{beam} = 888.0(2.0) s$ $\tau_n^{trap} = 879.4(6) s$

Plans to improve τ_n^{trap} precision to 0.1 s (including TRIGA @ Mainz) Plans to remeasure τ_n^{beam} (BL3, J-PARC) to 0.1 s

Assumption underlying the tight $g_A \leftrightarrow \tau_n$ correlation: nuclear corrections are correct

Nuclear corrections crucial for extraction of V_{ud} from free and bound neutron decay

Neutron skins as a signature of ISB effects

ISB in β -decay vs. neutron skins

Analog of Ademollo-Gatto theorem: δ_C is quadratic in ISB

Neutron skin is linear in ISB

G.A. Miller, A. Schwenk, Phys.Rev.C 78 (2008) 035501; Phys.Rev.C 80 (2009) 064319

Weak Charges and Radii from PVES

Elastic scattering of longitudinally polarized e- beam Parity-violating asymmetry

$$A^{\rm PV} = -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \frac{Q_W}{Z} (1+\Delta)$$

Weak charge —> weak mixing angle $Q_W(Z, N) = -N + Z(1 - 4 \sin^2 \theta_W)$ Tuesday: Ayres, Paul

Correction term Δ for spin-0 nuclei: neutron skin $\Delta \approx -(R_{wk}^2 - R_{ch}^2)Q^2/6 \approx -(R_n^2 - R_p^2)Q^2/6$ Wednesday: Jorge, Juliette; Thursday: Concettina

Feasibility study for C-12 @ MESA: forward + backward measurement

O. Koshchii, J. Erler, MG, C.J. Horowitz, J. Piekarewicz, X. Roca-Maza, C.-Y. Seng, H. Spiesberger, arXiv:2005.00479

Forward / Backward precision e^{f} / e^{b} (e^{f}, e^{b}) $(\frac{\delta \sin^{2} \theta_{W}}{\sin^{2} \theta_{W}}, \frac{\delta R_{W}}{R_{W}})$ (0.3%, 10%) (0.39%, 0.5%) (0.3%, 7%) (0.35%, 0.4%)(0.3%, 3%) (0.32%, 0.2%)

Simultaneous extraction of weak charge and radius at few per mille feasible! 0.2375

Sasha's talk on Wednesday

Neutron skins of symmetric nuclei as ISB signature

Usually studied in neutron-rich nuclei —> symmetry energy $S(\rho)$ —> nuclear EOS

$$\frac{E}{A}(\rho,\beta) = \frac{E}{A}(\rho,\beta=0) + S(\rho)\beta^2.$$

E/A — energy per particle ρ — local density $\beta = (\rho_n - \rho_p)/\rho$ - neutron/proton asymmetry

C-12 symmetric, N=Z —> skin due to isospin symmetry breaking

PHYSICAL REVIEW LETTERS 120, 202501 (2018)

Nuclear Symmetry Energy and the Breaking of the Isospin Symmetry: How Do They Reconcile with Each Other?

X. Roca-Maza^{*} and G. Colò[†] Dipartimento di Fisica, Università degli Studi di Milano and INFN, Sezione di Milano, Via Celoria 16, 20133 Milano, Italy

H. Sagawa[‡]

RIKEN Nishina Center, Wako 351-0198, Japan and Center for Mathematics and Physics, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8560, Japan

(Received 31 October 2017; revised manuscript received 26 February 2018; published 18 May 2018)

We analyze and propose a solution to the apparent inconsistency between our current knowledge of the equation of state of asymmetric nuclear matter, the energy of the isobaric analog state (IAS) in a heavy nucleus such as ²⁰⁸Pb, and the isospin symmetry breaking forces in the nuclear medium. This is achieved by performing state-of-the-art Hartree-Fock plus random phase approximation calculations of the IAS that include all isospin symmetry breaking contributions. To this aim, we propose a new effective interaction that is successful in reproducing the IAS excitation energy without compromising other properties of finite nuclei.

DOI: 10.1103/PhysRevLett.120.202501

Talk by Jorge on Wednesday

New context for PVES: ISB corrections to superallowed nuclear β decays

Precise weak radii of stable 0⁺ daughter nuclei @ MESA

Unique task for MESA: weak skins of stable daughter nuclei in 5 best-measured decays:

$$^{26m}Al \rightarrow {}^{26}Mg, 34Cl \rightarrow {}^{34}S, 38mK \rightarrow {}^{38}Ar, 42Sc \rightarrow {}^{42}Ca, 46V \rightarrow {}^{46}Ti$$

Available information on the 5 stable 0+ daughter nuclides: live chart of nuclides

Isotope (Z,N)	Abundance	Charge radius (fm)	S _n (MeV)	S _p (MeV)	E_x in MeV (J ^{π})
²⁶ Mg(12,14)	11.01%	3.0337(18)	11.093	14.145	1.808(2+), 2.938(2+), 3.588(0+)
³⁴ S(16,18)	4.25%	3.2847(21)	11.417	10.883	2.127(2+), 3.304(2+), 3.916(0+)
³⁸ Ar(18,20)	0.0629%	3.4028(19)	11.838	10.242	2.167(2+), 3.377(0+), 3.810(3-)
⁴² Ca(20,22)	0.647%	3.5081(21)	11.480	10.2776	1.524(2+), 1.837(0+), 2.424 (2+)
⁴⁶ Ti(22,24)	8.25%	3.6070(22)	13.189	10.344	0.889(2+), 2.009(4+), 2.611(0+)

Skin for N = Z+2 small: small neutron excess vs. Coulomb repulsion of protons

Direct access to ISB via $R_{wk}^2 - R_{ch}^2 \approx R_n^2 - R_p^2 - >$ theory to relate to δ_C Work in progress with Sonia Bacca

Additionally: charge radii of unstable 0⁺ isotopes at rare isotope facilities (FRIB, GSI, TRIUMF) SnowMass2021 <u>https://snowmass21.org/start</u>: Call for EOI Plan submitting an EOI (with Albert Young — part of FRIB)

Summary

- Nuclear structure plays a crucial role in low-energy precision tests
- Nuclear beta decays: ISB effects in nuclei major ingredient on the path to V_{ud} and CKM unitarity
- Neutron skins of selected daughter nuclei as an independent constraint on δ_C
- A richer context for PVES enhanced physics output

Advertisement

Upcoming MITP *presence* workshop

"Physics Opportunities with the Gamma Factory", November 30 - December 4, 2020 Organizers: Dmitry Budker, Witek Krasny, MG, Adriana Palffy, Andrei Surzhikov

A teaser at this workshop:

Talk by W. Krasny on "Tertiary $u(ar{
u})$ beams at Gamma Factory" - Thursday, July 30

Thank you for your attention

and

Looking forward to an exciting workshop!