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Interplay	of	Nuclear	Physics	and		
Precision	Tests	of	the	Standard	Model



Outline

• Precision tests of the SM and beyond with nuclei: This Workshop & Global Context 

• Vud, CKM unitarity and nuclear structure 

• Neutron skins as a signal of ISB effects: sub-% measurement of weak radii of 

selected daughter nuclei as an independent constraint on δC
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Standard Model
3 interactions, 3 generations of quarks and leptons, HiggsPrecision tests of the weak sector of SM

PV	Electron	Sca:ering	
Elas<c	&	Inelas<c

PV	in	Atoms

Coherent	!-Nucleus	Sca:ering

Covered in this workshop
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Objects of interest:
Bare SM Lagrangian parameters 
- Couplings 
- Mixing angles 
- Neutrino masses 

Radiative Corrections 

Specific for semileptonic processes:  

Effects of strong interaction on top 
of the lepton-quark interaction

Nuclear	Beta	Decay

Neutrino	Oscilla<on	Parameters

Not covered in this workshop
But define a broader context

Connection to PVES
Addressed in this talk



Precision tests at this workshop
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Coherent	!-Nucleus	Sca:ering
Kate Scholberg — CEvNS Experiments 
Baha Balantekin — Theory of (B)SM for CEvNS 
Sonia Bacca — CEvNS on Ar-40 from first principles

July 27 
Monday

PV	Electron	Sca:ering	
Elas<c	&	Inelas<c

Ayres Freitas — SM radiative corrections to PVES 
David Armstrong — Qweak beyond the proton’s weak charge 
Paul Souder — MOLLER, SOLID, P2 
Hubert Spiesberger — EW physics at LHeC 
Jorge Piekarewicz — PREX (II) in the multimessenger era 
Juliette Mammei — Meet the REXes 
Dustin McNulty — Beam normal spin asymmetry from REXes 
Sasha Koshchii — Weak charge & radius of C-12 at P2 

July 28 
Tuesday

July 29 
Wednesday

PV	in	Atoms

July 30 
Thursday

Witek Krasny — Tertiary  beams at Gamma Factory@CERN 
Concettina Sfienti — Nuclear EOS studies in the Laboratory 
Dionysis Antipas —  and anapole moment in Yb atoms 

Andrei Derevianko — Atomic PV: Quo Vadis?

ν(ν̄)

Rn−p



Postponed to the presence workshop 
“Precision Tests with NC coherent interactions with nuclei” 

June 7-11, 2021
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Neutrino	Oscilla<on	Parameters

Neutrino oscillation experiments 

Neutrino interactions in the nuclear/hadronic energy range 
used for energy reconstruction

Neutrinoless double-beta decay — if neutrinos are Majorana

T 0νββ
1/2 = (G |M |2 ⟨mββ⟩2)−1 ∼ 1027−28 ( 0.01 eV

⟨mββ⟩ )
2

y

⟨mββ⟩ = |∑
i

U2
eimi |

Pνμ→νe
= sin2 2θ sin2 ( Δm2L

2Eν )

All the more reasons to meet again next year in Mainz in person (hopefully)

Nuclear matrix element M — central ingredient for predicting rates



Precision	tests	of	SM	with	charged	weak	current:		

Vud,	CKM	unitarity	and	nuclear	structure
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Precise	beta	decays:	universality	of	weak	interac8on
Standard Model

3 interactions, 3 generations of quarks and leptons, Higgs

Charged current interaction - β-decay (μ, π±, n)

π±
μ±

νμ-
e-

νμ 

-νe 
n

e-

-νe 

p

CKM - Determines the relaLve strength of the  

weak CC interacLon of quarks vs. that of leptons

CKM unitarity - measure of completeness of the SM:  |Vud|
2
+ |Vus|

2
+ |Vub|

2
=1

Rates close but not the same: CKM mixing matrix + RadiaLve CorrecLons 

Crucial ingredients for establishing the Standard Model

PDG2020:	CKM	unitarity	in	the	top	row	 	—	3 	deficit|Vu d |2 + |Vu s |2 + |Vu b |2 = 0.9985(3)Vu d
(4)Vu s

σ
PDG	2018:	 |Vu d |2 + |Vu s |2 + |Vu b |2 = 0.9994(4)Vu d

(2)Vu s
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C-Y Seng et al., Phys.Rev.Lett. 121 (2018) 24, 241804 
C-Y Seng, MG, M.J. Ramsey-Musolf, Phys.Rev. D 100 (2019) 1, 013001 
MG, Phys.Rev.Lett. 123 (2019) 4, 042503 
C-Y Seng, X. Feng, MG, L-C Jin, Phys.Rev. D 101 (2020) 11, 111301 
A. Czarnecki, B. Marciano, A. Sirlin, Phys.Rev. D 100 (2019) 7, 073008

Main reason: re-evaluaLon of radiaLve correcLons 

ApplicaLon of dispersion theory to -box 

Use of neutrino data (purely theoreLcal before) 

Uncertainty ~halved but central value shi[ed

γW
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The only piece that depends on physics at hadronic scale is the V*A term in the Wγ−box 
diagram:

Its contribution to Rec (“m.d”: model-dependent) is:

where the forward Compton amplitude is defined as:

q q

Radiative Corrections: Modern Treatment



Status	of	Vud

0
+
-0

+
 nuclear decays

|Vu d |2 = 5024.7 s
τn(1 + 3g A2)(1+ ΔR)

|Vu d |2 = 2984.43s
ℱt(1+ ΔV

R) |V0+ −0+
u d | = 0.9737 (1)exp, nu cl (1)RCn

Free neutron decay |V free n
u d | = 0.9733 (3)τn

(3)g A
(1)RCn

|Vπℓ3
u d | = 0.9739 (27)exp (1)RCπPion decay π+ → π0e+ νe |Vu d |2 = 0.9799

(1+ δ)
Γπℓ3

0.3988(23) s−1

Major reducLon of uncertainLes in the past 2 years:

ΔV
R = 0.02467(22) DR + Exp + Laace: Factor 2

C-Y Seng et al., Phys.Rev.Lett. 121 (2018) 24, 241804; 
C-Y Seng, MG, M.J. Ramsey-Musolf, Phys.Rev. D 100 (2019) 1, 013001; 
MG, Phys.Rev.Lett. 123 (2019) 4, 042503; 
C-Y Seng, X. Feng, MG, L-C Jin, Phys.Rev. D 101 (2020) 11, 111301; 
A. Czarnecki, B. Marciano, A. Sirlin, Phys.Rev. D 100 (2019) 7, 073008

X. Feng, MG, L-C Jin, P-X Ma, C-Y Seng,  
Phys.Rev.Lett. 124 (2020) 19, 192002

δ = 0.0332(3) Laace: Factor 3

B. Märkisch et al [PERKEO-III],  
Phys.Rev.Lett. 122 (2019) 24, 242501

g A = − 1.27641(56) Exp.: Factor 4

Main contributor to top-row CKM unitarity constraint —  

Value dominated by nuclear  decays — prone to nuclear effects 

Nuclear correcLons — (almost) purely theoreLcal — room for major contribuLon

Vu d
0+ − 0+
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Why	are	superallowed	decays	special?

Superallowed 0
+
-0

+
 nuclear decays:  

- only conserved vector current (unlike the neutron decay and other mirror decays) 

- many decays (unlike pion decay) 

- all decay rates should be the same modulo phase space

Experiment: f - phase space (Q value) and t - parLal half-life (t1/2, branching raLo)
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[ values: same within ~2% but not exactly! 

Reason: SU(2) slightly broken 

a. QED RC depends on nuclear charge 

b. Nuclear WF are not SU(2) symmetric 
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Modified [-values to include these effects

Ft = 3072.1± 0.7

Average

δ’R - “outer” correcLon (depends on e-energy) - QED

• Pioneering work by Sirlin (Phys.Rev. 164, 1767 (1967) , before the 
establishment of SM) was to separate RC into two pieces:

1. “Outer” correction: depends critically on the electron spectrum 
but not on the details of strong and weak interaction

2. “Inner” correction: depends on the details of strong and weak 
interaction but not so much on the electron spectrum

• The “outer” contributions are obtained by retaining only the IR-
singular pieces in the loop diagrams

• Bremsstrahlung diagrams are also needed to cancel IR divergence

Radiative Corrections:Pre-SM

5
Diagrams taken from Ando et al, PLB 595 (2004) 250

• Pioneering work by Sirlin (Phys.Rev. 164, 1767 (1967) , before the 
establishment of SM) was to separate RC into two pieces:

1. “Outer” correction: depends critically on the electron spectrum 
but not on the details of strong and weak interaction

2. “Inner” correction: depends on the details of strong and weak 
interaction but not so much on the electron spectrum

• The “outer” contributions are obtained by retaining only the IR-
singular pieces in the loop diagrams

• Bremsstrahlung diagrams are also needed to cancel IR divergence

Radiative Corrections:Pre-SM

5
Diagrams taken from Ando et al, PLB 595 (2004) 250

δC - SU(2) breaking in the nuclear matrix elements 

- mismatch of radial WF in parent-daughter 

- mixing of different isospin states

δNS - RC ( -box) depending on the nuclear structure 

δC,δNS - energy independent

γW

ACFI-T18-12
MITP/18-070

Reduced hadronic uncertainty in the determination of Vud

Chien-Yeah Senga, Mikhail Gorchteinb,⇤ Hiren H. Patelc, and Michael J. Ramsey-Musolfc,d
aINPAC, Shanghai Key Laboratory for Particle Physics and Cosmology,
MOE Key Laboratory for Particle Physics, Astrophysics and Cosmology,

School of Physics and Astronomy, Shanghai Jiao-Tong University, Shanghai 200240, China
bInstitut für Kernphysik, PRISMA Cluster of Excellence

Johannes Gutenberg-Universität, Mainz, Germany
cAmherst Center for Fundamental Interactions, Department of Physics,

University of Massachusetts, Amherst, MA 01003 and
dKellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 USA

(Dated: August 22, 2018)

We analyze the universal radiative correction �V
R to neutron and superallowed nuclear � decay

by expressing the hadronic �W -box contribution in terms of a dispersion relation, which we identify
as an integral over the first Nachtmann moment of the �W interference structure function F (0)

3 . By
connecting the needed input to existing data on neutrino and antineutrino scattering, we obtain
an updated value of �V

R = 0.02467(22), wherein the hadronic uncertainty is reduced. Assuming
other Standard Model theoretical calculations and experimental measurements remain unchanged,
we obtain an updated value of |Vud| = 0.97366(15), raising tension with the first row CKM unitarity
constraint. We comment on ways current and future experiments can provide input to our dispersive
analysis.

The unitarity test of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix serves as one of the most important pre-
cision tests of the Standard Model. In particular, tests of
first-row CKM unitarity |Vud|

2 + |Vus|
2 + |Vub|

2 = 1 re-
ceive the most attention since these matrix elements are
known with highest precision, all with comparable uncer-
tainties. The good agreement with unitarity [1] serves as
a powerful tool to constrain New Physics scenarios.

Currently, the most precise determination of |Vud|

comes from measurements of half-lives of superallowed
0+ ! 0+ nuclear � decays with a precision of 10�4 [2]. At
tree-level, these decays are mediated by the vector part of
the weak charged current only, which is protected against
renormalization by strong interactions due to conserved
vector current (CVC), making the extraction of |Vud| rel-
atively clean. Beyond tree-level, however, electroweak ra-
diative corrections (EWRC) involving the axial current
are not protected, and lead to a hadronic uncertainty
that dominates the error in the determination of |Vud|.

The master formula relating the CKM matrix element
|Vud| to the superallowed nuclear � decay half-life is [2]:

|Vud|
2 =

2984.432(3) s

Ft(1 +�V
R)

, (1)

where the nucleus-independent Ft-value is obtained from
the experimentally measured ft-value by absorbing all
nuclear-dependent corrections, and where �V

R represents
the nucleus-independent EWRC. Currently, an average
of the 14 best measured half-lives yields an extraordinar-
ily precise value of Ft = 3072.27(72) s. A similar mas-
ter formula exists for free neutron � decay [3] depend-
ing additionally on the axial-to-vector nucleon coupling
ratio � = gA/gV , and is free of nuclear-structure uncer-
tainties. But the much larger experimental errors in the
measurement of its lifetime and the ratio � [4] makes it

less competitive in the extraction of |Vud|. Regardless, if
first-row CKM unitarity is to be tested at a higher level
of precision, improvement in the theoretical estimate of
�V

R by reducing hadronic uncertainties is essential.
The best determination of �V

R = 0.02361(38) was ob-
tained in 2006 by Marciano and Sirlin [5] (in the fol-
lowing, we refer to their work as [MS]). They were able
to reduce the hadronic uncertainty by a factor of 2 over
their earlier calculation [6] by using high order pertur-
bative QCD corrections originally derived for the polar-
ized Bjorken sum rule to precisely estimate the short dis-
tance contribution. At intermediate distances, an inter-
polating function motivated by vector meson dominance
(VMD) was used to connect the long and short distances
and was identified as the dominant source of theoreti-
cal uncertainty. This result leads to the current value of
|Vud| = 0.97420(21) [1].
In this Letter, we introduce a new approach for eval-

uating �V
R based on dispersion relations which relate

it to directly measurable inclusive lepton-hadron and
neutrino-hadron structure functions. Dispersion rela-
tions have proved crucial for evaluating the �Z-box cor-
rection to parity violating electron-hadron interaction in
atoms and in scattering processes [7–19]. It led to a sig-
nificant shift in the 1-loop SM prediction for the hadronic
weak charges, and ensured a correct extraction of the
weak mixing angle at low energy [20]. Using existing
data on neutrino and anti-neutrino scattering, we obtain
a more precise value of the nucleus-independent EWRC,

�V
R = 0.02467(22) , (2)

and therefore a new determination of |Vud|,

|Vud| = 0.97366(15). (3)

Why	are	superallowed	decays	special?
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δC

ℱt = ft(1 + δ′�R)(1 − δC + δNS)

To idenLfy where an improvement can be achieved — review theory ingredients
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Isospin	symmetry	breaking	in	superallowed	 -decayβ

a"† creates a neutron in the state " 
aβ annihilates a proton in the state β

Fermi matrix element:

J. Hardy, I. Towner, Phys.Rev. C 91 (2014), 025501

G. A. MILLER AND A. SCHWENK PHYSICAL REVIEW C 78, 035501 (2008)

Towner and Hardy [6] use a second quantization formula-
tion to write the Fermi matrix element as

MF =
∑

α,β

⟨f |a†
αaβ |i⟩⟨α|τ+|β⟩, (3)

where a†
α creates a neutron in state α and aβ annihilates a

proton in state β. Thus, the label α is used to denote neutron
creation and annihilation operators, while β is used for those
of the proton. This notation is different from the standard
notation [11], in which bα is used to denote proton annihilation
operators.

The single-particle matrix element ⟨α|τ+|β⟩ is assumed to
be given by the expression

⟨α|τ+|β⟩ = δα,β

∫ ∞

0
Rn

α(r)Rp
β (r)r2dr ≡δα,βrα, (4)

where Rn
α(r) and R

p
β (r) are the neutron and proton radial

wave functions, respectively. The problem is that the correct
superallowed β decay operator in the Standard Model is the
plus component of the isospin operator. The operator in Eq. (3)
is not the isospin operator, because the states |α⟩ and |β⟩ are
not the same. Instead, τ+ of Eq. (3) is the plus component of
the W-spin operator of MacDonald [12], which is reviewed in
Ref. [11]. In addition, Eq. (4) assumes that the radial quantum
numbers of the states α and β must be the same. This need not
be so. As a result, the Standard Model isospin commutation
relations maintained in the W-spin formalism are lost.

To obtain the commutation relations, we observe that
Eqs. (3) and(4) correspond to the second-quantized isospin
operators

τ+ =
∑

α,β

δα,βrαa†
αaβ , (5)

τ− = τ
†
+ =

∑

α,β

δα,βr∗
αa

†
βaα, (6)

so that

[τ+, τ−] =
∑

α

|rα|2a†
αaα −

∑

β

|rβ |2a†
βaβ ̸= τ0. (7)

The Standard Model isospin commutation relations are vio-
lated if one uses the isospin operators of TH.

This formal problem motivates us to reevaluate the treat-
ment of ISB corrections and to study whether there are
potential corrections to the extraction of Vud. To this end,
we review the details of the TH procedure for δC . Although
Eqs. (3) and(4) are not formally correct, they do account for the
important correction: the effects of the Coulomb interaction on
the radial wave functions.

III. TH TREATMENT OF δC

Towner and Hardy [6] proceed by introducing into Eq. (3)
a complete set of states for the (A −1)-particle system, |π⟩,
which leads to

MF =
∑

α,π

⟨f |a†
α|π⟩⟨π |aα|i⟩rπ

α . (8)

The TH model thus allows for a dependence of the radial
integrals on the intermediate state π .

If isospin were an exact symmetry, the matrix elements
of the creation and annihilation operators would be related
by hermiticity, ⟨π |aα|i⟩ = ⟨f |a†

α|π⟩∗, and all radial integrals
would be unity. Hence the symmetry-limit matrix element in
this model is given by

M0 =
∑

α,π

|⟨f |a†
α|π⟩|2. (9)

Towner and Hardy divide the contributions from ISB into two
terms. First, the hermiticity of the matrix elements of aα and
a†

α will be broken, and second, the radial integrals will differ
from unity. Assuming both effects are small, TH calculate the
resulting ISB corrections as [6]

δC = δC1 + δC2, (10)

where in evaluating δC1 all radial integrals are set to unity
but the matrix elements are not assumed to be related by
hermiticity, and in evaluating δC2 it is assumed that ⟨π |aα|i⟩ =
⟨f |a†

α|π⟩∗ but rπ
α ̸= 1. We will study whether this is a

useful representation of δC . However, we emphasize that the
separation into δC1 and δC2 is a model-dependent concept,
inspired by the shell model [4]. For example, this division
is clearly model dependent when MF is obtained from ab
initio calculations of the initial and final states, |i⟩ and |f ⟩.
In addition, we demonstrate below that this is not possible
rigorously for schematic models.

A. Radial overlap correction δC2

Towner and Hardy find that the radial correction, δC2, is the
larger of their two model corrections [4– 6]. The Fermi matrix
element relevant for δC2 is given by

MF =
∑

α,π

|⟨f |a†
α|π⟩|2rπ

α ,

= M0

(

1 − 1
M0

∑

α,π

|⟨f |a†
α|π⟩|2&π

α

)

, (11)

where &π
α = (1 −rπ

α ) is a radial-mismatch factor. With the
definition of the ISB correction factor in Eq. (2), TH approxi-
mate δC2 by

δC2 ≈ 2
M0

∑

α,π

|⟨f |a†
α|π⟩|2&π

α . (12)

Consequently, large contributions to δC2 come with a large
spectroscopic amplitude and a significant radial mismatch.

In evaluating δC2 of Eq. (12), TH use guidance from
experiment. Their results are based on shell-model calculations
of the spectroscopic amplitudes, but limit the sums over
orbitals α and intermediate states π to those for which large
spectroscopic factors have been observed in pick-up reactions.
For 46V, TH [6] use this strategy to include two sd core orbitals,
s1/2 and d3/2, in addition to the f7/2 orbital of their earlier
calculations. Their new result for δC2 is 0.58% (see Table I in
Ref. [6]), which is almost a factor two larger than the 2002
value [4].
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Towner and Hardy [6] use a second quantization formula-
tion to write the Fermi matrix element as

MF =
∑

α,β

⟨f |a†
αaβ |i⟩⟨α|τ+|β⟩, (3)

where a†
α creates a neutron in state α and aβ annihilates a

proton in state β. Thus, the label α is used to denote neutron
creation and annihilation operators, while β is used for those
of the proton. This notation is different from the standard
notation [11], in which bα is used to denote proton annihilation
operators.

The single-particle matrix element ⟨α|τ+|β⟩ is assumed to
be given by the expression

⟨α|τ+|β⟩ = δα,β

∫ ∞

0
Rn

α(r)Rp
β (r)r2dr ≡δα,βrα, (4)

where Rn
α(r) and R

p
β (r) are the neutron and proton radial

wave functions, respectively. The problem is that the correct
superallowed β decay operator in the Standard Model is the
plus component of the isospin operator. The operator in Eq. (3)
is not the isospin operator, because the states |α⟩ and |β⟩ are
not the same. Instead, τ+ of Eq. (3) is the plus component of
the W-spin operator of MacDonald [12], which is reviewed in
Ref. [11]. In addition, Eq. (4) assumes that the radial quantum
numbers of the states α and β must be the same. This need not
be so. As a result, the Standard Model isospin commutation
relations maintained in the W-spin formalism are lost.

To obtain the commutation relations, we observe that
Eqs. (3) and(4) correspond to the second-quantized isospin
operators

τ+ =
∑

α,β

δα,βrαa†
αaβ , (5)

τ− = τ
†
+ =

∑

α,β

δα,βr∗
αa

†
βaα, (6)

so that

[τ+, τ−] =
∑

α

|rα|2a†
αaα −

∑

β

|rβ |2a†
βaβ ̸= τ0. (7)

The Standard Model isospin commutation relations are vio-
lated if one uses the isospin operators of TH.

This formal problem motivates us to reevaluate the treat-
ment of ISB corrections and to study whether there are
potential corrections to the extraction of Vud. To this end,
we review the details of the TH procedure for δC . Although
Eqs. (3) and(4) are not formally correct, they do account for the
important correction: the effects of the Coulomb interaction on
the radial wave functions.

III. TH TREATMENT OF δC

Towner and Hardy [6] proceed by introducing into Eq. (3)
a complete set of states for the (A −1)-particle system, |π⟩,
which leads to

MF =
∑

α,π

⟨f |a†
α|π⟩⟨π |aα|i⟩rπ

α . (8)

The TH model thus allows for a dependence of the radial
integrals on the intermediate state π .

If isospin were an exact symmetry, the matrix elements
of the creation and annihilation operators would be related
by hermiticity, ⟨π |aα|i⟩ = ⟨f |a†

α|π⟩∗, and all radial integrals
would be unity. Hence the symmetry-limit matrix element in
this model is given by

M0 =
∑

α,π

|⟨f |a†
α|π⟩|2. (9)

Towner and Hardy divide the contributions from ISB into two
terms. First, the hermiticity of the matrix elements of aα and
a†

α will be broken, and second, the radial integrals will differ
from unity. Assuming both effects are small, TH calculate the
resulting ISB corrections as [6]

δC = δC1 + δC2, (10)

where in evaluating δC1 all radial integrals are set to unity
but the matrix elements are not assumed to be related by
hermiticity, and in evaluating δC2 it is assumed that ⟨π |aα|i⟩ =
⟨f |a†

α|π⟩∗ but rπ
α ̸= 1. We will study whether this is a

useful representation of δC . However, we emphasize that the
separation into δC1 and δC2 is a model-dependent concept,
inspired by the shell model [4]. For example, this division
is clearly model dependent when MF is obtained from ab
initio calculations of the initial and final states, |i⟩ and |f ⟩.
In addition, we demonstrate below that this is not possible
rigorously for schematic models.

A. Radial overlap correction δC2

Towner and Hardy find that the radial correction, δC2, is the
larger of their two model corrections [4– 6]. The Fermi matrix
element relevant for δC2 is given by

MF =
∑

α,π

|⟨f |a†
α|π⟩|2rπ

α ,

= M0

(

1 − 1
M0

∑

α,π

|⟨f |a†
α|π⟩|2&π

α

)

, (11)

where &π
α = (1 −rπ

α ) is a radial-mismatch factor. With the
definition of the ISB correction factor in Eq. (2), TH approxi-
mate δC2 by

δC2 ≈ 2
M0

∑

α,π

|⟨f |a†
α|π⟩|2&π

α . (12)

Consequently, large contributions to δC2 come with a large
spectroscopic amplitude and a significant radial mismatch.

In evaluating δC2 of Eq. (12), TH use guidance from
experiment. Their results are based on shell-model calculations
of the spectroscopic amplitudes, but limit the sums over
orbitals α and intermediate states π to those for which large
spectroscopic factors have been observed in pick-up reactions.
For 46V, TH [6] use this strategy to include two sd core orbitals,
s1/2 and d3/2, in addition to the f7/2 orbital of their earlier
calculations. Their new result for δC2 is 0.58% (see Table I in
Ref. [6]), which is almost a factor two larger than the 2002
value [4].
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TABLE X. Corrections δ′
R , δNS, and δC that are applied to

experimental f t values to obtain F t values.

Parent δ′
R δNS δC1 δC2 δC

nucleus (%) (%) (%) (%) (%)

Tz = − 1
10C 1.679 − 0.345(35) 0.010(10) 0.165(15) 0.175(18)
14O 1.543 − 0.245(50) 0.055(20) 0.275(15) 0.330(25)
18Ne 1.506 − 0.290(35) 0.155(30) 0.405(25) 0.560(39)
22Mg 1.466 − 0.225(20) 0.010(10) 0.370(20) 0.380(22)
26Si 1.439 − 0.215(20) 0.030(10) 0.405(25) 0.435(27)
30S 1.423 − 0.185(15) 0.155(20) 0.700(20) 0.855(28)
34Ar 1.412 − 0.180(15) 0.030(10) 0.665(55) 0.695(56)
38Ca 1.414 − 0.175(15) 0.020(10) 0.745(70) 0.765(71)
42Ti 1.427 − 0.235(20) 0.105(20) 0.835(75) 0.940(78)
Tz = 0
26mAl 1.478 0.005(20) 0.030(10) 0.280(15) 0.310(18)
34Cl 1.443 − 0.085(15) 0.100(10) 0.550(45) 0.650(46)
38mK 1.440 − 0.100(15) 0.105(20) 0.565(50) 0.670(54)
42Sc 1.453 0.035(20) 0.020(10) 0.645(55) 0.665(56)
46V 1.445 − 0.035(10) 0.075(30) 0.545(55) 0.620(63)
50Mn 1.444 − 0.040(10) 0.035(20) 0.610(50) 0.645(54)
54Co 1.443 − 0.035(10) 0.050(30) 0.720(60) 0.770(67)
62Ga 1.459 − 0.045(20) 0.275(55) 1.20(20) 1.48(21)
66As 1.468 − 0.060(20) 0.195(45) 1.35(40) 1.55(40)
70Br 1.486 − 0.085(25) 0.445(40) 1.25(25) 1.70(25)
74Rb 1.499 − 0.075(30) 0.115(60) 1.50(26) 1.62(27)

cautious. Furthermore, because the uncertainty is associated
with the Z2α3 term, it is expected to be a smooth function
of Z2 and thus to behave systematically since any shift in the
value of δ′

R must affect all F t values in the same direction.
We then proceed as follows: We evaluate the individual

transition F t values without including any uncertainties
associated with δ′

R and obtain an average F t . Then we shift all
the individual δ′

R terms up and down by one-third of the Z2α3

contribution, recalculate the F t values and determine F t for
both. The shifts in the value of the latter—±0.36 s for the data
in Table IX—becomes the systematic uncertainty assigned to
F t to account for the uncertainty in δ′

R. Note that our choice to
take one-third of the Z2α3 term is rather arbitrary, but has the
benefit that it is still conservative and at the same time results
in the uncertainty in δ′

R having an impact on the overall result
that is comparable to its impact in our previous survey [6].

We turn now to the third radiative term δNS, which arises
from an evaluation of the low-energy part of the γW -box
graph for an axial-vector weak interaction. If it is assumed
that the γN and WN vertices are both with the same nucleon,
N , then the evaluated box graph becomes proportional to
the Fermi β-decay operator, yielding a universal correction
already included in %V

R.
If instead the γ and W interactions in the γW -box

graph for an axial-vector current are with different nucleons
in the nucleus, then the evaluation involves two-nucleon
operators, which necessitates a nuclear-structure calculation.
This component of the radiative correction we denote by δNS
and list its values in column 3 of Table X. The values and their
uncertainties have been taken from Table VI in Ref. [192].

For this correction term, a number of model calculations were
carried out for each nucleus [192] and the uncertainties listed
were chosen to encompass the spread in the results from these
calculations. Therefore the uncertainty is nucleus-specific and,
as such, can be treated as statistical and not systematic. We
thus combine it in quadrature with the experimental errors in
determining the F t-value uncertainties.

2. Isospin-symmetry-breaking correction

In this section we describe only the set of isospin-
symmetry-breaking corrections, δC , that we have used in
deriving the corrected F t values given in Table IX. A
discussion of other alternative calculations of δC—and our
reasons for rejecting them—is postponed to Sec. IV. The set we
have selected follows from a semiphenomenological approach
based on the shell model combined with Woods-Saxon radial
functions. This model, which we designate as SM-WS, has
been described in detail by us in Ref. [192], where also
the results for δC are tabulated. We describe the model only
briefly here, while making two minor updates to our previous
results.

The calculation is done in two parts, which is made possible
by our dividing δC into two terms:

δC = δC1 + δC2. (4)

The idea is that δC1 follows from a tractable shell-model
calculation that does not include significant nodal mixing,
while δC2 corrects for the nodal mixing that would be present
if the shell-model space were much larger.

For δC1, a modest shell-model space (usually one major
oscillator shell) is employed, in which Coulomb and other
charge-dependent terms are added to the charge-independent
effective Hamiltonian customarily used for the shell model.
These charge-dependent additional terms are separately ad-
justed for each superallowed β transition to reproduce the
b and c coefficients of the isobaric multiplet mass equation
(IMME) for the triplet of T = 1, 0+ states that includes the
parent and daughter states of the transition.

Since the Coulomb force is long range, its influence in
configuration space extends much further than the single
major oscillator shell included in the calculation of δC1. To
incorporate the effects of multishell mixing, we note first that
its principal impact is to change the structure of the radial wave
function by introducing mixing with radial functions that have
more nodes. Since this mixing primarily affects protons, it
results in proton radial functions that differ from the neutron
ones so, when the overlap is computed, its departure from unity
determines the value of δC2. The radial functions themselves
are derived from a Woods-Saxon potential. Again there is
a case-by-case adjustment in the Woods-Saxon potentials
to ensure that the different measured proton and neutron
separation energies in the β-decay parents and daughters are
correctly reproduced.

The SM-WS calculations of Towner and Hardy [192] must
clearly be classified as semiphenomenological. A number of
transition-specific nuclear properties have been fitted in their
determination of δC. In contrast, most of the alternative models
discussed in Sec. IV are first-principles theory calculations.
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We study the formalism to include isospin-symmetry-breaking corrections when extracting the up-down
Cabibbo-Kobayashi-Maskawa matrix element from superallowed 0+ → 0+ nuclear β decay. We show that
there are no first-order isospin-symmetry-breaking corrections to the relevant nuclear matrix elements. We
find corrections to the treatment of Towner and Hardy, and assess these using schematic models of increasing
complexity.
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I. INTRODUCTION

Superallowed Fermi β decay provides the most stringent
test of the conserved-vector-current (CVC) hypothesis, the
most precise value for the up-down Cabibbo-Kobayashi-
Maskawa (CKM) matrix element Vud, and the best limit on the
presence of scalar interactions. With the confirmation of CVC,
Vud can be extracted with great precision to test the Standard
Model [1– 3]. For this, one needs to evaluate ∼1% theoretical
corrections that arise because of nucleus-dependent isospin-
symmetry-breaking (ISB) effects between the parent and
daughter states and because of radiative effects [4,5]. These
corrections are small, but significant, and their associated
theoretical errors at present dominate the uncertainty of Vud
because of the very high precision reached experimentally [6].

In the 2005 survey of Hardy and Towner [1], the results for
the set of superallowed 0+ → 0+ transitions were statistically
consistent, after including these theoretical corrections. How-
ever, Penning-trap measurements of the transition energy for
46V [7,8] moved this case to more than two standard deviations
away from the 2005 survey. This lead Towner and Hardy
(TH) [6] to reexamine their treatment of ISB corrections and
to include the contribution from core orbitals. The latter were
found to be especially important for 46V and this anomaly
disappeared.

In this article, we study the formalism to include ISB cor-
rections and contrast the TH treatment to exact results. Before
proceeding, we review the necessary theoretical background,
following the discussion in TH [6].

Superallowed 0+ → 0+ Fermi β decay depends only on
the vector part of weak interactions, and with CVC the decay
transition “f t value” should be independent of the nucleus:

f t = 2π3h̄7 ln 2
|MF |2G2

V m5
ec

4
= const., (1)

where GV is the vector coupling constant and MF is the
Fermi matrix element. CVC depends on the assumption of
isospin symmetry, which is not exact in nuclei, but broken

*miller@phys.washington.edu
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by electromagnetic and quark mass effects. As a result, MF

is reduced from its symmetry value of M0 =
√

2 for T = 1
parent and daughter states. Following TH, we introduce the
ISB corrections δC to the Fermi matrix element by

|MF |2 = |M0|2(1 − δC). (2)

In addition, there are radiative corrections to Eq. (1), but
we focus on δC here. These isospin corrections are ∼1%,
but must be calculated with a theoretical uncertainty of 10%
to guarantee a desired accuracy of 0.1%. This presents a
challenge for nuclear theory.

Hardy and Towner have shown [1,6] that the calculated
corrections eliminate much of the considerable scatter present
in the uncorrected ft values, and the statistical consistency
among the corrected values is evidence that the corrections
have been reasonably computed. However, the importance of
precisely testing the Standard Model stimulates us to undertake
a reevaluation. With this, we wish to start and stimulate further
efforts to systematically improve ISB corrections, based on an
accurate understanding of ISB in nuclear forces [9,10].

This article is organized as follows. In Sec. II, we show that
TH do not use the isospin operator to calculate δC (as mandated
by the Standard Model). To examine potential consequences
of this, we review the TH treatment in Sec. III. A complete
formalism is presented in Sec. IV, where we show that there
are no first-order ISB corrections to the relevant nuclear matrix
elements, which is also true for the work of TH. In Sec. V,
we compare the TH treatment to exact model results of
increasing complexity, which can guide future improvements.
We conclude in Sec. VI.

II. TOWNER AND HARDY APPROACH TO ISB
CORRECTIONS

In nuclei, the matrix elements of weak vector interactions
are not modified by nuclear forces, except for corrections due
to ISB effects. Therefore, one has to evaluate the contributions
from electromagnetic and charge-dependent strong interac-
tions to the Fermi matrix element MF = ⟨f |τ+|i⟩ between the
initial and final states for superallowed β decay, |i⟩ and |f ⟩,
respectively. Here τ+ is the isospin raising operator.
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to the significance of the δ′
R uncertainty for each transition.

In each case, we take the height of that bar to correspond to
one-third the size of the Z2α3 term in the expression for δ′

R

(see Sec. III A 1).
From Fig. 3, it can be seen that for seven of the nine

transitions plotted there—all but those from 10C and 14O—the
contributions from their three experimental uncertainties are
substantially smaller than the corresponding contributions
from the theoretical uncertainty due to the combined nuclear-
structure-dependent corrections, (δC − δNS). The same can be
said for the transitions from 62Ga and 74Rb, which appear
among the TZ = 0 cases illustrated in Fig. 4, although for these
two cases the theoretical uncertainties are 3–10 times larger
than they are for the lighter nuclei because of nuclear-model
ambiguities.

There is good reason for these nine cases to have particu-
larly small experimental uncertainties. They are all transitions
from TZ = 0 parent nuclei, which populate even-even daugh-
ters in which there are no, or very few, 1+ states at low enough
energy to be available for competing Gamow-Teller decays.
Thus, the branching ratios for the superallowed transitions
are all >99% and have very small associated uncertainties,
the largest being for the decays of 54Co and 74Rb, which
both have a 3 × 10− 4 fractional uncertainty. In both cases,
this is because they are predicted to have Gamow-Teller
branches that are too weak to have been observed but numerous
enough that their total strength is not negligible. To account
for such competition, one must first make a sensitive search
for weak branches and then resort to an estimate of the
strength of the branches that could have been missed at the
level of experimental sensitivity achieved. Such estimates are
currently based on shell-model calculations, as first suggested
in Ref. [93], and obviously they introduce some additional
uncertainty.

The presence of numerous weak Gamow-Teller branches
becomes an increasingly significant issue for the heavier-mass
nuclei, which have increasingly large QEC values. For cases
with A ! 62, they present a major experimental challenge
if they are to be fully characterized. To date this has been
accomplished for the decays of 62Ga [36,66] and 74Rb [55] but
at considerable effort. It remains to be seen if the same level of
precision will ultimately be achievable for 66As and 70Br, the
two other cases in the bottom panel of Fig. 4, or for the even
heavier TZ = 0 parents that extend beyond 74Rb up to 98In.

The decays of 10C, 14O, and all the transitions depicted
in the top panel of Fig. 4 originate from TZ = − 1 parent
nuclei and populate odd-odd daughters in which there are low-
lying 1+ states strongly fed by Gamow-Teller decay. These
branches are of comparable intensity to the superallowed
one so they—or the superallowed branch itself—must be
measured directly with high relative precision, a very difficult
proposition. The outcome is branching-ratio uncertainties that
exceed all the other contributions to theF t-value uncertainties,
experimental or theoretical, for these cases. (Measurements of
weak competing branches in the TZ = 0 cases discussed in
the previous paragraph require high sensitivity but not high
relative precision because the total Gamow-Teller branching
is more than a factor of 100 weaker than the superallowed
branch for all of them.) Advances in experimental techniques

for measuring branching ratios have improved the situation in
recent years [94,141] and will improve it even more within the
next few years. Nevertheless, it is unlikely that these cases will
ever equal the overall level of precision already achieved for
the TZ = 0 parent decays. Their value lies instead in testing the
calculated corrections for isospin-symmetry breaking [141], as
described in Sec. IV C.

IV. ISOSPIN-SYMMETRY BREAKING

Our own isospin-symmetry-breaking calculations, which
take a semiphenomenological approach based on the shell-
model together with Woods-Saxon radial functions (denoted
SM-WS), have been discussed in Sec. III A 2. The results
obtained there for δC are listed in the last column of Table X
and are repeated for comparison purposes in the second column
of Table XI. Those are not the only calculations of δC . There
are a number of others that have appeared in the literature, of
which we outline some more recent entries here.

A. Other δC calculations

SM-HF. Ormand and Brown [199] were the first to suggest
that the calculation of the radial overlap—i.e., the δC2 com-
ponent of δC—might be better served if a mean-field Hartree-
Fock potential were used rather than the phenomenological
Woods-Saxon potential. The most recent calculation of this
type is by Hardy and Towner [6] and their results are listed

TABLE XI. Recent δC calculations (in percent units) based
on models labeled SM-WS (shell-model, Woods-Saxon), SM-HF
(shell-model, Hartree-Fock), RPA (random phase approximation),
IVMR (isovector monopole resonance), and DFT (density functional
theory). Also given is the χ 2/ν, χ 2 per degree of freedom, from the
confidence test discussed in the text.

RPA

SM-WS SM-HF PKO1 DD-ME2 PC-F1 IVMRa DFT

Tz = − 1
10C 0.175 0.225 0.082 0.150 0.109 0.147 0.650
14O 0.330 0.310 0.114 0.197 0.150 0.303
22Mg 0.380 0.260 0.301
34Ar 0.695 0.540 0.268 0.376 0.379
38Ca 0.765 0.620 0.313 0.441 0.347
Tz = 0
26mAl 0.310 0.440 0.139 0.198 0.159 0.370
34Cl 0.650 0.695 0.234 0.307 0.316
38mK 0.670 0.745 0.278 0.371 0.294 0.434
42Sc 0.665 0.640 0.333 0.448 0.345 0.770
46V 0.620 0.600 0.580
50Mn 0.645 0.610 0.550
54Co 0.770 0.685 0.319 0.393 0.339 0.638
62Ga 1.475 1.205 0.882
74Rb 1.615 1.405 1.088 1.258 0.668 1.770
χ 2/ν 1.4 6.4 4.9 3.7 6.1 4.3b

aRodin [205] also computes δC = 0.992% for both 66As and 70Br.
bThe result for 62Ga has not been included in the least-squares fit from
which this value for χ 2/ν has been obtained.
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FIG. 1. Isospin-symmetry breaking correction δC obtained from
different models: shell model with WS radial wave functions (SM-
WS) [2,4,5], shell model with HF wave functions (SM-HF) [6,7],
J (T )-projected HF theory with two different Skyrme functionals (SV-
DFT and SHZ2-DFT) [9], relativistic RPA (RHF-RPA and RH-RPA)
[10], isovector monopole resonance theory (IVMR) [11], and the
Damgaard model [12].

added to a relativistic Hartree or Hartree-Fock (HF) calculation
was used by Liang et al. [10]. In addition, Auerbach [11] uses a
model where the main isospin-symmetry-breaking effects are
attributed to the isovector monopole resonance. The last two
results are again systematically lower than the shell-model or
J (T )-projected HF values. For completeness, we show also an
earlier estimation of the correction using perturbation theory
on the basis of individual harmonic-oscillator wave functions
by Damgaard [12]. It is clear that all these calculations have a
significant spread in the obtained values of δC , thus raising the
question of credibility of the results.

The values for δC tabulated by Towner and Hardy in Ref. [1]
excellently support both the CVC hypothesis over the full range
of Z values and the top-row unitarity of the CKM matrix.
However, this agreement is not sufficient to reject the other
calculations, since these aspects of the standard model have
to be confirmed experimentally. The validity of CVC does not
constrain the absolute Ftvalue. The disagreement between
model predictions and the importance of the issue motivated
us to reexamine this correction in a consistent approach based
on the nuclear shell model.

Within the shell model, the eigenproblem is solved by con-
struction and diagonalization of the Hamiltonian matrix using
a Slater determinant spherical harmonic-oscillator basis. The
eigenstates are thus given in terms of linear combinations of
many-body basis states. In order to describe isospin-symmetry
breaking effects, the many-body Hamiltonian should contain
Coulomb and charge-dependent terms of nuclear origin. If
the eigenproblem is solved in a sufficiently large A-body
basis of many harmonic-oscillator shells, the eigenvectors
can be used to compute a realistic Fermi matrix elements,
as, for example, has been done for 10C in the no-core shell
model with 3N forces included [13]. However, for heavier
nuclei, calculations are feasible only in restricted model spaces,
containing one or two harmonic-oscillator shells beyond a
closed-shell core. Effective isospin-nonconserving interaction
introduces the isospin-symmetry breaking in the mixing of

various harmonic-oscillator configurations within the model
space. In addition, calculation of transition matrix elements
involves radial integrals which should be computed using real-
istic spherically symmetric proton and neutron wave functions,
obtained from a finite-range potential with a Coulomb term.
The protons in a parent nucleus are less bound than the neutrons
in a daughter nucleus because of the Coulomb repulsion. Since
the model space is restricted to a single oscillator shell, in
practice the only way to deal with the problem is to replace the
harmonic-oscillator radial wave functions by single-particle
wave functions obtained from a realistic spherically symmetric
mean-field potential. This accounts for the isospin-symmetry
breaking effects beyond the valence space. Thus, there are
two sources of the deviation of the Fermi matrix element
from its model-independent value: one is from the effective
charge-dependent Hamiltonian and the other is from the radial
mismatch of proton and neutron single-particle wave functions.
It will be shown below that, within the first-order perturbation
theory, the correction δC can be expressed as a sum of two
terms corresponding to the two sources of isospin-symmetry
breaking mentioned above.

The present study focuses on the radial mismatch between
proton and neutron single-particle wave functions, which
represents the main contribution to the nuclear structure
correction to the Fermi matrix element. Currently, two types
of a mean-field potential are considered in this respect. The
first one is the phenomenological WS potential including a
central, a spin-orbit, and an electrostatic repulsion term. A
series of calculations using this potential has been carried
out by Towner and Hardy [2,4]. These authors adjusted case-
by-case the depth of the volume term or added an additional
surface-peak term to reproduce experimental proton and neu-
tron separation energies. In addition, they adjusted the length
parameter of the central term to fix the charge radii of the
parent nuclei. The second type of a mean-field potential is
that obtained from self-consistent HF calculations using a
zero-range Skyrme force, as was first proposed by Ormand
and Brown in 1985 [14] and refined in the subsequent papers
[6,7].

The results obtained from both types of mean-field potential
are equivalently in good agreement with the CVC hypothesis;
however, the δC values from Skyrme-HF calculations are con-
sistently smaller than those obtained from the WS calculations.
This discrepancy was thought to be due to the insufficiency of
the Slater approximation for treating the Coulomb exchange
term. Towner and Hardy highlighted that the asymptotic
limit of the Coulomb potential in the Slater approximation is
overestimated by one unit of Z. To retain this property, they
proposed a modified HF protocol [5], namely they performed
a single calculation for the nucleus with (A − 1) nucleons
and (Z − 1) protons and then used the proton and the neutron
eigenfunctions from the same calculation to compute the radial
overlap integrals. Their result leads to a significant increase of
the corresponding correction to the Fermi matrix element and
provides a better agreement with the values obtained with WS
radial wave functions. However, we warn that such a method
is rooted in Koopman’s theorem, which is not fully respected
by the HF calculations, in particular with a density-dependent
effective interaction.
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FIG. 2. The element Vud of the CKM matrix obtained by
RHF+RPA calculations with PKO1 and by RH+RPA calculations
with DD-ME2 in comparison with those in shell model (H&T) [19]
as well as in neutron decay [7], pion β decay [5] and nuclear mirror
transitions [6].

the systematic errors are not taken into account. In Fig. 2,
the element Vud of the CKM matrix obtained by RHF+RPA
calculations with PKO1 and by RH+RPA calculations with
DD-ME2 are shown in comparison with those in the shell
model (H&T) [19] as well as in neutron decay [7], pion β
decay [5], and nuclear mirror transitions [6].

It can be clearly seen in Table IV that the matrix element
|Vud | determined by the 0+ → 0+ superallowed transitions
mainly depends on the treatment of the Coulomb field and
less sensitive to the particular effective interactions. Switching
either on or off the exchange contributions of the Coulomb
field, the discrepancy caused by different effective interactions
is much smaller than the statistic deviation. It is interesting
to note that the present |Vud | values well agree with those
obtained in neutron decay, pion β decay and nuclear mirror
transitions. However, the sum of squared top-row elements
considerably deviates from the unitarity condition, which is in
contradiction with the conclusion in shell model calculations
(H&T) [19]. This calls for more intensive investigations in
the future. For example, mean field and RPA calculations
including the proper neutron-proton mass difference, isoscalar
and isovector pairing, and deformation should be done. It
should also be emphasized that apart from the proper treatment
of pairing by either BCS or Bogoliubov approaches, the
particle number projection must be implemented as well in
order to remove the artificial isospin symmetry breaking effects
due to the particle number violation.

IV. SUMMARY AND PERSPECTIVES

In summary, self-consistent relativistic RPA approaches are
applied to calculate the isospin symmetry-breaking corrections
δc for the 0+ → 0+ superallowed transitions. In the RHF+RPA
framework the density-dependent effective interactions PKO1,
PKO2, and PKO3 are employed, while in the RH+RPA frame-
work the density-dependent effective interactions DD-ME1
and DD-ME2 as well as the nonlinear effective interactions
NL3 and TM1 are used.

It is found that the proper treatments of the Coulomb field
is very important to extract the isospin symmetry-breaking
corrections δc. By switching off the exchange contributions
of the Coulomb field, Ex and δc in RHF+RPA calculations
recover the results in RH+RPA calculations. In other words,
although the meson exchange terms can be somehow effec-
tively included by adjusting the parameters in the direct terms,
this has not been done for the Coulomb part in the usual RH
approximation.

With the isospin symmetry-breaking corrections δc calcu-
lated by relativistic RPA approaches, the nucleus-independent
Ft values are obtained in combination with the experimental
f tvalues in the most recent survey and the improved radiative
corrections. It is found that the constancy of the Ft values
is satisfied for all self-consistent relativistic RPA calculations
here. It is also found that theFtvalues of RHF+RPA are about
2 s larger than those of RH+RPA, which are larger than the
difference due to the different effective interactions in either
RHF or RH approximations.

The values of |Vud | thus obtained well agree with those
obtained in neutron decay, pion β decay, and nuclear mirror
transitions. However, the sum of squared top-row elements
considerably deviates from the unitarity condition, which is in
contradiction with the conclusion in shell model calculations
(H&T) [19].

For the further studies, more intensive investigations in-
cluding the proper neutron-proton mass difference, isoscalar
and isovector pairing, and deformation should be done.
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FIG. 2. (a) In the top panel are plotted the uncorrected experi-
mental f t values as a function of the charge on the daughter nucleus.
(b) In the bottom panel, the corresponding F t values are given; they
differ from the f t values by the inclusion of the correction terms δ′

R ,
δNS, and δC. The horizontal gray band gives one standard deviation
around the average F t value.

of χ2/ν associated with the current F t result is higher than
the corresponding value in 2008 but this undoubtedly reflects
the fact that one additional transition has been added and the
data for some of the other transitions are more precise today
than they were 6 years ago. In any case, the confidence level
for the new result remains very high: 91%.

C. Uncertainty budgets

We show the contributing factors to the individual F t-value
fractional uncertainties in two figures. The first, Fig. 3,
encompasses the nine cases with stable daughter nuclei. Their
experimental parameters have been measured with increasing
precision for many years, so we refer to these as the “traditional
nine.” The remaining eleven cases, of which five now approach
the traditional nine in precision, appear in Fig. 4. In both
figures, the first three bars in each group of five show the
contributions from experiment, while the last two correspond
to theory. Although we are now treating the contribution from
δ′
R as a systematic uncertainty that is applied to the final

average F t , nevertheless we show a bar as a rough guide

10C 14O 26mAl 34Cl 38mK 42Sc 46V 50Mn 54Co
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FIG. 3. Summary histogram of the fractional uncertainties at-
tributable to each experimental and theoretical input factor that con-
tributes to the final F t values for the “traditional nine” superallowed
transitions. The bars for δ′

R are only a rough guide to the effect on
each transition of this term’s systematic uncertainty. See text.
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FIG. 4. Summary histogram of the fractional uncertainties at-
tributable to each experimental and theoretical input factor that
contributes to the final F t values for the 11 other superallowed
transitions. Where the error is cut off with a jagged line at 40 parts in
104, no useful experimental measurement has been made. The bars
for δ′

R are only a rough guide to the effect on each transition of this
term’s systematic uncertainty. See text.
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Conserved vector current hypothesis —> Ft constant

However: to achieve this precision the model was adjusted locally in each iso-mulLplet 

• Is this formalism the right tool to assess consistency amongst all the measurements? 

• Shell model operates in a limited model space 

• HT method criLcized for using incorrect isospin formalism (G. Miller, A. Schwenk) 

• Ab iniLo methods do not warrant such high precision 

Limits	on	BSM	crucially	depend	on	nuclear	structure	correc<ons!
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standard deviations. Is there any way the |Vud| value in Eq. (10)
could possibly be shifted to this value? It can be seen in
Eq. (8) that |Vud|2 is inversely proportional to both F t and
(1 + !V

R). For F t to account for such a shift, it would have to
decrease by six standard deviations. That is unlikely enough
but, because all 14 measured transitions agree with one another
and with CVC, all 14 would have to undergo the same shift, a
virtual impossibility. The only other possibility is a shift in the
nucleus-independent radiative correction, !V

R, which would
have to be reduced from 2.36(4)% to 2.24%. This is a change
equal to three times the stated uncertainty which, while not
impossible, is rather unlikely.

(4) f+(0), fK/fπ correct, Kℓ3, Kℓ2 correct, unitarity
not satisfied. With |Vus | determined from Kℓ3 decays and
|Vus |/|Vud| from Kℓ2 decays, each with the Nf = 2 + 1 + 1
lattice coupling constants, a value of |Vud| can be obtained from
their ratio. The result, |Vud| = 0.9670(44), has a somewhat
larger error bar than other determinations from kaon physics
because no constraint to satisfy unitarity has been imposed.
Nevertheless, the result is two of its standard deviations away
from the nuclear β-decay value for |Vud| and the unitarity
sum is likewise not satisfied, with |Vu|2 = 0.985(9) and a
deficit, !CKM = −0.015(9), of 1.8 standard deviations. For
the β-decay value of |Vud| to be shifted into agreement with
this kaon-derived value would require the nucleus-independent
radiative correction !V

R to be increased from 2.36(4)% to
3.88%, 40 times its stated uncertainty. Surely this can be ruled
out.

One must conclude that there is no definitive answer for
|Vus | as of now since the two approaches to its measurement
from kaon decay are not completely consistent with one
another. On balance, though, the result for |Vus |/|Vud| obtained
from Kℓ2 and pion decays seems the most reliable because it
shows the greatest consistency as the lattice calculations have
improved, which reinforces the idea that systematic errors are
reduced when a ratio is used. If we then accept the Nf =
2 + 1 + 1 result on line 4 of Table XIII and combine it with
our result for |Vud| from Eq. (10), we get |Vus | = 0.2248(6)
and a unitary sum of |Vu|2 = 0.999 56(49).

D. Scalar currents

1. Fundamental scalar current

The standard model prescribes the weak interaction to be
an equal mix of vector (V ) and axial-vector (A) interactions
that maximizes parity violation. Searches for physics beyond
the standard model therefore seek evidence that parity is
not maximally violated (owing to the presence of right-hand
currents) or that the interaction is not pure V − A (owing to the
presence of scalar or tensor currents). The data in this survey
allow us to contribute to the search for a scalar interaction
because, if present, it would have a measurable effect on
superallowed 0+ → 0+ β transitions.

A scalar interaction would generate an additional term [5]
to the shape-correction function, which forms part of the
integrand of the statistical rate function, f , an integral over
the β-decay phase space. The additional term takes the form
(1 + bF γ1/W ), where W is the total electron energy in electron

Z of daughter
2010 30 400

3070

3080

3090

3060

FIG. 7. Corrected F t values from Table IX plotted as a function
of the charge on the daughter nucleus, Z. The curved lines represent
the approximate loci the F t values would follow if a scalar current
existed with bF = ±0.004.

rest-mass units, and γ1 =
√

[1 − (αZ)2]. The strength of the
scalar interaction is contained in the unknown constant, bF ,
which is called the Fierz interference term [218]. Thus, the
impact of a scalar interaction on the F t values would be to
introduce a dependence on ⟨1/W ⟩, the average inverse decay
energy of each β+ transition. No longer would the F t values
be constant over the whole range of nuclei but they would
instead exhibit a smooth dependence on ⟨1/W ⟩. Since ⟨1/W ⟩
is largest for the lightest nuclei, and decreases monotonically
with increasing Z and A, the largest deviation of F t from
constancy would occur for the cases of 10C and 14O.

We have reevaluated the statistical rate function, f , for
each transition using a shape-correction function that includes
the presence of the scalar interaction via a Fierz interference
term, bF , which we treat as an adjustable parameter. We then
obtained a value of bF that minimized the χ2 in a least-squares
fit to the expression F t = constant. The result we obtained is

bF = −0.0028 ± 0.0026, (17)

a marginally larger result than the value from our last survey [6]
but with the same uncertainty. Note that the uncertainty quoted
here is one standard deviation (68% CL), as obtained from the
fit. In Fig. 7 we illustrate the sensitivity of this analysis by
plotting the measured F t values together with the loci of F t
values that would be expected if bF = ±0.004. There is no
statistically compelling evidence for bF to be nonzero.1

The result in Eq. (17) can also be expressed in terms of
the coupling constants that Jackson, Treiman, and Wyld [218]
introduced to write a general form for the weak-interaction
Hamiltonian. Since we are dealing only with Fermi superal-
lowed transitions, we can restrict ourselves to scalar and vector
couplings, for which the Hamiltonian becomes

HS+V = (ψpψn)
(
CSφeφνe

+ C ′
Sφeγ5φνe

)

+ (ψpγµψn)
[
CV φeγµ(1 + γ5)φνe

]
, (18)

in the notation and metric of Ref. [218]. We have taken the
vector current to be maximally parity violating, as indicated

1It is interesting to note that if we were to derive an averageF t value
from the data while allowing bF to vary freely, the corresponding
value for |Vud| would become 0.9745(4), a result quite consistent
with the one we quote in Eq. (10), but with an uncertainty nearly
twice as large.

025501-20

If Ft were not constant: 

Presence of scalar currents - BSM 

Fierz interference term ∼ bFme/Ee

Fit to 14 transiLons:  

Ft constant within  and 2 × 10−4 bF = − 0.0028(26)
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FIG. 8. The red band shows the precision relation (42 between
gA and ⌧n. Black triangles with horizontal error bars show
values of gA reported in Refs. [20–22] and vertical grey band
corresponds to their average (43). Green circles show values of
⌧n reported by trap experiments [24–31] with respective error
bars and horizontal green band shows their average (45). Blue
squares and blue horizontal band show the the same for beam
experiments [32, 33].

From the experimental side, the neutron lifetime is
measured in two types of experiments. The trap exper-
iments measure the disappearance rate of the ultra-cold
neutrons (UCN) by counting the survived neutrons after
storing them for di↵erent times in the UCN traps and de-
termine the neutron decay width �n = ⌧�1

n
. The beam

experiments are the appearance experiments, measuring
the width of �-decay n ! pe⌫̄e, �� = ⌧�1

�
, by counting

the produced protons in the monitored beam of cold neu-
trons. In the Standard Model the neutron decay should
always produce a proton, and so both methods should
measure the same value �n = �� .

However, there is tension between the results obtained
using two di↵erent methods, as it was pointed out in
Refs. [23]. Fig. 8 clearly demonstrates the discrepancy.
Namely, by averaging the presently available results of
eight trap experiments [24–31] one obtains:

⌧trap = 879.4± 0.6 s , (45)

which is compatible with the SM prediction (44). On the
other hand, the beam experiments [32, 33] yield

⌧beam = 888.0± 2.0 s . (46)

which is about 4.4� away from the SM predicted value
(44).6

6 The PDG 2018 average ⌧n = 880.2 ± 1.0 s includes the results
of two beam experiments [32, 33] and five trap experiments [24–

28], with the error rescaled up by a factor
q

�2
dof ⇡ 2 for a loose

compatibility between the data, essentially between the trap and
beam experiments. Results of three recent trap experiments [29–
31] published in 2018 were not included.

Therefore, due to consistency with the SM prediction
(42), it is more likely that the true value of the neu-
tron lifetime is the one measured by trap experiments
(45). About 1 per cent deficit of produced protons in the
beam experiments [32, 33] might be due to some unfixed
systematic errors. Alternatively, barring the possibility
of uncontrolled systematics and considering the problem
as real, a new physics must be invoked which could ex-
plain about one per cent deficit of protons produced in
the beam experiments. One interesting possibility can
be related to the neutron–mirror neutron (n � n0) oscil-
lation [34], provided that ordinary and mirror neutrons
have a tiny mass di↵erence 100 neV or so [35]. Then in
large magnetic fields (5 Tesla or so) used in beam exper-
iments n � n0 conversion probability can be resonantly
enhanced to about ⇠ 0.01 and thus corresponding frac-
tion of neutrons converted in mirror neutrons will decay
in an invisible (mirror) channel without producing ordi-
nary protons.
Concluding this section, let us remark that the present

precision calculation of the short-range radiative correc-
tions �V

R
[8] and respective redetermination of Vud has

no influence on the determination of the neutron life-
time (44) obtained from Eq. (42) which in fact directly
relates the value of ⌧n to the value Ft accurately mea-
sured in superallowed 0+ � 0+ nuclear transitions and
to the value gA = GA/GV obtained from accurate mea-
surements of �-asymmetry. Notice that the relation (42)
remains valid also in the presence of non-standard vec-
tor or axial interactions contributing to the neutron de-
cay, since the value of GV (independently whether it is
equal to GF |Vud| or not) anyway cancels out [36] and
only the ratio gA = GA/GV remains relevant which value
is accurately determined from the measurements of �-
asymmetry. In particular, Eq. (42) remains valid in our
model with GF 6= Gµ discussed in previous section, or
more generically for any modification of the SM intro-
ducing new vector and axial couplings contributing in
operator (4).

9. As concluding remarks. The present experimental and
theoretical accuracy in independent determination of the
first row elements of the CKM matrix indicates towards
about 4.4� deviation from the unitarity (1). This can be
indication to the new physics at the scale of few TeV.
We investigated two possible scenarios in order to fill the
gap. The respective results are summarised it Table I.

The first, rather straightforward possibility is related
to the existence of “fourth family” in the form of a vector-
like couple of isosinglet down-type quarks b0

L
, b0

R
, with the

mass of few TeV, which has rather strongly mixed with
the first family Vub0 ' 0.04. However, apart of the persis-
tent question ”who has ordered that?”, it has some rather
unnatural features. In particular, in order to avoid strong
flavor changing e↵ects in Kaon physics etc., the 4th quark
b0 should have weaker mixings with 2nd and 3rd families
than with the first one. Perhaps such a situation is possi-
ble by some conspiracies, however a priori it looks rather
weird.

Neutron	Life8me	Puzzle	and	Nuclear	Correc8ons

If combining 0
+
-0

+
 nuclear and neutron decay:  

Neutron lifeLme and gA Lghtly constrained

τn(1 + 3g 2
A) = 5172.0(1.1) s

“Trap” and “beam”  discrepancy:τn

A. Czarnecki, B. Marciano, A. Sirlin, Phys.Rev.Lett. 120 (2018) 20, 202002

τbeam
n = 888.0(2.0) s τtrap

n = 879.4(6) s

Plans to improve  precision to 0.1 s (including TRIGA @ Mainz) 

Plans to remeasure  (BL3, J-PARC) to 0.1 s

τtrap
n

τbeam
n

AssumpLon underlying the Lght  correlaLon: nuclear correcLons are correctg A ↔ τn
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Nuclear	correc<ons	crucial	for	extrac<on	of	Vud	from	free	and	bound	neutron	decay
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ISB	in	 -decay	vs.	neutron	skinsβ

X
τ+

A(Z, Z ) A(Z − 1,Z + 1)

Ri
p(r) Rf

n(r)

Radial funcLons:

∫ d 3 ⃗r |Ri
p |2 = ∫ d 3 ⃗r |Rf

n|2 = 1

Radial overlap and ISB correcLon

∫ d 3 ⃗rRi
pRf

n = 1 − δC

2

ISB in Fermi matrix el.

ISB NC matrix element

X
τ3

A(Z, Z )

A(Z − 1,Z + 1)

A(Z, Z )

A(Z − 1,Z + 1)

∫ d 3 ⃗r( |Rp |2 − |Rn|2 ) = 0

∫ d 3 ⃗rr2( |Rp |2 − |Rn|2 ) = ⟨r2
n⟩ − ⟨r2

p⟩

But neutron skin is nonzero

ISB in | i⟩ ∝ Ri
n(r) − Ri

p(r) ISB in | f ⟩ ∝ Rf
n(r) − Rf

p(r)
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Analog of Ademollo-Gato theorem:  is quadraLc in ISBδC
G.A. Miller, A. Schwenk, Phys.Rev.C 78 (2008) 035501; Phys.Rev.C 80 (2009) 064319

Neutron skin is linear in ISB



Weak	Charges	and	Radii	from	PVES

O. Koshchii, J. Erler, MG, C.J. Horowitz, J. Piekarewicz, X. Roca-Maza, C.-Y. Seng, H. Spiesberger, arXiv:2005.00479 
Feasibility study for C-12 @ MESA: forward + backward measurement
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Simultaneous	extrac8on	of	weak	charge	and	radius	at	few	per	mille	feasible!

Sasha’s	talk	on	Wednesday

CorrecLon term  for spin-0 nuclei: neutron skinΔ Δ ≈ − (R2
wk − R2

ch )Q2/6 ≈ − (R2
n − R2

p)Q2/6
Wednesday:	Jorge,	Julie[e;	Thursday:	Conce]na
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QW(Z, N ) = − N + Z(1 − 4 sin2 θW)

ElasLc scatering of longitudinally polarized e
-
 beam 

Parity-violaLng asymmetry

2

e e ee

N NNN

FIG. 1. One-photon exchange and Z0 exchange diagrams.

been extensively used to determine the strange quark
content of the nucleon [26].

In this letter we consider the parity-violating asymme-
try which is defined as the di↵erence between the cross
sections for elastic scattering of longitudinally polarized
electrons o↵ an unpolarized target,

APV =
�R � �L

�R + �L
, (1)

where �R (�L) stands for the cross section with right-
handed (left-handed) electron polarization. The asym-
metry arises from the interference between the ampli-
tudes due to the exchange of a virtual photon and the
corresponding one for a virtual Z0 boson, as shown in
Fig. 1. By conveniently factoring out the Fermi con-
stant GF , the fine structure constant ↵, the 4-momentum
transfer squared Q2, and the ratio of the weak, QW , to
the electric, Z, nuclear charge, the PV asymmetry for a
spinless nucleus consisting of Z protons and N neutrons
takes the following form:

APV = �
GFQ2

4
p
2⇡↵

QW

Z
(1 +�), (2)

where a plane-wave Born (“tree-level”) approximation
was assumed. The weak nuclear charge is given by
QW (Z,N) = Z(1�4 sin2 ✓W )�N , so in the case of 12C
it becomes proportional to the sine-squared of the weak
mixing angle [27]: QW (6, 6)=�24 sin2 ✓W .

Given that the interaction of the electron with the nu-
cleus involves only the conserved hadronic vector current,
the “correction” term � in Eq. (2) vanishes at Q2 = 0.
However, nuclear and hadronic structure contribute to �
at non-zero Q2. Indeed, to leading order in ↵,

� ⌘ Fwk(Q
2)/Fch(Q

2)� 1 (3)

is given by the ratio of the weak Fwk to the charge form
factor Fch. Both form factors are normalized to unity
at Q2 = 0. Each of the form factors is related to the
corresponding spatial distributions of charge by a three-
dimensional Fourier transform,

F (Q2) =

Z
⇢(r)eiq·rd3r, with |q|⌘

p
Q2. (4)

Note that the normalization of the form factor at Q2=0
implies that

R
⇢(r)d3r = 1. At low Q2, the form factors

may be expanded in terms of various moments of their
spatial distribution,

F (Q2) = 1�
Q2

3!
hr2i+

Q4

5!
hr4i+O(Q6), (5)

where the second term defines the root-mean-square ra-
dius of the spatial distribution, namely,

R2
⌘ hr2i =

Z
r2⇢(r)d3r. (6)

Thus, to lowest order in Q2, � is proportional to the
weak skin of the nucleus:

� = �
Q2

3
RwskinRch +O(Q2R2

wskin). (7)

The weak skin Rwskin⌘Rwk�Rch, or, equivalently,

� =
Rwk �Rch

Rch
, (8)

contains as much information as the neutron skin. How-
ever, unlike the neutron skin, the weak skin is a genuine
physical observable.
Two terms in Eq. (2) are of great interest: the weak

mixing angle ✓W encoded in the weak charge [11, 17] and
the ratio of nuclear form factors appearing in�; to access
the former one must constrain the latter. Conversely, to
extract nucleon- or nuclear-structure information from
PVES, such as the strange quark content of the nucleon
[26] or the weak skin of heavy nuclei [23], one assumes
thatQW is precisely known, so the measurement provides
a constraint on �. In this work we explore the possibility
of a precise determination of both—the weak charge and
the weak skin of 12C—within one single experiment.
The P2 experimental program at the MESA facility in

Mainz [17] includes a plan aiming for a 0.3% determi-
nation of the weak charge of 12C. Given this ambitious
goal, the tree-level formula of Eq. (7)—even when includ-
ing higher-order terms in the Q2 expansion—is not accu-
rate enough. Order-↵ radiative corrections, particularly
Coulomb distortions which scale as Z↵, should be in-
cluded. To properly account for Coulomb distortions, we
follow the formalism developed by one of us in Ref. [28].
The electron wave function  satisfies the Dirac equation

⇣
↵ · p+ �m+ V (r) + �5A(r)

⌘
 (r) = E (r), (9)

where m is the electron mass, ↵, �, and �5 are Dirac
matrices, and V (r) and A(r) are the vector (Coulomb)
and axial-vector components of the potential, respec-
tively [28]. Here E stands for the electron energy in
the center of mass frame [29] which is related (neglect-
ing the electron mass) to the laboratory energy Ebeam by
Ebeam/E=

p
1+2Ebeam/M with M the nuclear mass.

The Coulomb potential is computed from the experi-
mentally known nuclear charge distribution via

V (r) = �Z↵

Z
⇢ch(r0)

|r� r0|
d3r0. (10)

e e ee

N NNN

Z QW
Weak charge —> weak mixing angle 
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Neutron	skins	of	symmetric	nuclei	as	ISB	signature

Usually	studied	in	neutron-rich	nuclei	—>	symmetry	energy	 	—>	nuclear	EOSS(ρ)

C-12	symmetric,	N=Z	—>	skin	due	to	isospin	symmetry	breaking
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We analyze and propose a solution to the apparent inconsistency between our current knowledge of the
equation of state of asymmetric nuclear matter, the energy of the isobaric analog state (IAS) in a heavy
nucleus such as 208Pb, and the isospin symmetry breaking forces in the nuclear medium. This is achieved by
performing state-of-the-art Hartree-Fock plus random phase approximation calculations of the IAS that
include all isospin symmetry breaking contributions. To this aim, we propose a new effective interaction
that is successful in reproducing the IAS excitation energy without compromising other properties of
finite nuclei.
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The nuclear physics community has been striving for
quite some time to determine the symmetry energy, and in
particular, its density dependence [1]. The symmetry
energy is the energy per particle needed to change protons
into neutrons in uniform matter at a given density ρ. At
saturation density of symmetric matter ρ0 ≈ 0.16 fm−3, its
value is between 29 and 32.7 MeV [2] or between 30.7 and
32.5 MeV [3] if one performs a weighted average of various
extractions, but a broader interval, namely, 28.5–34.5 MeV,
has been extracted in Ref. [4] (cf. also Ref. [5]). In short, we
still do not know precisely the value of the symmetry
energy at saturation density, and, as we argue below, its
density dependence is even more uncertain.
A deeper understanding would be highly needed because

the accurate characterization of the symmetry energy
entails profound consequences for the study of the neutron
distributions in nuclei along the whole nuclear chart, as
well as for other properties of neutron-rich nuclei [1]. Its
knowledge impacts heavy-ion reactions where the neutron-
proton imbalance varies between the incoming and out-
going interacting nuclei [6]. The symmetry energy is also of
paramount importance for understanding the properties of
compact objects like neutron stars: it directly impacts, for
instance, the determination of the radius of a low-mass
neutron star [7], and it is also crucial for understanding stars
with a larger mass where the physics of nuclear matter
above saturation density also enters. Neutron star physics
has received a new strong boost very recently, as the LIGO-
Virgo Collaboration announced the first detection of
gravitational waves from a binary neutron star merger,
setting a new type of constraint on the radius of a neutron
star [8]. Neutron star mergers are also a promising site for

the r-process nucleosynthesis [9], in which the symmetry
energy plays again a substantial role, since the r-process path
is governed by the mass of neutron-rich nuclei as well as by
their beta decays. Last but not least, the knowledge of the
nuclear symmetry energy is relevant for standard model tests
via atomic parity violation, as shown, e.g., in Ref. [10].
If β is the local neutron-proton asymmetry β≡

ðρn − ρpÞ=ρ, the energy per particle ðE=AÞ in matter having
neutron-proton imbalance is a function of ρ and β.
Such a function can be expanded in even powers of β
owing to isospin symmetry (the Coulomb force has to
be taken out when dealing with a uniform system). By
retaining only the quadratic term, we can write

E
A
ðρ; βÞ ¼ E

A
ðρ; β ¼ 0Þ þ SðρÞβ2: ð1Þ

This equation defines the symmetry energy SðρÞ, that is, the
difference between the energy per particle E=A in neutron
and symmetric matter. Equation (1) clearly explains why an
accurate knowledge of the symmetry energy is mandatory
in order to establish a link between the physics of finite
nuclei and that of a neutron star.
The symmetry energy can be expanded around

saturation density as SðρÞ ¼ Jþ Lðρ − ρ0Þ=3ρ0þ
½Ksymðρ − ρ0Þ2=9ρ20 þ % % %, where different parameters
have been defined, namely, J≡ Sðρ0Þ, L≡ 3ρ0S0ðρ0Þ,
and Ksym ≡ 9ρ20S

00ðρ0Þ. On these parameters, much atten-
tion has been focused. While Ksym is basically not known,
the error on L referred to as the “slope parameter” is
believed to be still significantly larger than the error on J:
ranges between 40 and 75 MeVor between 30 and 90 MeV

PHYSICAL REVIEW LETTERS 120, 202501 (2018)
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E/A	—	energy	per	par8cle	

	—	local	density	

	-	neutron/proton	asymmetry

ρ
β = (ρn− ρp)/ρ
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Talk	by	Jorge	on	Wednesday

New	context	for	PVES:	ISB	correc<ons	to	superallowed	nuclear	 	decaysβ



Unique task for MESA: weak skins of stable daughter nuclei in 5 best-measured decays: 

26mAl → 26Mg, 34Cl → 34S, 38mK → 38Ar, 42Sc → 42Ca, 46V → 46Ti

Precise	weak	radii	of	stable	0+	daughter	nuclei	@	MESA

https://nds.iaea.org/relnsd/vcharthtml/VChartHTML.html
Available informaLon on the 5 stable 0+ daughter nuclides: live chart of nuclides

Isotope (Z,N) Abundance Charge radius (fm) Sn (MeV) Sp (MeV) Ex in MeV (Jπ)

26Mg(12,14) 11.01% 3.0337(18) 11.093 14.145 1.808(2+), 2.938(2+), 3.588(0+)

34S(16,18) 4.25% 3.2847(21) 11.417 10.883 2.127(2+), 3.304(2+), 3.916(0+)

38Ar(18,20) 0.0629% 3.4028(19) 11.838 10.242 2.167(2+), 3.377(0+), 3.810(3-)

42Ca(20,22) 0.647% 3.5081(21) 11.480 10.2776 1.524(2+), 1.837(0+), 2.424 (2+)

46Ti(22,24) 8.25% 3.6070(22) 13.189 10.344 0.889(2+), 2.009(4+), 2.611(0+)

δR ch
R ch

≈ 0.0
6%
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Skin for N = Z+2 small: small neutron excess vs. Coulomb repulsion of protons 

Direct access to ISB via  —> theory to relate to R2
wk − R2

ch ≈ R2
n − R2

p δC Work	in	progress	with	Sonia	Bacca

AddiLonally: charge radii of unstable 0
+
 isotopes at rare isotope faciliLes (FRIB, GSI, TRIUMF)

SnowMass2021	h[ps://snowmass21.org/start:	Call	for	EOI	

Plan	submi]ng	an	EOI	(with	Albert	Young	—	part	of	FRIB)	

https://nds.iaea.org/relnsd/vcharthtml/VChartHTML.html
https://nds.iaea.org/relnsd/vcharthtml/VChartHTML.html
https://snowmass21.org/start
https://snowmass21.org/start


Summary

• Nuclear structure plays a crucial role in low-energy precision tests 

• Nuclear beta decays: ISB effects in nuclei - major ingredient on the path to Vud and 

CKM unitarity 

• Neutron skins of selected daughter nuclei as an independent constraint on  

• A richer context for PVES — enhanced physics output

δC
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Adver8sement
Upcoming MITP *presence* workshop  

“Physics OpportuniLes with the Gamma Factory”, November 30 - December 4, 2020  

Organizers: Dmitry Budker, Witek Krasny, MG, Adriana Palffy, Andrei Surzhikov 

A teaser at this workshop:  

Talk by W. Krasny on “TerLary  beams at Gamma Factory” - Thursday, July 30ν(ν̄)



Thank	you	for	your	a[en8on		

and		

Looking	forward	to	an	exci8ng	workshop!


