Uncertainty quantification in R-matrix calculations

Uncertainties in Calculations of Nuclear Reactions of Astrophysical Interest

7-11 December 2020

Mainz Institute for Theoretical Physics, Johannes Gutenberg University

Mark Paris & Gerry Hale

8 December 2020

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

Outline

- Overview
- Bloch-Green formalism
- Application to ⁷Li compound system
- Uncertainty quantification

LANL light-element program

- All compound systems A<20 (and a few above)
- Recent work in 2020:

Projectile\Target	$^{1}\mathrm{H}$	$^{2}\mathrm{H}$	$^{3}\mathrm{H}$	³ He	⁴ He	⁶ Li	⁷ Li
n	2020	VIII.0	VIII.0	VIII.0	VIII.0	2020	VIII.0
p	2020	VIII.0	VIII.0	VIII.0	2020	VIII.0	VIII.0
d		VIII.0	VIII.0	2020	$VIII.0^{a}$	VIII.0	VIII.0
t			VIII.0	VIII.0	2020	VIII.0	TENDL09
$h(^{3}\text{He})$				VIII.0	VIII.0	VIII.0	TENDL09
α					VIII.0	TENDL09	TENDL09

¹¹ B (α+ ⁷ Li, α+ ⁷ Li [*] , ⁸ Be+t, n+ ¹⁰ B); ¹¹ C (α+ ⁷ Be, p+ ¹⁰ B)
¹² C (⁸ Be+α, p+ ¹¹ B)
¹³ C (n+ ¹² C, n+ ¹² C [*])
¹⁴ C (n+ ¹³ C)
¹⁵ N (p+ ¹⁴ C, n+ ¹⁴ N, α+ ¹¹ B)
¹⁶ O (γ + ¹⁶ O, α + ¹² C)
¹⁷ O (n+ ¹⁶ O, α+ ¹³ C)
¹⁸ Ne (p+ ¹⁷ F, p+ ¹⁷ F [*] , α+ ¹⁴ O)

Bloch-Green formalism Reaction theory

Wigner PR72 29 1947
Lane&Thomas RMP30 257 1953
Bloch NP4 503 1957

• Solve Schrodinger given external solution ('a' chan. rad.)

$$[H-E]\Psi = 0, \qquad [H-E+\mathscr{L}]\Psi = \mathscr{L}\Psi, \qquad \Psi = r^{-1} \Big[I - OS \Big]_{r \ge a}$$

$$\Psi = G\mathscr{L}\Psi, \qquad \qquad G = [H-E+\mathscr{L}]^{-1}, \qquad \qquad \mathscr{L} = a^{-1} \Big(\rho \frac{\partial}{\partial \rho} - B\Big)$$

$$I - OS = R \left(\rho \frac{\partial}{\partial \rho} - B\right) [I - OS], \qquad R \equiv G \Big|_{\mathscr{S}}, \qquad \qquad \rho \frac{\partial}{\partial \rho} O = LO$$

$$S = O^{-1}I + 2i\rho O^{-1}R_L O^{-1}, \qquad R_L = [1 + R(B - L)]^{-1}R, \qquad \rho \frac{\partial}{\partial \rho} I = LI - 2i\rho O^{-1}$$

• External (Coulomb) wave function relations

$$O = I^* = G + iF, \qquad 1 = GF' - G'F,$$
$$L = \rho O^{-1} \frac{\partial}{\partial \rho} O \equiv S + iP, \qquad S = \rho \frac{GG' + FF'}{G^2 + F^2}, \qquad P = \rho \frac{1}{G^2 + F^2}$$

Bloch-Green formalism

S-matrix unitarity

$$S = O^{-1}I + 2i\rho O^{-1}R_L O^{-1}$$

$$S^{\dagger} = OI^{-1} - 2i\rho I^{-1}R_L^{\dagger}I^{-1}$$

$$S^{\dagger}S = 1 + 2i\rho I^{-1}R_L^{\dagger} \left[(R_L^{-1})^{\dagger} - R_L^{-1} + 2i\rho I^{-1}O^{-1} \right] R_L O^{-1}$$

$$R_L^{-1} = R^{-1} + B - L$$

$$B = B^* \implies L - L^* = 2i\rho I^{-1}O^{-1} \text{ or } P = \rho \frac{1}{G^2 + F^2}$$

$$R_{c'c} = (c' | [H + \mathscr{L} - E]^{-1} | c) = \sum_{\lambda} \frac{\gamma_{c'\lambda}\gamma_{c\lambda}}{E_{\lambda} - E}$$

- Unitarity requires B real
- Energy independent level E_λ and reduced width $\gamma_{c\lambda}$ require B constant
- Unitarity is preserved for finite set {E_{λ}, $\gamma_{c\lambda}$ }

Unitarity implications

$$\begin{cases} \delta_{fi} &= \sum_{n} S_{fn}^{\dagger} S_{ni} \\ S_{fi} &= \delta_{fi} + 2i\rho_{f} T_{fi} \\ \rho_{n} &= \delta(H_{0} - E_{n}) \end{cases}$$

$$T_{fi} - T_{fi}^{\dagger} = 2i \sum_{n} T_{fn}^{\dagger} \rho_{n} T_{ni}$$

Implications of unitarity constraint on transition matrix

- 1. Doesn't uniquely determine T_{ij} ; highly restrictive, however Elastic: Im $T_{11} = -\rho_1$, $E < E_2$ (assuming T & P invariance) Multichannel: Im $T = -\rho$
- 2. Unitarity violating transformations
 - Scaling single ampl: $T_{ij} \rightarrow \alpha_{ij}T_{ij}$ $\alpha_{ij} \in \mathbb{R}$
 - Phase x-form: $T_{ij} \to e^{i\theta_{ij}}T_{ij}$ $\theta_{ij} \in \mathbb{R}$
 - \star consequence of linear 'LHS' \propto quadratic 'RHS'
- 3. Unitary parametrizations of data provide constraints that experiment may violate
 - * normalization, in particular • Observable \propto KF $|T_{fi}|^2$

R-matrix evaluation for light nuclear systems

- Cross section evaluation for light-elements (A≦20)
 - Quantum mechanical R-matrix (Wigner)
 - Correlates *all* experimental data simultaneously
 - pol/unpol; neutrons/charged-particles
 - Elastic/inel/transfer/reaction/break-up
 - Upper energy-limit restricted (break-up) < 20 MeV

EDA evaluation procedure

Summary of ⁷Li R-matrix Analysis

Channel	I _{max}	a _c (fm)
t+4He	5	4.0
n+ ⁶ Li	3	5.0
d+ ⁵ He	1	7.5
n+ ⁶ Li*	1	5.0
p+ ⁶ He	1	5.0
n+ ⁶ Li ^{**}	1	5.5

Reaction	Energy range	Observables	# data points	χ²/point
⁴ He(t,t) ⁴ He	E _t = 3-17 MeV	$\sigma(\theta), A_y(\theta)$	1689	1.03
⁴ He(t,n) ⁶ Li	E _t = 8.75-14.4 MeV	σ(θ)	39	1.14
⁴ He(t,n) ⁶ Li [*]	E _t = 8.75-14.4 MeV	σ(θ)	3	0.42
⁶ Li(n,t) ⁴ He	E _n = 0-8 MeV	σ_{int} , $\sigma(\theta)$	2840	1.44
⁶ Li(n,n ₀) ⁶ Li	E _n = 0-8 MeV	$\sigma_{\text{int}},\sigma_{\text{T},}\sigma(\theta),P_{y}(\theta)$	1451	1.36
⁶ Li(n,d) ⁶ Li	E _n = 0-8 MeV	σ_{int} , $\sigma(\theta)$	28	11.9
⁶ Li(n,n ₁) ⁶ Li [*]	E _n = 0-8 MeV	$\sigma_{\text{int}},\sigma(\theta)$	175	2.11
⁶ Li(n,p) ⁶ He	E _n = 0-8 MeV	$\sigma_{\text{int}},\sigma(\theta)$	92	1.58
⁶ Li(n,n ₂) ⁶ Li**	E _n = 0-8 MeV	o _{int}	41	0.30
Totals		17	6358	1.39*

*For **170** free parameters, $\chi^2/\nu = 1.43$

Cross Sections for the n+6Li Reactions

⁶Li(n,n')dα

$$\sigma_{n,n'd\alpha} = \sigma_{n,T} - (\sigma_{n,t} + \sigma_{n,\gamma} + \sigma_{n,n_0} + \sigma_{n,n_2} + \sigma_{n,p} + \sigma_{n,2n})$$

It is somewhat lower in the peak than the previous evaluation because the total cross section is lower for $E_n > 5$ MeV (Abfalterer data), and the elastic cross section is higher.

Covariance matrix

The parameter covariance matrix is $C_0 = 2G_0^{-1}$, and so first-order error propagation gives for the cross-section covariances

$$\chi^{2}(\mathbf{p}) = \chi_{0}^{2} + (\mathbf{p} - \mathbf{p}_{0})^{\mathrm{T}} \mathbf{g}_{0} + \frac{1}{2} (\mathbf{p} - \mathbf{p}_{0})^{\mathrm{T}} \mathbf{G}_{0} (\mathbf{p} - \mathbf{p}_{0}) \begin{cases} \chi_{0}^{2} = \chi^{2}(\mathbf{p}_{0}) \\ \mathbf{g}_{0} = \nabla_{\mathbf{p}} \chi^{2}(\mathbf{p}) |_{\mathbf{p} = \mathbf{p}_{0}} \approx 0 \\ \mathbf{g}_{0} = \nabla_{\mathbf{p}} \chi^{2}(\mathbf{p}) |_{\mathbf{p} = \mathbf{p}_{0}} \approx 0 \end{cases}$$

Parameter variance

- Consider variations near solution $\{p_{1,i}\}_{i=1}^{N_1} \{p_{2,i}\}_{i=1}^{N_2}$ $\Delta \chi^2(p) = \delta p_1 A \delta p_1 + \delta p_1 B \delta p_2 + \delta p_2 B^T \delta p_1 + \delta p_2 D \delta p_2 \qquad C_0^{-1} = \begin{pmatrix} A & B \\ B^T & D \end{pmatrix}$
- How does χ^2 change when {p₂} move and re-optimize $\Delta \chi^2$ via {p₁}? $\Delta \chi^2(p_1 + \delta p_1^{\min}, p_2 + \delta p_2) = \sum_{\alpha,\beta=N_1+1}^{N_2} \delta p_{2,\alpha} \tilde{D}_{\alpha\beta}^{-1} \delta p_{2,\beta}$
- \tilde{D}^{-1} is the restriction of the inverse of C_0 to p_2 subspace; let $N_2=1$

$$(\delta p_{2,\alpha})^2 = \Delta \chi^2 C_{0,\alpha\alpha} \qquad \qquad \Delta \chi^2 = 1 \implies \delta p_{2,\alpha} = \sqrt{C_{0,\alpha\alpha}}$$

• NB: larger dimensional parameter spaces give smaller $\delta p_{2,\alpha}$

Uncertainties from chi-squared minimization

$$\chi^{2}_{\text{EDA}} = \sum_{i} \left[\frac{nX_{i}(\mathbf{p}) - R_{i}}{\Delta R_{i}} \right]^{2} + \left[\frac{nS - 1}{\Delta S / S} \right]^{2}$$

 $\begin{cases} R_i, \Delta R_i = \text{relative measurement, uncertainty} \\ S, \Delta S = \text{experimental scale, uncertainty} \\ X_i(\mathbf{p}) = \text{observable calc. from res. pars. } \mathbf{p} \\ n = \text{normalization parameter} \end{cases}$

Near a minimum of the chi-squared function at $\mathbf{p} = \mathbf{p}_0$:

$$\chi^{2}(\mathbf{p}) = \chi_{0}^{2} + (\mathbf{p} - \mathbf{p}_{0})^{\mathrm{T}} \mathbf{g}_{0} + \frac{1}{2} (\mathbf{p} - \mathbf{p}_{0})^{\mathrm{T}} \mathbf{G}_{0} (\mathbf{p} - \mathbf{p}_{0}) = \chi_{0}^{2} + \Delta \chi^{2}. \qquad \begin{cases} \chi_{0}^{2} = \chi^{2}(\mathbf{p}_{0}) \\ \mathbf{g}_{0} = \nabla_{\mathbf{p}} \chi^{2}(\mathbf{p}) |_{\mathbf{p} = \mathbf{p}_{0}} \approx 0 \\ \mathbf{G}_{0} = \nabla_{\mathbf{p}} \mathbf{g}(\mathbf{p}) |_{\mathbf{p} = \mathbf{p}_{0}} \end{cases}$$

Conventions:

1) previous: $\Delta \chi^2 = 1 \implies \text{Very small uncertainties } \delta p_i = (C_{ii}^0)^{1/2} \sim \mathcal{O}(N_p^{-1/2})$ 2) improved: $\Delta \chi^2 = \frac{1}{2} \Delta \mathbf{p}^{\mathrm{T}} \mathbf{G}_0 \Delta \mathbf{p} \le \Delta \chi^2_{\max},$ $P(\Delta \chi^2 | k) = \left[2^{\frac{k}{2}} \Gamma(\frac{k}{2}) \right]^{-1} \int_{0}^{\Delta \chi^2_{\max}} t^{\frac{k}{2}-1} e^{-\frac{t}{2}} dt = \text{CL (e.g. } \sim 0.68 \text{ for } 1-\sigma), 0.95 \text{ for } 2-\sigma, \text{etc.}$ $\Delta \chi^2_{\max} \approx k = \langle \Delta \chi^2 \rangle.$ $\delta p_i \sim (N_p C_{ii}^0)^{1/2}$

Application to NN system

Conclusions & Outlook

- R-matrix
 - Correlates all processes associated with a given compound system
 - Enforces
 - Causality; proper complex-analytic properties; multichannel/multiprocess unitarity
 - Single-observable fits? Caveat Emptor.
- Systematic improvement
 - More data
 - Polarized observables
 - Higher-energy data
- Uncertainty quantification
 - Currently
 - χ^2 minimization with per-experimental setup normalization
 - Appears sufficient for 2→2 body scattering/reactions, single compound system
 - Planned
 - Bayesian statistical methods
 - Data covariances
 - Several compound systems concurrently