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From novae to nuclear reactions
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how do we measure charged- particle capture
in the Gamow window?

< (p,y) cross sections are very low
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<> (d,n) cross sections are many orders of magnitude higher!
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Applications to recent (p,g) measurements

%Ni(d,ny)°’Cu to extract *°Ni(p,y)°*’Cu

NSCL: S800 for PID (°>’Cu) + GRETINA for y

*6Ni(d,n)*’Cu

Eex Jr 14 Oexp (MD) Oy, (mb)  C%S(g C%Ssm

1.028 5/2 3 2.00(40) 2.62 0.76(28) 0.75

1.109 12~ 1 0.28(6) 0.45 0.62(22) 0.71

2398 52~ 3 <0.2 2.61 <8 x 1072 1.8 x 1073

2525 72~ 3 <02 145 - 3.9 x 102
6Ni(d, p)*’Ni

Eex Jr € Oep (mb) oy (mb)  C%Syp C2Ssm

0768 52— 3  210(60) 2.77 0.77(31) 0.74

1122 12~ 1 0.50(15) 0.68 0.73(31) 0.69

2443 52— 3 <04 2.61 <0.1 3x 1074

2579 727 3 124(36) 14.9 83) x 1072 4.1x 1072

Angle
integrated
Cross
section
only

Dahl, Woods, Poxon-Pearson, et al, PLB 797 (2019) 134803



Applications to recent (d,n) measurements

Eex (keV) E: (keV) JT I'p (eV)
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From neutron star mergers to reactions
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how do we measure neutron capture on
unstable nuclei?

<~ (n,g) cross sections on unstable nuclei: Currently Impossible!

\\|////

‘/‘@\\ %

“0)

< transfer offers an indirect measurement!
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.
Applications to recent (n,y) measurements

9Mo(d,py)?**Mo to extract ®*Mo(n,y)**Mo

Compound nucleus (n,y) is determined through:

oy (En) = DTN (Eoxr ) O (E e 1)

J.r
xs for formation of CN  branching ratios
(depends on OP) from surrogate
experiment

Compound nucleus (d,py) is determined through:

Pi(EeiOp) = S F§N e 7.0, (Eerr D)
J.

Ratkiewicz, Cizewski, Escher, Potel, et al. PRL 122, 052502



Theory for deuteron induced transfer:
populating compound states in continuum

< Two-step process

4 %
Step 2:
Prot.on_/ n is captured
— Source term generates

s
LY

neutron O flux from breakup
S = (Xpl(Uap — Uad + Uan)| Xa®ba)
Step 1:
d — n+p

Neutron propogates in the field
of the target after breakup

d, =GY'S

target Potel, Nunes, Thompson, PRC92 (2015) 034611



S
Applications to recent (n,y) measurements

Compound nucleus (d,py) is determined through:

L-distributions in (d,p) are different from those in (n,g)
reaction theory provides essential input

%Mo(d,py)**Mo*

40
35 = Total 10° %95MO(H,Y)96MO*
- Total EB - T
< 30f === Total NEB %
g | == NEB for /=0 2 10-11
S 25[ —-- NEBfor =1 g
f} 20r —=~ NEB for =2 a "1+ Kapchigashev (1964)
T —== NEB for £=3 8 _,| * DeL. Musgrove (1976)
"26 151 Lo NEBfor £>3 1075~ EnDF/B-VIILO
T 10} -+ Weisskopf-Ewing Approximation
—— 9Mo(d, p) Surrogate Data (this work)
103 : :
1072 101 10°

Neutron Energy (MeV)

Excitation Energy (MeV) Ratkiewicz, Cizewski, Escher, Potel, et al. PRL 122, 052502
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Mapping the many-body onto the few-body

v' solving the few-body scattering problem?

? the effective interactions  (parametric uncertainties)

? target excitations/3-body force/other channels
(model uncertainties)



Effective interactions? Optical potentials

@ =@

U, is intrinsically non-local, L-dependent, E-dependent

Phenomenological approach:
fit a set of data (typically elastic scattering)
extract model parameters of an assumed shape
typically local, L-independent, strongly E-dependent

U(R)= VIR, 1, a) + WHR, r,, a,) + Wf(R, r,, a,) + Vo + Ve



A
A map of global optical potentials
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energy 4
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L
How to quantify uncertainties

~ = @

We develop a hypothesis (model) optical model
with a set of parameters (priors) [T+U(R)-EJy=0

We confront it with reality (data)
typically elastic scattering angular
distributions (likelihood)

10!
95% confidence intervals

Constraints on
the model

Use Bayes’ Theorem + Markov ¢,
5

Chain Monte Carlo to sample “—§
parameter Space 1070 20 40 60 80 100 120 140 160 1:2 L

6 (deg)

40 45 50 55 60
V (MeV)



L
Setting up the UQ part

~ = @

Priors: Gaussians with mean at the BG global parameters
and width 100% of the mean

Data: real data versus mock generated from KD global
parameters with 10% error

Likelihood: assumption that data points are
independent and errors are normally distributed

n 2
0: parameters p(D6, £, {o?}) o exp (_lz (yz — f(zfri,H)) )

o: independent errors 2 o;
X: angles

y: experimental cross section

f: model prediction for cross section




The formulation of the likelihood matters

UC — uncorrelated chi2 frequentist
C — correlated chi2 frequentist
B - Bayesian
40Ca(p,p)*°Ca at 26.3 MeV
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Lovell, Nunes, Catacora-Rios, King, JPG (2020)



10

Optical model uncer

rainties:

comparing frequentist and Bayesian
‘llipa(p,p) at 25 MeV

4 Ca(n,n) at 12 MeV
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ainties:

=

Optical model uncer

comparing frequentist and Bayesian

=

48Ca(n,n) at 1

look very different to the frequentist

parameter correlations in Bayesian
approach
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Propagating optical model uncertainties to (d,p)
comparing frequentist and Bayesian
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<
Angular information needed?
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Catacora-Rios, King, Lovell and Nunes, PRC (2019)



Which observable offers best constraint?

10°

107t

do/dQ (Ratio to Rutherford)

do/dQ (Ratio to Rutherford)

20 40 60 80 100 120 140 160 180
(deg)

20 40 60 80 100 I20 140 160 180

20 40 60 80 100 120 140 160 180

48Ca(p,p)*eCa at 12 MeV

48Ca(p,p)*eCa at 21 MeV

6 (deg) 6 (deg)
Observable|E (MeV)| V (MeV) r (fm) a (fm) W (MeV) rs (fm) as (fm)
% 12.0 |59.48 (4.12)]1.173 (0.052) [0.699 (0.051)(9.476 (0.960)|1.294 (0.084)|0.571 (0.049)
1T, 12.0 |60.65 (5.22)[1.159 (0.057)|0.699 (0.067)|9.704 (0.954)[1.273 (0.079)(0.595 (0.080)
o 21.0 |55.57 (4.11)|1.178 (0.052)(0.661 (0.057)|7.857 (0.767)|1.297 (0.083)|0.572 (0.051)
111 21.0 |57.16 (4.44)|1.165 (0.047)|0.691 (0.046)|8.011 (1.007){1.260 (0.073)(0.579 (0.076)

Catacora-Rios, King, Lovell and Nunes, PRC (2020) under review



What is the information content of the data?

Bayesian evidence: provides information contained in a data set.
Integral of the likelihood times the prior over full parameters space

p(d| M) = [ p(dlor, M)p(aM)dary

Qm

Reaction P(dIM) dosa) |P(AIM) Ty | R
“Ca(n,n) at 12 MeV | 0.198(0.017)| 0.190(0.044)|1.04
“®Ca(p,p) at 12 MeV | 0.142(0.043)| 0.112(0.035) |1.27
“®Ca(p,p) at 21 MeV | 0.171(0.036)| 0.118(0.027)|1.44
208Ph(n,n) at 30 MeV| 0.016(0.003)| 0.039(0.010)|0.42
208Ph(p,p) at 30 MeV| 0.233(0.044)| 0.086(0.018)|2.72
208Ph(p,p) at 61 MeV| 0.157(0.051)| 0.196(0.049)|0.80

R Strength of evidence

1to0 3.2 | Not worth more than a bare mention

321010 Substantial TABLE II: Bayesian evidence (multiplied by 10~2) for the
different reactions considered: using only cross section data

1010 100 Strong (2nd column), using only polarization data (3rd column), and
> 100 Decisive the ratio between the Bayesian evidence with cross section

data over that with polarization data (the Bayes’ factor).
Kass and Raftery,

J. Amer. Stat. Assoc 9 (430) 791 Catacora-Rios, King, Lovell and Nunes, PRC (2020) under review



What do we learn from sensitivities?

how much variation in parameter x; is produced <8:Ez> G-
ib™pq

by a variation on observable y,_? 97a
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Catacora-Rios, King, Lovell and Nunes, PRC (2020) under review



Comparing models

40Ca(d,p)*'Ca at 28.4 MeV
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Lovell, Nunes, Catacora-Rios, King, JPG (2020)
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Opportunities for the next Syrs

[ go beyond the simplest reaction models
O quantify model uncertainties
d perform model mixing

Computational challenge: need Emulators

Eigenvector continuation method for scattering
to reduce the dimensionality of the problem
Furnstahl et al. PLB 809 (2020) 135719
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QUILTR

Quantifying Uncertainties in Low energy Theory for Reactions

It's a suite of codes including Bayesian MCMC for optical model
calibration and propagation of uncertainties to transfer reactions

ingl
=~ -'49‘

Wrappers built on: - e EBA0]
FRESCO (by lan Thompson) (by Amy Lovell)



Physics Problem
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Bayesian Analysis of Nuclear Dynamics
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https://bandframework.github.io

SO Theory (ISNET v8)
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Bayesian Analysis of Nuclear Dynamics (BAND)
FIRST ANNUAL BAND CAMP
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9 AM-5 PM, EST

In association with the ISNET v8 Workshop, the BAND Collaboration is sponsoring a one-day series of
on-line pedagogical lectures aimed at providing a foundation for nuclear physicists in modern
Bayesian statistical methodologies. The program consists of three extended lectures, including
discussion.

PROGRAM

Michael Grosskopf
Computer, Computational, and Statistical Sciences Division,Los Alamos National Laboratory
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Simon Mak
Department of Statistical Science, Duke University
"Applications of Model Emulators for Parameter Estimation”

Matthew Pratola
Department of Statistics, The Ohio State University
"Model Mixing and Averaging"
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In conclusion:

Transfer reactions offer a versatile tool for extracting capture rates for
astrophysics (many recent applications with impact on astrophysics)

Reactions theories is needed to interpret the indirect measurements
and obtain reliable capture rates

Uncertainty quantification is an essential ingredient and Bayesian
analysis offers many new avenues and a promising future of
collaboration with experiment.
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