Capture Reactions in Effective Field Theories Gautam Rupak

MITP

VIRTUAL

WORKSHOP

E

Uncertainties in Calculations of Nuclear Reactions of Astrophysical Interest December 7 – 11, 2020

https://indico.mitp.uni-mainz.de/event/215/

Global Perspective

I look at several different reactions each with its own halo/cluster EFT.

Uncertainty quantification is system specific.

Still, what are the essential inputs for EFT?

Origin: Bertulani, Hammer, van Kolck, NPA 712, 37 (2002) Bedaque, Hammer, van Kolck, PLB 569, 159 (2003)

Review articles: Hammer, Ji, Phillips, JPG 44, 103022 (2017) Hammer, König, van Kolck, RMP 92, 025004 (2020)

One Slide on Effective Field Theories

Weinberg's 3rd law of progress in Theoretical Physics :

You may use any degree of freedom you like to describe a physical system ,but if you use the wrong one, you will be sorry.

 $\mathcal{L}_{\text{interaction}} = c_0 \mathcal{O}^{(0)} + c_1 \mathcal{O}^{(1)} \dots$

- : low-energy particle at momenta $p \sim Q$ $\mathcal{O}^{(i)}$
- hides short distance physics at momenta $\Lambda \gg Q$
- Expansion in $\frac{Q}{\Lambda}$... which is system dependent Platter and Phillips talks

Important: EFT is an expansion in energy/momentum not number of particles.

Anatomy of a Capture Reaction

Initial state: Phase shifts provide a model independent description Final state: Again, phase shifts (affects overall normalization) EM currents: One-body, two-body

These are the 3 sources of errors (in EFT).

EFT and Phase Shift

Hamilton, Overbö, Tromborg, NPB 60, 443 (1973) Higa, Rupak, Vaghani; EPJA 54, 89 (2018)

The numerical values of the scattering parameters a_l , r_l , etc., affect the perturbation and so the uncertainty estimates.

Bound State Normalization

$$\frac{1}{\mathcal{Z}^{(\zeta)}} = \frac{\partial}{\partial p_0} [D^{(\zeta)}(p_0; \boldsymbol{p})]^{-1} \Big|_{p_0 = p^2/(2\mu) - B}$$

p-wave bound states are a little subtle : $\mathcal{Z}^{(\zeta)} \propto \frac{1}{\rho_1^{(\zeta)} - f(k_C, \gamma)}$

Need both binding energy and effective momenta at LO. Small change in ρ_1 can affect cross section by large amount Rupak, Higa, PRL 106,222501 (2011) Higa, Premarathna, Rupak, arXiv:2009.09324

$$f(k_C, \gamma) = 4k_C H\left(-i\frac{k_C}{\gamma}\right) + \frac{2k_C^2}{\gamma^3}(k_C^2 - \gamma^2)\left[\psi'\left(\frac{k_C}{\gamma}\right) - \frac{\gamma^2}{2k_C^2} - \frac{\gamma}{k_C}\right]$$
$$\stackrel{k_C \to 0}{=} 3\gamma$$

Connection to *ab initio* calculation Zhang, Nollett, Phillips, PRC 89, 024613 (2014)

Asymptotic Normalization Constant (ANC)
$$|C_b|^2 = \frac{\gamma^{2l}}{\pi\mu^{2l-2}} \left[\Gamma(l+1+\eta_b)\right]^2 \frac{2\pi}{\mu} \mathcal{Z}$$

Higa, Premarathna, Rupak, arXiv:2010.13003

EM currents

1-body currents obtained from minimal substitution and magnetic moments

2-body currents are a source of uncertainty, usually subleading

Source of irreducible error, not constrained by Siegert/Ward-Takahashi theorem

 $u+d \qquad$ Butler, Chen, NPA 675, 575 (2000) $np
ightarrow d\gamma \qquad$ Rupak, NPA 678, 405 (2000)

$^{3}\mathrm{He}(lpha,\gamma)^{7}\mathrm{Be}$ in halo EFT

³He and α as point particles

 $\frac{3}{2}$ ground and $\frac{1}{2}$ excited state of ⁷Be as p-wave bound state

E1 capture from initial s- and d-wave state

 $Q \sim 60 - 70 \text{ MeV}$ $\Lambda \sim 150 - 200 \text{ MeV}$ Higa, Rupak, Vaghani; EPJA 54, 89 (2018) Premarathna, Rupak; EPJA 56, 166 (2020) Zhang, Nollett, Phillips; JPG 47, 054307 (2020)

Power Counting (Survey)

The size of a_0 determines the relative importance of initial state interaction and 2-body currents which can be as important as the LO "tree-level".

Knowledge of scattering phase shift helps in constructing the EFT and uncertainty estimates. How come potential models don't need 2-body currents?

ANC
$$\propto \frac{1}{\rho_1^{(\zeta)} - f(k_C, \gamma)}$$
 Sits near a pole in this system

Bayesian inferences for ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$

Fits	a_0 (fm)	$r_0~({ m fm})$	$s_0~({ m fm}^3)$	$ ho_1^{(+)}~({ m MeV})$	$\sigma_1^{(+)}~({ m fm})$	$ ho_1^{(-)}~({ m MeV})$	$\sigma_1^{(-)}~({ m fm})$	$L_1^{(+)}$	$L_1^{(-)}$	K
χ^2	22 ± 3	1.2 ± 0.1	-0.9 ± 0.7	-55.4 ± 0.5	1.59 ± 0.03	-41.9 ± 0.7	1.74 ± 0.05	0.78 ± 0.06	0.83 ± 0.08	—
Model A I	48^{+2}_{-2}	$1^{+0.09}_{-0.1}$	$-1.8^{+1}_{-0.9}$	-72^{+5}_{-8}	$2.1\substack{+0.2 \\ -0.2}$	-49^{+3}_{-6}	$2^{+0.2}_{-0.1}$	$1.4^{+0.2}_{-0.1}$	$1.2^{+0.2}_{-0.1}$	$0.3\substack{+0.4\\-0.2}$
Model B I	38^{+3}_{-2}	$1.1^{+0.1}_{-0.1}$	-2^{+1}_{-1}	$-61.6\substack{+0.6\\-0.6}$	$1.77\substack{+0.03 \\ -0.04}$	-48^{+1}_{-7}	$2^{+0.2}_{-0.08}$	$1.13\substack{+0.03 \\ -0.02}$	$1.2^{+0.3}_{-0.08}$	$0.3\substack{+0.3 \\ -0.2}$
Model A [*] I	20^{+8}_{-5}	$-0.1^{+0.5}_{-0.7}$	-16^{+6}_{-8}	-89^{+9}_{-20}	—	-130^{+50}_{-70}	—	$3^{+1}_{-0.9}$	7^{+2}_{-3}	—
Model B [*] I	37^{+3}_{-10}	$1.1^{+0.1}_{-0.9}$	—	$-61.4^{+1}_{-0.8}$	—	-47^{+2}_{-6}	—	$1.14\substack{+0.09 \\ -0.04}$	$1.2^{+0.2}_{-0.1}$	—
Model A II	40^{+5}_{-6}	$1.09^{+0.09}_{-0.1}$	$-2.2^{+0.8}_{-0.8}$	-59^{+1}_{-2}	$1.69\substack{+0.05 \\ -0.06}$	-45^{+2}_{-2}	$1.84^{+0.08}_{-0.08}$	$1.02\substack{+0.06\\-0.06}$	$1.07\substack{+0.08 \\ -0.09}$	$0.3\substack{+0.3\\-0.2}$
Model B II	$7.3\substack{+0.7 \\ -0.7}$	$1.31\substack{+0.02\\-0.02}$	6^{+1}_{-1}	$-53.5\substack{+0.1\-0.1}$	$1.53\substack{+0.05 \\ -0.06}$	$-40.1^{+0.2}_{-0.2}$	$1.67\substack{+0.06 \\ -0.06}$	$-0.04^{+0.08}_{-0.1}$	$-0.01^{+0.09}_{-0.1}$	$2.2^{+0.6}_{-0.5}$
Model A* II	46^{+10}_{-4}	$1^{+0.1}_{-0.3}$	-3^{+5}_{-2}	-62^{+5}_{-4}	_	-51^{+4}_{-70}	_	$1.1^{+0.1}_{-0.2}$	$1.3^{+2}_{-0.2}$	_
Model B [*] II	5^{+1}_{-2}	$1.24_{-0.2}^{+0.04}$	_	$-53.\overline{5^{+0.1}_{-0.2}}$	_	$-40.2^{+0.2}_{-0.2}$	_	$-0.5^{+0.2}_{-1}$	$-0.4^{+0.2}_{-0.9}$	_

"Evidence" from data

Fit	$S_{34}(E_{\star}) \; (\text{keV b})$	$S'_{34}(E_{\star}) \ (10^{-4} \text{ b})$
χ^2	$0.558 \pm 0.008 {\pm} 0.056$	$-2.71 \pm 0.20 \pm 0.27$
Model A I	$0.541^{+0.012}_{-0.014} \pm 0.054$	$-1.34^{+0.64}_{-0.59}\pm0.13$
Model A II	$0.550^{+0.009}_{-0.010} \pm 0.055$	$-2.00^{+0.36}_{-0.35}\pm0.20$
Model A^* II	$0.551^{+0.021}_{-0.014} \pm 0.055$	$-1.86^{+0.72}_{-1.69} \pm 0.19$
Model B^* II	$0.573^{+0.007}_{-0.007} \pm 0.017$	$-3.72^{+0.11}_{-0.10} \pm 0.11$

TABLE I. ³He(α, γ)⁷Be: S_{34} and S'_{34} at threshold (defined as $E_{\star} = 60 \times 10^{-3}$ keV). The second set of errors are estimated from the EFT perturbation as detailed in the text.

We recommend A II if using shift information. Alternatively, A* II or B* II.

Higa, Rupak, Vaghani; EPJA 54, 89 (2018) Premarathna, Rupak; EPJA 56, 166 (2020)

recommended value from the review in Ref. [1] is: $S_{34}(0) = [0.56 \pm 0.02(\text{expt.}) \pm 0.02(\text{theory})] \text{ keV b.}$

Adelberger et al., RMP 83, 195 (2011)

$^{3}\mathrm{He}+lpha$ Phase Shift from SONIK

Table 5.3: The *s*-wave scattering parameters for ${}^{3}\text{He}{+}^{4}\text{He}$ system for different choice of data sets and energy range. The scattering parameters are calculated at *a*=4.2 fm. The combined data set refers to the simultaneous fitting of the SONIK data and the Barnard *et al.* [BJP64].

^{1.} "Elastic Scattering of ³He+⁴He with SONIK", S. N. Paneru, PhD thesis, 2020

Energy	Data Set	χ^2/N	a_0 (fm)	r_0 (fm)
<i>E</i> [³ He]<6 MeV	SONIK only	2.30	33.188	1.01
	Barnard et al. [BJP64] only	1.13	34.00	1.02
	Combined	1.86	33.57	1.01
<i>E</i> [³ He]<4 MeV	SONIK only	1.70	41.88	1.06
	Barnard et al. [BJP64] only	0.50	31.96	1.00
	Combined	1.37	38.43	1.04

Table 5.4: *s*-wave scattering parameters for the ${}^{3}\text{He}+{}^{4}\text{He}$ system.

a_0 (fm)	r_0 (fm)	Method	Reference
7.7	-	NCSMC	J. Dohet-Eraly et al. [DENQ ⁺ 16]
41.06	1.01	Microscopic	R. Kamouni and D. Baye [KB07]
		Cluster Model	
40^{+5}_{-6}	$1.09^{+0.09}_{-0.1}$	EFT	P. Premarathna and R. Gautam [PR20]
50^{+7}_{-6}	0.97 ± 0.03	EFT	X. Zhang et al. [ZNP20]

p-wave parameters would be good to know.

$^7{ m Be}(p,\gamma)^8{ m B}\,$ in halo EFT

- ⁷Be and p as point particles
- $\frac{3}{2}^{-}$ ground and $\frac{1}{2}^{-}$ excited state of ⁷Be can contribute
- E1 capture from initial s- and dwave state
- M1 capture from near the 1⁺ ⁸B

⁷Be excitation energy $E_* \sim 0.429 \text{ MeV}$

resonance

For $E > E_*$, an inelastic channel with excited ⁷Be channel opens. Expect it to be important above about 500 keV in spin channel S=1.

Spin channel S=2 is dominant.

EFT for about 500 keV EFT★ above 500 keV

 $Q \sim \gamma \sim k_C \sim p$ $\Lambda \sim 70 {
m MeV}$

Coupled Channel Calculation

Power Counting

- Expect initial scattering at low-energy to be peripheral
- Capture should still proceed without strong interaction as ⁸B is very shallow state

Strong interaction: $a_0(B+J) \sim a_0 Q^2$ $a_0^{(2)} = -3.18^{+0.55}_{-0.50} \text{ fm} \sim 1/\Lambda$, $a_0^{(1)} = 17.34^{+1.11}_{-1.33} \text{ fm} \sim 1/Q$ Paneru et al., PRC 99, 045807 (2019)

- LO: s-wave capture without strong interaction in spin S=2 channel
- NLO: d-wave capture in S=2, s-wave capture in S=1 without strong interaction
- NNLO: s-wave strong interaction in S=1,2 and d-wave in S=1 : excited core only relevant at NNLO

In 20/20 hindsight:

 $S_{17}/C_{1,\zeta}^2 \approx 35.6(1 - a_0 \, 0.00266 \, \text{fm}^{-1} + 0.0657 + \dots) \,\text{eV b fm}$

Baye, PRC 62, 065803 (2000) Zhang, Nollett, Phillips, PRC 98, 034616 (2018) Higa, Premarathna, Rupak, arXiv:2010.13003

Just ANCs

ANCs-*ab initio* : Zhang, Nollett, Phillips, PRC 89, 051602 (2014) PRC 89, 024613 (2014)

> Trache et al., PRC 67, 062801 (2003) Tabacaru et al., PRC 73, 025808 (2006) Nollett, Wiringa, PRC 83, 041001 (2011)

Bayesian fit below 500 keV

16

Bayesian fit up to 1000 keV

Cross Checks

S-factor Extrapolations

TABLE III. S_{17} and its first two energy derivatives at $E_0 = 50 \times 10^{-3}$ keV. The first set of errors are from the fits. The second set is the estimated LO 30%, NLO 10% and NNLO 3% EFT errors, respectively, from higher order corrections.

Theory	$S_{17} ({\rm eVb})$	$S'_{17}/S_{17} \; ({\rm MeV}^{-1})$	$S_{17}''/S_{17} \; ({\rm MeV}^{-2})$
EFT/EFT_{\star} I LO	24.4(0.3)(7.3)	-2.44(0.05)(0.73)	35.8(0.7)(10.8)
EFT/EFT_{\star} I NLO	21.1(0.3)(2.1)	-1.87(0.04)(0.19)	32.4(0.6)(3.2)
EFT I NNLO	20.7(0.3)(0.6)	-1.79(0.04)(0.05)	31.9(0.6)(1)
EFT_{\star} I NNLO	20.9(0.4)(0.6)	-1.82(0.08)(0.05)	31.9(0.8)(1)
EFT_{\star} II LO	24.8(0.3)(7.4)	-2.44(0.04)(0.73)	35.8(0.6)(10.8)
EFT_{\star} II NLO	19.8(0.2)(2)	-1.91(0.03)(0.19)	32.7(0.5)(3.3)
EFT_{\star} II NNLO	21.2(0.3)(0.6)	-1.89(0.04)(0.06)	31.9(0.6)(1)

$$S_{17}(0) = 21.0(7) \text{ eV b}$$

Fitting + theory error

Solar II [3] is $S_{17}(0) = 20.8(16) \text{ eV b}$. Adelberger et al., RMP 83, 195 (2011)

EFT S_{17}''/S_{17} larger by a factor of 3

Higa, Premarathna, Rupak, arXiv:2010.13003

Conclusions

- Initial state is constrained by phase shift parameters. Affects EFT power counting, and so error estimates. Higher orders kinematically suppressed. ${}^{3}\text{He}(\alpha, \gamma){}^{7}\text{Be}(p, \gamma){}^{8}\text{B}$, and much more
- Final state also related to phase shift. Large effect but exact at NLO: zed-parameterization. Interaction should describe binding energy and ANC. For example, ${}^{7}\text{Li}(n,\gamma){}^{8}\text{Li}$
- 2-body current usually higher order but not kinematically suppressed. Not constrained by Siegert theorem.
- Bayesian estimate of higher order EFT error?