Precision cross section measurements - requirements, procedures, validation

Daniel Bemmerer

08.12.2020, Mainz, MITP workshop on "Uncertainties in Calculations of Nuclear Reactions of Astrophysical Interest" FROM MATTER TO MATERIALS AND LIFE

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

Precision cross section measurements for nuclear astrophysics

- Astrophysical S-factor and thermonuclear reaction rate
- Precision cross section measurements, example ${}^{14}N(p,\gamma){}^{15}O$
- Interplay between experiment and theory, example ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$
- Experimental facilities
- Other examples and outlook

Astrophysical S-factor, thermonuclear reaction rate, Gamow peak

- Typical Coulomb barrier height : ~ MeV
- Typical temperature k_B * T ~ keV

Definition of the astrophysical S-factor S(E):

$$\sigma(E) = \frac{S(E)}{E} \exp\left[-2\pi Z_1 Z_2 \alpha \sqrt{\frac{\mu c^2}{2E}}\right]$$

$$E = \text{center of mass energy}$$

$$Z_1, Z_2 = \text{charge numbers of}$$

$$\mu = \frac{m_1 m_2}{m_1 + m_2} = \text{reduced mass}$$

Nucleus

Thermonuclear reaction rate formed by

- Maxwell-Boltzmann velocity distribution
- Coulomb barrier suppression of cross section

$$N_A \langle \sigma v \rangle = N_A \sqrt{\frac{8}{\mu \pi}} (k_{\rm B} T)^{-\frac{3}{2}} S(E) \times \int_0^\infty \exp\left[-\frac{E}{k_{\rm B} T} - \frac{b}{\sqrt{E}}\right] dE$$

Precision cross section measurements for nuclear astrophysics

- Astrophysical S-factor and thermonuclear reaction rate
- Precision cross section measurements, example ${}^{14}N(p,\gamma){}^{15}O$
- Interplay between experiment and theory, example ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$
- Experimental facilities
- Other examples and outlook

08.12.2020

$^{14}N(p,\gamma)^{15}O$, bottleneck of the hydrogen burning CNO cycle

- Slowest reaction of the six-step CNO-1 cycle determines its solar rate
- Coulomb barrier leads to ultra-low cross section in the 10⁻¹⁷ barn range
- Potential to directly measure C+N content in the solar core

¹⁴N(p,γ)¹⁵O, bottleneck of the hydrogen burning CNO cycle

- Many excited ¹⁵O levels accessible for ¹⁴N+p
- Astrophysics is affected by the sum of capture to several excited levels in ¹⁵O.
- A special role is played by the 6791 keV level.

- downwards.R-matrix re-fit also suggested
 - lower width... and lower S-factor

revised width of 6791 keV level

New nuclear-structure data

Daniel Bemmerer		Precision cross section measurements	Member of the Helmholtz Association	
Institute of Radiation Physics	08.12.2020		Page 6	

Experimental data on the ${}^{14}N(p,\gamma){}^{15}O$ S-factor

Ground state capture revised downwards

- Ion accelerators and detectors better in 2004/2005 than in 1987
- Long experimental campaigns
- Careful correction of summing artefacts
- Underground experiment (LUNA 2004)

Total S-factor

- γ-calorimeter sums over all transitions and emitted γ-rays
- Detection probability close to 1
- Low background underground
- Some dependence on theoretical input

The ${}^{14}N(p,\gamma){}^{15}O$ S-factor, status, lessons, outlook

Status

 Reduction of S-factor, and of its uncertainty (now 7%), from 1999 to 2013

Lesson

 Experiment – theory – experiment – theory interplay is needed for complicated cases such as this one!

Outlook

 Yet more work is needed, in experiment and theory, in order to reach 3-5% uncertainty.

Daniel Bemmerer Institute of Radiation Physics

08.12.2020

$^{14}N(p,\gamma)^{15}O$ S-factor, solar neutrino fluxes, and solar abundances

Neutrino fluxes from B16 Standard Solar Model, Vinyoles et al. 2017:

- GS98 = Old, high CNO elemental abundances
- AGSS09met = New, low **CNO** elemental abundances

than the models

2020 Borexino neutrino data slightly favor the old, high CNO elemental abundances...

... but a higher precision ${}^{14}N(p,\gamma){}^{15}O$ S-factor is needed!

■ IN-HOUSE RESEARCH

Precision cross section measurements for nuclear astrophysics

- Astrophysical S-factor and thermonuclear reaction rate
- Precision cross section measurements, example ${}^{14}N(p,\gamma){}^{15}O$
- Interplay between experiment and theory, example ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$
- Experimental facilities
- Other examples and outlook

³He(α,γ)⁷Be, at a crossroads of pp-chain hydrogen burning

- The solar neutrino producing pp-II and pp-III chains start with ³He(α,γ)⁷Be
- At higher temperatures and energies, the same reaction impacts Big Bang ⁷Li production

³He(α , γ)⁷Be experiment at LUNA

- Calibrated ³He gas target pressure, temperature, beam-heating
- Beam energy and intensity precisely known
- Precise knowledge of detection probabilities for reaction products γ and ⁷Be

Daniel Bemmerer		Precision cross section measurements	Member of the Helmholtz Association	
Institute of Radiation Physics	08.12.2020		Page 12	

³He(α,γ)⁷Be at LUNA, ⁷Be decay line at 478 keV

- Underground (Gran Sasso) suppression of cosmic-ray background.
- Orders of magnitude improvement of signal/noise ratio enables qualitative change.

³He(α , γ)⁷Be at LUNA, ⁷Be corrections and error budget

MML IN-HOUSE RESEARCH

Daniel Bemmerer Institute of Radiation Physics

08.12.2020

³He(α,γ)⁷Be: strength and limitation of underground data

MML IN-HOUSE RESEARCH

08.12.2020

- Big Bang 0.3-0.9 GK
- Sun 0.016 GK

Strength:

 500 times increased sensitivity underground, compared to the most advanced overground experiment

Limitation:

 Theory (very much) needed to extrapolate.

But:

 Theory can now be compared with data at high and low energies.

³He(α , γ)⁷Be reaction, S-factor data synopsis

Footnote: High-energy – low-energy connection may be used to connect Big Bang and the Sun

• Takács et al. Phys. Rev. D (2015), Nucl. Phys. A (2018)

Data, state of the art

- At 1 MeV many data sets
- At 0.1 MeV, one data set
- At 0.03 MeV, no data

Data extrapolation

- How to transfer information from the well-studied 1 MeV region to low energy?
- Extrapolation from the "Solar Fusion II" decadal review from an average of several theories (new edition planned for 2022)
- New theory curves upcoming (example shown: Neff)

³He(α , γ)⁷Be, running measurement of the γ -ray angular distribution

- Test experiment with 5 HPGe detectors at HZDR 3 MV Tandetron overground (preliminary data shown)
- Full experiment with 21 HPGe detectors at Felsenkeller 5 MV accelerator underground (running)

- HPGe detectors \rightarrow **EB17**, 7x60% \rightarrow **EB18**, 7x60% + BGO \rightarrow **MB1**, 3x60% + BGO
- \rightarrow MB2, 3x60% + BGO
- \rightarrow **IVIDZ**, 3X00% + DG
- → **Can60**, 1x60%

³He(α , γ)⁷Be reaction, general lessons and way forward

Low uncertainty for each data set

- Absolute target thickness (usually gas) or
- Target thickness relative to a standard
- Beam intensity, energy
- Probability of detecting reaction products
 Reproducibility
- Need several independent data sets with independent techniques
- ⁷Be activation, in beam γ-detection, accelerator mass spectrometry
- Community-accepted consensus value (Solar Fusion I, II, III workshops)

Transfer of experimental data from high to low energies

- Theory-based excitation function
- γ-ray angular distribution as additional information

For discussion

- Theory re-normalization possible?
- What about the mirror reaction ³H(α,γ)⁷Li?

Precision cross section measurements for nuclear astrophysics

- Astrophysical S-factor and thermonuclear reaction rate
- Precision cross section measurements, example ¹⁴N(p,γ)¹⁵O
- Interplay between experiment and theory, example ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$
- Experimental facilities
- Other examples and outlook

LUNA 0.4 MV accelerator deep underground

LUNA = Laboratory Underground for Nuclear Astrophysics

- IT, DE, HU, UK
- Cosmic rays strongly suppressed

New LUNA-MV 3.5 MV accelerator for ¹H, ⁴He, ¹²C beams: Installation in Gran Sasso hall B very soon

Daniel Bemmerer Institute of Radiation Physics

08.12.2020

Dresden, Germany: Felsenkeller 5 MV underground accelerator

Joint effort HZDR – TU Dresden

- HZDR: 5 MV Pelletron, 30 µA beams of ¹H⁺, ⁴He⁺ (single-ended), ¹²C⁺ (tandem)
- TU Dresden: 150% ultra-lowbackground HPGe detector for offline γ-counting

Start of beam operations July 2019

- ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be with }{}^{4}\text{He beam}$
- ${}^{12}C(\alpha,\gamma){}^{16}O$ with ${}^{12}C$ beam
- Plan to open for external users in 2021

Daniel Bemmerer Institute of Radiation Physics

MML IN-HOUSE RESEARCH

08.12.2020

Precision cross section measurements for nuclear astrophysics

- Astrophysical S-factor and thermonuclear reaction rate
- Precision cross section measurements, example ¹⁴N(p,γ)¹⁵O
- Interplay between experiment and theory, example ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$
- Experimental facilities
- Other examples and outlook

08.12.2020

Big Bang ²H studied at LUNA : Nature 587, 210-213 (2020)

R

0

Article The baryon density of the Universe from an improved rate of deuterium burning

ttps://doi.org/10.1038/s41586-020-2878-4	V. Mossa ¹ , K. Stöckel ^{2,3} , F. Cavanna ^{4,26} , F. Ferraro ^{4,5} , M. Aliotta ⁶ , F. Barile ¹ , D. Bemmerer ² ,
eceived: 7 May 2020	A. Best ⁷⁸ , A. Boeltzig ⁹¹⁰ , C. Broggini ¹¹ , C. G. Bruno ⁶ , A. Caciolli ^{11,12} , T. Chillery ⁶ , G. F. Ciani ⁹¹⁰ , P. Corvisiero ^{4,5} , L. Csedreki ⁹¹⁰ , T. Davinson ⁶ , R. Depalo ¹¹ , A. Di Leva ⁷⁸ , Z. Elekes ¹³ .
ccepted: 16 September 2020	E. M. Fiore ^{1,14} , A. Formicola ¹⁰ , Zs. Fülöp ¹³ , G. Gervino ^{15,16} , A. Guglielmetti ^{17,18} , C. Gustavino ¹⁹ ⊠,
ublished online: 11 November 2020	G. Gyürky ¹³ , G. Imbriani ^{7,8} , M. Junker ¹⁰ , A. Kievsky ²⁰ , I. Kochanek ¹⁰ , M. Lugaro ^{21,22} , L. F. Marcucci ^{20,23} , G. Mangano ^{7,8} , P. Marigo ^{11,12} , F. Masha ^{17,18} , B. Menegazzo ¹¹
Check for updates	F. R. Pantaleo ¹²⁴ , V. Paticchio ¹ , R. Perrino ¹²⁷ , D. Piatti ¹⁷ , P. Prati ⁴⁵ , L. Schiavulli ¹¹⁴ , O. Straniero ^{10,25} , T. Szücs ² , M. P. Takács ^{2,3} , D. Trezzi ^{17,18} , M. Viviani ²⁰ & S. Zavatarelli ^{4⊠}

Ingredients for 3% precision include

- Absolute target density (²H gas target)
- Precise beam calibration (energy, calorimetric intensity)
- Detection probability for detected γ -rays using several different methods
- Theory support for γ -ray angular distribution
- Theory support for cosmological impact

MML IN-HOUSE RESEARCH

08.122020 Bemmerer

Deutsche

Member of the Helmholtz Association Page 24

The ¹²C(α , γ)¹⁶O reaction, the "Holy Grail" of Nuclear Astrophysics

Forward reaction →

Underground accelerators with $\gamma\text{-ray}$ detection

- Felsenkeller 5 MV (gas target)
- LUNA-MV 3.5 MV

$${}^{12}C + {}^{4}He \rightarrow {}^{16}O(0, 6.049, 6.130, ...)$$

 ${}^{12}C + {}^{4}He \leftarrow {}^{16}O(0)$

Time-inverted reaction **←**

- Real, monochromatic 7 MeV photons: HIγS, ELI-NP
- Virtual 7 MeV photons:
 R³B@GSI, by Coulomb dissociation

Page 25

Daniel Bemmerer		Precision cross section measurements		
Institute of Radiation Physics	08.12.2020			

COST action ChETEC [ketek] 2017-2021

Chemical Elements as Tracers of the Evolution of the Cosmos

A network to bring European research, science and business together to further our understanding of the early universe

MML IN-HOUSE RESEARCH

Damei Demmerer		FIEC
Institute of Radiation Physics	08.12.2020	

EUROPEAN COOPERATION

IN SCIENCE & TECHNOLOGY

http://www.chetec.eu

- ~150 k€/year 2017-2021
- 30 European countries

Support for meetings and schools

• 12 meetings in 2019

Short-term scientific missions (STSMs)

• Up to 90 days visits

Chair:

 Raphael Hirschi, Keele University/UK

ChETEC-INFRA, an EU-supported Starting Community of Research Infrastructures for Nuclear Astrophysics (2021 – 2025)

5.0 M€ HORIZON2020 support (2021-2025)			
ТА	JRA	NA	AL FUEDIN AP GLOBE
Infrastructure access • 8 nuclear • 4 telescopes • 1 computer	 Infrastructure usability Targets Abundance corrections Analysis pipelines 	 Infrastructure networking Complementary data Solar fusion+model Geochemistry Outreach 	ULE UCC TUC HZOR GUP KANNE CORR-GANL PPGP ZAH OPAPPL ASU UNE CONS-PRO UNIVE UNE FITZ UNE FITZ
32 partners, 17 c	ountries, open for as	sociate partners	
EuroGENESIS ESF 2010-2013 C: UPC Barcelona	ChETEC COST Action 2017-2021 C: Uni Keele/UK	ChETEC-INFRA 2021-2025 C: HZDR/DE	

MML IN-HOUSE RESEARCH

Daniel Bemmerer 07.12nstute of Radiation Physics

Precision cross section measurements for nuclear astrophysics

- Astrophysical S-factor and thermonuclear reaction rate
- Precision cross section measurements, example ${}^{14}N(p,\gamma){}^{15}O$
- Interplay between experiment and theory, example ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$
- Experimental facilities
- Other examples and outlook

Potential for collaboration theory – experiment

- The field is rich and growing: new ideas, new labs, new projects
- Feedback loop theory experiment theory regarding cross sections
- γ-ray angular distribution helps both experiment and theory
- Study of similar and mirror reactions, etc., etc.
 - Helmholtz NAVI, DTS, MML, ERC-RA; DFG
 - TU Dresden Excellence Initiative funds (K. Zuber), DFG Großgerät (K. Zuber)
 - European Union (H2020 INFRAIA-02)

Daniel Bemmerer		Precision cross section measurements	Member of the Helmholtz Association	
Institute of Radiation Physics	08.12.2020		Page 28	

Felsenkeller underground background characterisation

Myon flux and angular distribution Measured and simulated 5.4(4) m⁻²s⁻¹ F. Ludwig *et al.* Astropart. Phys. 112, 24 (2019)

Neutron flux and energy spectrum Measured and simulated 4.6(3) m⁻²s⁻¹ M. Grieger *et al.* Phys. Rev. D 101, 123027 (2020)

ients

Background in γ -ray detectors with μ veto Measured 5.2(9) × 10⁻⁵ keV⁻¹h⁻¹ T. Szücs *et al.* Eur. Phys. J. A 55, 174 (2019)

MML IN-HOUSE RESEARCH

Daniel Bemmerer		Precision cross section measurem
Institute of Radiation Physics	08.12.2020	

🖄 Sprin

²³Na production by hydrogen burning: ²²Ne(p,γ)²³Na

Left: Thermonuclear reaction rate < σ v> (relative to standard)

Right: Signal in LUNA γ-calorimeter

Resonance strength ωγ [µeV]	<i>E_ρ</i> = 156 keV	E _ρ = 190 keV	E _ρ = 260 keV	<i>E_ρ</i> =479 keV
Indirect, from nuclear structure data	0.009±0.003	≤ 2.6	≤ 0.13	
Underground, p beam, HPGe det. (LUNA 2015, 2018)	0.18±0.02	2.2±0.2	8.2±0.7	
Underground, p beam, γ-calorimeter (LUNA 2018)	0.22±0.02	2.7±0.2	9.7±0.7	
Overground, ²² Ne beam, recoil det. (TRIUMF 2020)	0.17±0.05	2.2±0.4	8.5±1.4	0.44±0.05

⁶Li production in the Big Bang and ²H(α , γ)⁶Li, studied at LUNA

- Determine primordial ⁶Li/⁷Li ratio = (1.5±0.3) * 10⁻⁵ entirely from experimental data
- Previous astronomical reports of ⁶Li/⁷Li ~ 10⁻² are probably in error

