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What is GF-CAIN?
CAIN

Stand-alone Monte Carlo program for simulations of beam—beam
interactions involving high-energy electrons, positrons and
photons.

Written by K. Yokoya et al.,, KEK, Japan, 1984-2011.
@ Code is a mixture of FORTRAN 77 and FORTRAN 90/95, ~ 45000

lines in ~ 400 files
— not well-documented, comments in code scarce.

o Dedicated, elaborate meta-language for defining Input/Output
(65 pages of description in User Manual).
@ Output in form of text files with all particle information and

TopDrower histograms (no well-defined event record).
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ABEL—CAIN history

@ |t started with program called ABEL for beam—beam interactions
(deformation due to Coulomb field and beamstrahlung) in ete™
linear colliders.

@ Then, after adding interactions with laser beams it was renamed to
CAIN.

@ CAIN 2.0 was written from scratch and allowed for any mixtures
of e™, e, v and lasers, and multiple-stage interactions (input data
format completely refreshed).

@ Last version: CAIN 2.42, 27 June 2011, available at:
https://ilc.kek.jp/~yokoya/CAIN/Cain242/
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Physical processes in CAIN 2.42

Classical interactions (orbit deform.) due to Coulomb field.

Luminosity between beams (e*, e, 7).

Synchrotron radiation by electrons/positrons (beamstrahlung) and
(coherent) pair creation by high-energy photons due to beam field.

Interactions of high-energy photon or electron/positron beams
with laser field, including non-linear effects of field strength.

Classical and Quantum interactions with const. external field.
Incoherent e e~ -pair creation by photons, electrons and positrons.

Transport of charged particles through magnetic beamline.

© 000

Polarisation effects can be included in most interactions (through
polarisation vector for electron/prositron beams, Stokes parameters
for photons).
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Output of CAIN

e Output data (particle properties, luminosities, statistics, etc.) can be
written in specified files at any moment of job
— Can be huge! (for GF up to several GBs)

@ Graphical output is written only in TopDrawer format
— Obsolete!

> How to use CERN ROOT system for data analysis?

@ For low statistics:
Write particle properties in CAIN output file and read them by
CERN’s ROOT data analysis program (in C++).

@ For high statistics:
Transfer CAIN output to input of ROOT data analysis program
(run concurrently) through UNIX named (FIFO) pipes.

|CAIN|| — (FIFO) — ’ ROOT data analysis program‘
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Monte Carlo simulations of laser-photon—PSI collisions

Scattering probability

PSI beam / -z
/_‘ gamma beam
laser beam

e Scattering probability for a single particle (PSI) in time step At:

- —

P(F, B, k. t) = cabs(P, k) (1 — B k/|K|) np(x. v, 2, k, t)cAt,

where: k — photon wave vector, ¢ — velocity of light,

P, 5— PSI momentum and relativistic velocity,

np(x,y,z, k,t) — local density of laser-photon beam,

Tabs(P, E) — cross section for laser-photon absorption by PSI. @
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Monte Carlo simulations of laser-photon—PSI collisions

Monte Carlo generation

— Two stages of Monte Carlo simulation:
@ According to probability P(r, p, K, t) scattering event is sampled
using von Neumann rejection method.
@ When scattering event occurs emitted photon is generated, i.e. its
energy and angles are generated in PSI rest-frame according to

differential cross section, and then event is Lorentz-transformed to
LAB frame.

> The above is repeated for each macroparticle, and then generation
moves to the next time moment, i.e. t+ At, ... .

e One macroparticle represents some number of real particles (PSI)
in a bunch (simulations for each real particle may be not feasible if
their number is very large!).

@ To each macroparticle a Monte Carlo weight is assigned which is a
ratio of the number of real particles to the number of macroparticles
(the smaller weight the better). @
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Monte Carlo simulations of laser-photon—PSI collisions
Cross section

@ Cross section of photon-absorption by PSI:
[E.G. Bessonov and K.J. Kim, IEEE PAC 1995:2895-2897]

- D\ 2rrecf
Uabs(P; k) " [yw(1—pBcosth) —wp)? 42

re — classical electron radius,

f — oscilator strength,

v, B — relativistic factor and velocity of PSI,

w — incoming photon frequency,

1) — angle between incoming photon and PSI,

wo — PSI transition frequency between states 1 and 2,

[ = wirefg1/(cgn) — spontaneous emission half-linewidth,

where g1 > — degeneracy factors of states 1 and 2, respectively. @
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Monte Carlo simulations of laser-photon—PSI collisions

Emitted photon kinematics

@ MC generation of emitted photon in PSI rest-frame
= Unpolarised case so far!

© azimuthal angle ¢:
¢ € U(0,1),

where U denotes Uniform distribution,
@ polar angle 6:
cosf € U(-1,1),

© angular frequency w’ (— energy E' = iw’):
wl € ‘C(w;ﬁmwrl-naxL
where £ — Lorentzian distribution with prob. density funct.:

r

Pan (s Whnins Wina) = N S

with A1 = arctan([w/,.,, — wo]/) — arctan([w’,,, — wo]/T) . S
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Monte Carlo simulations of laser-photon—PSI collisions

Energy spread of laser beam

@ CAIN assumes monochromatic laser beam (photon energy spread not
important for inverse-Compton scattering).

@ For resonant atomic photon absorption laser-beam energy spread
can be comparable or even larger than the resonance linewidth, so
it has to be taken into account!

@ In GF-CAIN it is done in two ways (inside corresponding routines):

Q If 05/0 < TJwy, the laser-photon energy E = Fw is generated from
the corresponding Gaussian distribution, then the scattering cross
section is calculated using the weight corresponding to o aps(p, E)

@ Otherwise, the photon energy in the PSl-rest frame is generated from
the Lorentzian distribution of o,ps(f, E) then the scattering cross
section is calculated using the weight corresponding to the Gaussian
function of the laser-energy spread.

> In this way, Monte Carlo event generation in GF-CAIN is efficient
for an arbitrary resonance linewidth! @
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Monte Carlo simulations of laser-photon—PSI collisions

Li-like Pb, H-like Pb and He-like Ca

@ PSI's cannot be defined by CAIN input — they are implemented in
CAIN routine LNCPGN:

o Lithium-like 288Pb™" in file src/GF/Pb/1ncpgn-Pb Li-like.f
o Hydrogen-like 238Pb®'* in file src/GF/Pb/1ncpgn-Pb_H-1ike.f
o Helium-like 83Ca'®" in file /src/GF/Ca/lncpgn-Ca He-like.f

@ They are copied into CAIN's file /src/lncpgn.f in Makefile when

the corresponding PSl-run is chosen by a make command, e.g.
o make run-PbLi
e make run-PbH
o make run-CaHe

and then an appropriate input file is read.

@ Spontaneous emission delay and stimulated emission have been
added — important for PoP experiment Pb"* as well as for Cal®+
— appropriate modifications of CAIN event record as well as

‘drift’ routines were necessary.

@ Other PSl's can be implemented in a similar way — not elegant, but

easier than modifying complicated CAIN input! @
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Numerical results

H-like Pb — input parameters (based on Bessonov et al.)

o PSI beam: 28Pb®!* with transition: 1s! 25; , — 2p! 2P )5
e transition energy: hwo = 68.7keV; f =0.416, g1 =1, g2 =3
e ion mass: M; = 193.687 GeV /c?
o ion energy and relative spread: E; =579 TeV, o =2-107%
e relativistic factor: ~; = 2989
o number of ions per bunch N; = 9.4 - 107
e beta function in IR: gy =3, =0.5m
e geometric emittance: ex = €, = 3- 107 mrad
e r.m.s transverse beam size: o, = 0, = 38.73 ym
e r.m.s. bunch length ¢, = 15cm
o Laser: Gaussian spatial and time profiles
o photon energy and rel. spread: E, = 11.45¢V, 0, =2-107*
photon wavelength: A\, = 108.28 nm
pulse energy: W; =56 uJ
peak power density: Pgo = 1.1-10'3 W /m?
r.m.s. transverse beam size at focus: o = 0, = 25.42 ym
Rayleigh length: R, = R, = 7.5cm @
r.m.s. pulse length: o, = 15cm
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Numerical results

Emitted photon energy in LAB

e Number of macroparticles generated in GF-CAIN: 9.4 - 107
@ Spontaneous emission delay included (small in this case)
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— Half of most energetic photons within § < 1/~
— Number of emitted photons per ion: N,/N; = 0.11 @
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Numerical results

Comparisons: GF-CAIN vs. GF-CMCC

> Comparisons with the independent Monte Carlo program GF-CMCC
of Camilla Curatolo (INFN-Padova)
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— Very good agreement of the two MC programs!
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Numerical results

Lithium-like Pb ion for PoP — input parameters (Lol)

o PSI beam: 2§§Pb79+ with transition: 1s22s! 251/2 — 1s22p! 2P1/2
e transition energy and lifetime: fwy = 230.81eV, 19 = 76.6 ps
e ion mass: M; = 193.687 GeV /c?
e ion energy and relative spread: E; = 18.65259TeV, o =2-10*
e relativistic factor: ~; = 96.3
o number of ions per bunch N; = 0.9 - 108
e Twiss parameters: ax = o, =0, Bx=70.30m, 8, = 44.23m
e geometric emittance: €, = ¢, = 1.558 - 108 mrad
e r.m.s transverse beam size: o, = 1.047 mm, o, = 0.83 mm
e r.m.s. bunch length o, = 6.386 cm
o Laser: Gaussian spatial-time profiles, beam angle: 2.6°
e photon energy and rel. spread: E, =1.2¢V, 0, =2-107*
photon wavelength: A\, = 1034 nm
pulse energy: W, =5mJ
peak power density: Pgy = 2.684 - 10** W /m?
r.m.s. transverse beam size at focus: o, = 0, = 0.65mm
Rayleigh length: R, . = R., =5.135m
r.m.s. pulse length: o, = 0.8394 mm @
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Numerical results

Comparisons: GF-CAIN vs. GF-CMCC

> Comparisons with the independent Monte Carlo program GF-CMCC
of Camilla Curatolo (INFN-Padova)
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— Very good agreement of the two MC programs! @
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Numerical results

Fraction of excited ions

> Predictions of independent Monte Carlo programs GF-CMCC
(Camilla Curatolo) GF-Python (Alexey Petrenko) and GF-CAIN
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— Good agreement between the three programs! @
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Numerical results
Spontaneous emission delay and stimulated emission

@ Mean path of PSI in excited state in LAB ~2.2m
— Two important effects included in GF-CAIN:

@ time delay of spontaneous emission — generated from the
exponential distribution with the mean-time 79, and the excited ion
is propagated until it de-exites: (1) after the generated time 7 by
spontaneous emission or (2) immediately by stimulated emission,
or reaches a given z or t coordinate (e.g. detector) in the exited state.

@ stimulated emission — generated according to the probability
P'(F, B, k. t) = (g1/8)P(F, B, k, t), where P(F,p,k, t) is the
photon-absorption probability and g » are the state-degeneracy factors,
and when the event is accepted, the ion returns to the ground state
while the two photons are discarded.

GF-CAIN simulation results at z = 6 m: N /N;
No spontaneous emission delay: 20.1%
With spontaneous emission delay: 15.7%
With spont. emission delay and stimulated emission | 13.3% @
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Numerical results

Photon x-coordinate and radius distributions at z = 6m
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Numerical results

Photon radius vs. energy distributions at z = 6m

E [keV]

Pb”*: yat z = 6m, no emission delay

Pb’®*: yat z = 6m, with emission delay

ol b b b b b b b L Coworelpepepelopepeelopye |

[EFRTERY DYRSTORY DYRIVN DO

p=S)

ol
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0C' 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
'

r[m]

Wiestaw Ptaczek (Jagiellonian University) MC Program GF-CAIN

:
0.2
m

Physics @ GF, Mainz 2020



Numerical results

Example for Doppler cooling of PSI beam

@ Laser energy lowered by 20, w.r.t. resonance energy

e excited ions e ground-state ions
Gamma Factory: Pb™ beam profile Gamma Factory: Pb™*
o < f
22— 0.05;
i i
0; 0_
e : L
722— v «0.05;
o :
"‘; —0,1}
= 73‘ = ‘72 = ‘J1‘ = 0 = ’1‘ — 2 — 3 X[;“"l‘] -400 ‘ ‘400‘ = ‘7200‘ - ‘4‘00‘ 0 100 200 300 z“[‘g?;\]

> Fraction of excited ions: Nexited/Nan = 9.7%
(with spontaneous emission delay and stimulated emission) @
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Numerical results

Helium-like Ca ion — input parameters (transmutations)

o PSI beam: 43Cal®* with transition: 152 1Sy — 1s'2p! 1Py
transition energy and lifetime: hwg = 3.9023775keV, 79 = 8.8fs
ion mass: M; = 37.332 GeV /c?
ion energy and relative spread: E; =39.72TeV, og =2-107*
relativistic factor: ; = 1064
number of ions per bunch N; = 3-10°
Twiss parameters: ax =a, =0, Bx=08, =50m
geometric emittance: €, =€, = 3 - 10~ mrad
r.m.s transverse beam size: o, = o, = 0.1225mm

e r.m.s. bunch length o, = 15cm
o Laser: Gaussian spatial-time profiles, beam angle: 0°

e photon energy and rel. spread: E, = 1.833824¢V, 0, =2-107*
photon wavelength: A, = 676.1nm
pulse energy: W, = 0.5mJ
peak power density: Poo = 2.822 - 1013 W /m?
r.m.s. transverse beam size at focus: o, =0, = 0.15mm
Rayleigh length: R, , = R, = 41.81996, cm
r.m.s. pulse length: o, = 1.49896 cm (o; = 50 ps) @
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Numerical results

Photon emission angle and energy

> Repetition rate: 20 MHz ¥ {'\\

> Emission rate: N.,/Nps| ~ 5
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Summary
Summary

@ CAIN code has been customised to compile with gfortran (GNU
Fortran) and run on Linux and macOS systems
— with the use of customised Makefile

@ CAIN Monte Carlo program has been debugged and adapted to
laser-photon pulse collisions with PSI beams of 2g§Pb81+,
28Pb’9* and 33Cal®t (Gamma Factory) = GF-CAIN.

@ Spontaneous emission delay and stimulated emission have been
implemented — important for PoP experiment.

@ GF-CAIN output has been interfaced with ROOT data analysis
program via UNIX named (FIFO) pipes.

o Good agreement with independent Monte Carlo event generators
GF-CMCC of Camilla Curatolo and GF-Python of Alexey Petrenko.

e Statistics of ~ 10% macroparticles can be generated on medium PC,
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