

NATURWISSENSCHAFTLICHE FAKULTÄT

Interaction of atomic and nuclear degrees of freedom

Adriana Pálffy

Friedrich Alexander University of Erlangen-Nürnberg Max Planck Institute for Nuclear Physics, Heidelberg

Physics Opportunities with the Gamma Factory 3 December 2020

The interface of atomic and nuclear physics

- Exploring nuclear physics properties via atomic physics experiments
- Nuclear processes directly involving electrons

The interface of atomic and nuclear physics

 Exploring nuclear physics properties via atomic physics experiments

- Hyperfine structure (Andrey's talk today) high-precision laser spectroscopy
- Muonic atoms
- Isotope shifts and nuclear charge radii (laser spectroscopy, dielectronic recombination)

The interface of atomic and nuclear physics

Nuclear processes directly involving electrons

Electron capture (EC)

$$p + e_b \rightarrow n + \nu_e$$

Bound beta decay

$$n \to p + e_b + \tilde{\nu}_e$$

VOLUME 77, NUMBER 26 PHYSICAL REVIEW LETTERS

23 DECEMBER 1996

Observation of Bound-State β^- Decay of Fully Ionized ¹⁸⁷Re: ¹⁸⁷Re-¹⁸⁷Os Cosmochronometry

F. Bosch,¹ T. Faestermann,² J. Friese,² F. Heine,² P. Kienle,² E. Wefers,² K. Zeitelhack,² K. Beckert,¹ B. Franzke,¹ O. Klepper,¹ C. Kozhuharov,¹ G. Menzel,¹ R. Moshammer,¹ F. Nolden,¹ H. Reich,¹ B. Schlitt,¹ M. Steck,¹ T. Stöhlker,¹ T. Winkler,¹ and K. Takahashi^{2,3}

Internal conversion and NEEC

Internal conversion

Internal conversion and NEEC

Internal conversion + inverse process nuclear excitation by electron capture

Chronologically, IC - 1924, NEEC proposed – 1976, observed (?) 2018

Bound internal conversion and NEET

Bound internal conversion and NEET

Bound internal conversion + inverse process nuclear excitation by electron transition

Difficult to find in nature such perfect matches of atomic and nuclear transition energies!

Electronic bridge – nuclear decay: both IC and BIC are forbidden

There is no electronic state at right energy - virtual state!

Electronic bridge – nuclear decay: both IC and BIC are forbidden

There is no electronic state at right energy - virtual state!

Electronic bridge – nuclear decay: both IC and BIC are forbidden

Virtual state decays to a real state by emitting a photon.

Electronic bridge – as nuclear excitation mechanism (same name)

There is no electronic state at right energy - virtual states!

Electronic bridge – as nuclear excitation mechanism (same name)

There is no electronic state at right energy - virtual states!

Electronic bridge – as nuclear excitation mechanism (same name)

There is no electronic state at right energy - virtual states!

Electronic bridge – as nuclear excitation mechanism (same name)

Two pathways: photon + nuclear excitation or nuclear excitation + photon

(Highly) charged ions

Andrey's "partially stripped ions"

Nuclear excitation processes require atomic shell vacancies or even highly charged ions

Plasmas

Nuclear reactions

NEEC

- Proposed theoretically by Goldanskii & Namiot Phys. Lett. 62B (1976)
- First experimental observation claimed in 2018 C. J. Chiara et al., Nature 554, 216

Study of:

population mechanisms of excited nuclear levelsatomic vacancy effects on nuclear lifetimeswitch off IC decay channel

Relevant for:

dense astrophysical plasmas

depleting of isomers

Y. Litvinov's talk yesterday

Depletion of isomers

Nuclear isomers – metastable states that store energy over long periods of time

 $\tau\simeq 7~{\rm hours}$

population or depletion of the isomer

NEEC 100 times more efficient than photons!

First claim of NEEC experimental observation C. J. Chiara *et al.*, Nature 554, 216 (2018)

Energy/Mass ratio (kWh/kg)

Example of EB in ²²⁹Th³⁵⁺

Use external laser (UV) photon to drive EB

In principle, similar schemes could work for higher x-ray or gamma-ray frequencies.

Particular case of Thorium: we don't have good access to VUV photons, exploit EB.

Summarizing Where can GF enter the picture?

- Nuclear coupling to atomic shells only for low-energy nuclear transitions < 100 200 keV.
 Y. Litvinov: "Nuclear structure is not aiming at the highest GF energies!" The higher the nuclear excitation, the less the atomic shell matters.
- For low-lying nuclear transitions ~ 10 keV, atomic coupling dominates photoexcitation Any concrete examples where we'd like to exploit this? Isomer depletion?

 EB is appealing for ²²⁹Th, but for higher photon energies direct photoexcitation most efficient Nuclear photoexcitation with GF photons could work great without involving atomic shells.

Brainstorming

- GF photons (primary beam and laser excitation) for atomic shell excitation
 + atomic coupling to the nucleus
 Hyperfine coupling talk by Andrey
- GF photons (primary beam and laser excitation) for nuclear excitation + atomic shell controls nuclear decay Any cases of interest?
- Use GF as primary beam of highly charged ions for NEEC?
 NEEC would require electron target; use GF photons for driving atomic shell?
- Use GF secondary photon beam for nuclear excitation
 + atomic shell controls nuclear decay
 Requires highly charged ions as target