Atomic structure calculations

Vladimir Shabaev

St. Petersburg State University

Gamma Factory Workshop, 3 December, 2020

- Introduction
- Lamb shifts in H-like ions
- Transition energies in Li-like ions
- Transition energies in He-like ions
- Binding energies in Be-like ions
- Conclusion

Introduction: QED theory of highly charged ions

Heavy few-electron ions:

 $N_e \ll Z$

 N_e is the number of electrons, $Z_{\rm }$ is the nuclear charge number To zeroth-order approximation:

$$\left[-i\vec{\alpha}\cdot\vec{\nabla}+m\beta+V_{\rm C}(r)\right]\psi(\vec{r})=E\psi(\vec{r})$$

Interelectronic interaction and QED effects:

Interelectronic interaction	1	QED
Binding energy	\overline{Z}	Binding energy $30 \alpha(\alpha Z)$

In contrast to light atoms, the parameter αZ is not small. In uranium: Z = 92, $\alpha Z \approx 0.7$.

Relativistic many-electron atoms and ions

The interelectronic interaction is not small and must be taken into account at the zero-order level:

$$V_{\rm C} \rightarrow V_{\rm eff} = V_{\rm C} + V_{\rm scr} \,$$

where $V_{\rm scr}$ describes approximately the electron-electron interaction effects. Therefore, to zeroth order:

$$\left[-i\,\vec{\alpha}\cdot\vec{\nabla} + m\beta + V_{\rm eff}(r)\,\right]\,\psi\left(\vec{r}\right) = \,E\,\psi\left(\vec{r}\right)$$

In higher orders, besides the interelectronic-interaction and QED effects, one must add the interaction with $-V_{\rm scr}$.

Middle and heavy neutral atoms

Calculations are mainly restricted to the Breit approximation:

$$H = \Lambda^{(+)} \left[\sum_{i} h_{i}^{\rm D} + \sum_{i < j} (V_{ij}^{\rm C} + V_{ij}^{\rm B}) \right] \Lambda^{(+)},$$

where $\Lambda^{(+)}$ is the projector on the positive-energy states,

$$h_i^{\rm D} = \vec{\alpha}_i \cdot \vec{p}_i + m\beta_i + V_{\rm C}(r_i), \quad V_{\rm C}(r) = -\frac{\alpha Z}{r},$$

$$V_{ij}^{\rm C} = \frac{\alpha}{r_{ij}}, \qquad V_{ij}^{\rm B} = -\alpha \Big[\frac{\vec{\alpha}_i \cdot \vec{\alpha}_j}{r_{ij}} + \frac{1}{2} (\vec{\nabla}_i \cdot \vec{\alpha}_i) (\vec{\nabla}_j \cdot \vec{\alpha}_j) r_{ij} \Big] \,.$$

1s Lamb shift in H-like ions, in eV

Contribution	$^{197}{ m Au}^{78+}$	$^{208}{\rm Pb}^{81+}$	238 U $^{91+}$
Furry picture QED	155.83(17)	177.14(21)	265.07(48)
Finite nuclear size	49.13(11)	67.18(5)	198.51(19)
Nuclear recoil	0.33(1)	0.35(1)	0.46(1)
Nuclear polarization	-0.05(5)	-0.03(2)	-0.20(10)
Total theory [1]	205.24(21)	244.64(22)	463.84(53)
Experiment	202(8) <mark>[2]</mark>	260(53) <mark>[3]</mark>	460.2(4.6) [4]

[1] V. A. Yerokhin and V. M. Shabaev, JPCRD, 2015.

- [2] H. F. Beyer et al., Z. Phys. D, 1995.
- [3] S. Kraft-Bermuth et al., JPB, 2017.
- [4] A. Gumberidze et al., PRL, 2005.

Few-electron Pb ions for the Gamma Factory project at CERN: F.M. Kröger, G. Weber, V.P. Shevelko, S. Hirlaender, M.V. Krasny, and Th. Stöhlker, XRay Spectrometry, 2019.

$2p_{1/2}-2s$ transition energy in Li-like ions, in eV

lon	Energy [eV]	Reference
$^{208}{\rm Pb}^{79+}$	230.82(5)	[1,2] (Theory)
	230.76(4)	[3] (Theory)
238 U $^{89+}$	280.71(10)	[1,4] (Theory)
	280.65(8)	[3] (Theory)
	280.645(15)	[5] (Experiment)

- [1] V.A. Yerokhin, P. Indelicato, and V.M. Shabaev, PRL, 2006.
- [2] V.A. Yerokhin and A. Surzhykov, JPCRD, 2018.
- [3] J. Sapirstein and K.T. Cheng, PRA, 2011.
- [4] Y.S. Kozhedub, O.V. Andreev, V.M. Shabaev et al., PRA, 2008.
- [5] P. Beiersdorfer, H. Chen, D.B. Thorn, and E. Träbert, PRL, 2005.

The w-line transition energy in He-like Fe^{24+}

Comparison of the theoretical prediction for the w-line in Fe^{24+} with available experimental values

Z	$1s2p {}^1P_1$	$1s2p {}^{3}P_{2}$	$1s2p^{3}P_{1}$	$1s2s{}^{3}S_{1}$	$1s2p{}^{3}P_{2}$	Ref.
	$\rightarrow 1s^{2\;1}S_0$	$\rightarrow 1s^{21}S_0$	$\rightarrow 1s^{2\;1}S_0$	$\rightarrow 1s^{2\;1}S_0$	$\rightarrow 1s2s{}^3S_1$	
54	30 630.059(27)	30594.369(27)	30 206.273(27)	30 129.157(27)	465.2119(96)	[1]
	30 630.053(18)	30594.365(18)	30206.267(18)	30 129.143(36)	465.222(33)	[2]
92	100610.68(54)	100536.95(54)	96 169.43(54)	96 027.07(54)	4509.88(11)	[1]
	100611.21(65)	100537.50(65)	96169.94(65)	96 027.41(68)	4510.09(26)	[2]
					4509.71(99)	[3]

Transition energies in heliumlike Xe and U, in eV

- [1] Y. S. Kozhedub, A. V. Malyshev, D. A. Glazov et al., PRA, 2019.
- [2] A. N. Artemyev, V. M. Shabaev, V. A. Yerokhin et al., PRA, 2005.
- [3] M. Trassinelli et al., Eur. Phys. Lett., 2009.

Highly charged Be-like ions severely challenge atomic-structure calculations within bound-state QED.

Reason: strong interplay of electron correlation and QED effects.

Quasi-degenerate levels:

 $1s^2(2s2s)_0$ $1s^2(2p_{1/2}2p_{1/2})_0$ $1s^2(2p_{3/2}2p_{3/2})_0$

Correlation effects within the Breit appox. can be treated to all order in 1/Z by means of the CI approach.

State-of-the-art QED calculations are limited by the second-order contributions.

Types of perturbation theory to evaluate the ground-state binding energy in Be-like Xe^{50+}

Size	Ω
1×1	$(2s2s)_0$
2×2	$(2s2s)_0$, $(2p_{1/2}2p_{1/2})_0$
3 imes 3	$(2s2s)_0$, $(2p_{1/2}2p_{1/2})_0$, $(2p_{3/2}2p_{3/2})_0$

 Ω is the model space of the quasi-degenerate levels.

The extended Furry picture:

$$\begin{bmatrix} -i\boldsymbol{\alpha} \cdot \nabla + \beta m + V_{\text{eff}}(\mathbf{r}) \end{bmatrix} \psi_n(\mathbf{r}) = \varepsilon_n \psi_n(\mathbf{r})$$
$$V_{\text{nuc}}(\mathbf{r}) \longrightarrow V_{\text{eff}}(\mathbf{r}) = V_{\text{nuc}}(\mathbf{r}) + V_{\text{scr}}(\mathbf{r})$$

Binding energy of the ground state in Xe⁵⁰⁺, in eV [A.V. Malyshev *et al.*, arXiv:2009.01222]

Ω	$V_{\rm eff}$	Α	В	С	D	
1×1	Coul CH LDF	101 071.884 101 071.948 101 071.928	100 970.193 100 973.924 100 973.451	100 973.026 100 972.977 100 972.981	 100 973.569 100 973.400	$(2s2s)_0$
2×2	Coul CH LDF	101 071.884 101 071.948 101 071.928	100 970.443 100 974.157 100 973.682	100 973.244 100 973.194 100 973.198	100 973.263 100 973.246 100 973.237	$\begin{array}{c} (2s2s)_0 \\ (2p_{1/2}2p_{1/2})_0 \end{array}$
3 imes 3	Coul CH LDF	101 071.884 101 071.948 101 071.928	100 970.487 100 974.199 100 973.724	100 973.278 100 973.229 100 973.233	100 973.240 100 973.241 100 973.236	$\begin{array}{c}(2s2s)_{0}\\(2p_{1/2}2p_{1/2})_{0}\\(2p_{3/2}2p_{3/2})_{0}\end{array}$

A: Breit approx.

Estimation of the $1/Z^2$ D: screening QED effects via

the model Lamb-shift operator

$2s2p^3P_0$	$2s2p{}^3P_1$	$2s2p{}^3P_2$	$2s2p{}^1P_1$	Reference
	The	eory		
104.531(9)	127.300(9)	469.484(7)	532.802(7)	Malyshev <i>et al</i> ., arXiv:2009.01222
104.5(25)	127.3(25)	469.6(25)	532.9(25)	Kaygorodov <i>et al.</i> , PRA, 2019
104.475	127.282	469.449	532.877	Cheng <i>et al.</i> , PRA, 2008
104.663	127.475	470.004	533.401	Gu, ADNDT, 2005
	127.168	469.25	532.62	Safronova, Mol.Phys., 2000
	127.301		532.854	Chen & Cheng, PRA, 1997
104.482	127.267	469.386	532.759	Safronova <i>et al.</i> , PRA, 1996
Experiment				
	127.269(46)	469.474(81)	532.801(16)	Bernhardt <i>et al</i> ., JPB, 2015
	127.260(26)			Feili <i>et al.</i> , Phys.Scr., 2005
	127.255(12)			Träbert <i>et al.</i> , PRA, 2003

Excitation energies for the $2s2p^{2S+1}P_J$ states in Be-like Xe, in eV

Main results:

- The binding energies in He- and Be-like ions are evaluated employing the most advanced methods which are available to date.
- Our results for He-like ions are consistent with our old calculations (A.N. Artemyev *et al.*, PRA, 2005) and with most recent experiments.
- Our results for Be-like ions are in perfect agreement with the recent experiment by D. Bernhardt *et al.*, JPB, 2015.