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What is generally understood with ,,cooling“?
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What do we mean with ,,cooling“?
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Motivations for laser cooling:

« fundamental aspects of very cold ion beams
—> coupling, ordering = coherence in fluorescence?

e advantages of cold ion beams
- low momentum spread, low emittance - longer lifetime

« applicable at almost any circular accelerator
(laser in/out, bunching, fluorescence detection)

opportunity: laser spectroscopy
- find transition, measure it precisely

dream: sympathetic cooling
- laser-cooled ions cool other stored ions
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Laser cooling of stored coasting ion beams was first demonstrated at the

TSR in Heidelberg (Germany) [5], and at ASTRID in Aarhus (Denmark) [6].
Laser cooling of stored bunched ion beams was demonstrated a few years
later at ASTRID [7], followed by studies at the TSR [8, 9]. Experiments on
laser-cooled ion crystal structures were performed in circular Paul traps [10]
while ion beam crystallization was studied at the table top storage ring
PALLAS [11, 12] in Munich (Germany). At the experimental storage ring (ESR)
in Darmstadt (Germany), first laser cooling experiments with relativistic ion
beams [13] were conducted. Transverse laser cooling has been studied in
detail at the S-LSR [14] in Kyoto (Japan). At the CSRe [15] in Lanzhou (China)
experiments with relativistic ion beams have been started. 1605+

For a good review of the topic, see [16].

R f [5] Schroder S et al 1990 Phys. Rev. Lett. 64 2901
ererences [6] Hangst T S ef al 1991 Phys. Rev. Lett. 67 1238
[71 Hangst I S et al 1995 Phys. Rev. Leit. 74 4432
[8] Lauer I et al 1998 Phys. Rev. Leti. 81 2052
[9] Eisenbarth U er al 2000 Nucl. Instrum. Meth. Phys. Res. A
441 209
[10] Birkl G et al 1992 Nature 357 310
[11] Schiitz T ef al 2001 Nature 412 6848
[12] Schramm U er al 2001 Phys. Rev. Lett. 87 184801
[13] Schramm U et al 2005 Proc. PAC 2005 (Knoxville, USA) p 401
FOADO04
[14] Noda A et al 2005 Proc. COOL 2007 (Bad Kreuznach,
Germany) p 221 FRM 1101
[15] Wen W et al 2013 Phys. Scr. T156 014090
[16] Schramm U et al 2004 Prog. Part. Nucl. Phys. 53 583



The principle: laser cooling of stored

bunched relativistic ion beams
ESR example:

C3*ion energy = 122 MeV/u

(B=0.47,y=1.13) v =fc
—
A
Ao = L
transition ——
A,=93 nm Ao=155 nm Ay=257 nm

The ion absorbs many directional momenta from the photons and
decays each time with a random recoil, averaging out to zero.

In our case, the cooling laser force is counteracted by the
restoring force of the "bucket” when the ion beam is bunched.




bunching the ion beam counteracts the laser force

W/ v\

founch = N X o, — h bunches

The ions (repeatedly) pass through a cavity to which an rf-signal is applied,
which frequency is a multiple of the ion revolution frequency (~MHz).
The bunching amplitude is typically low, but all ions need to be in a bucket.

lons

bucket" - laser force
potential

—

Vions



Laser Cooling in Storage Rings

TECHNISCHE
UNIVERSITAT
DARMSTADT

challenges laser cooling in accelerator:
» single laser beam:
= no stable point & only deceleration possible
» very hot initial ion ensemble:
= laser does not interact with all ions simultaneously

‘phase space’

position — z
The ions perform synchrotron oscillations inside the bucket potential.

_May 30, 2017 | TEMF | TU-Darmstadt | Lewin Eidam | 5 LeW| N Elda_m



Laser cooling can, in principle, be done at many circular accelerators!

Difficulties are:

- spatial and temporal (pulsed laser) overlap of laser beam & ion beam
- linewidth (MHz) and scan range (GHz) of laser (rep. rate)

- initial velocity spread of ion beam (Ap/p)

- detection of fluorescence from ions

0) ion momentum distribution

1) cw laser spectrum

2) pulsed laser spectrum (100 ps)
3) pulsed laser spectrum ( 10 ps)

. ion momentum
“blue side’ ‘red side’ laser frequency

- laser systems which have enough power, stability, reliability, rep. rate, and “tuning’
to allow for proper and fast ion beam cooling.
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lons for laser cooling @ FAIR

Calculations by Shevelko: (accuracy AA/A =107?)
transition energies and rates — many elements!

Calculations by Borschevsky / Yerokhin: (accuracy AA/A =104)
transition energies and rates — selected species!

All transitions are between a ground state and the nearest upper state,
mostly S;,, = Py g 30 These are An=0 transitions.
(An=1 transitions are possible, but have not been calculated yet.)

The range of transition energies has been selected as follows:

step 1. fix laser wavelength (A), fix magnetic rigidity (Bp)

step 2: calculate Q/A (charge-to-mass ratio) for Z=1to 92 - range Q/A
step 3: calculate y and A, as a function of Q/A - range A,

step 4: within range A,, look for the possible Z-range

For those ions, also transition rates (Hz) have been calculated.

Weigiang Wen / Michael Bussmann
laser saturation intensities
fluorescence yields



This table gives an overview of all types of ions

by Slava

which satisfy the requirements (A, & Bp). Shevelko
2. Regime: Bp=100Tm, A(laser)=257 nm (4.824 ¢V)
approx.
El sequence Q/M range Transition J-] transition | AE laser,nm | Nucl. charge
Z,range
| Li-like 0.25-0.43 2s —2p 1/2 —1/2 9—16 38— 60 |
1/2-3/2 28 - 36
Be-like 0.17-0.40 2s%—2s2p 1/2-1/2 10 - 23 30-36
1/2 -3/2 25-36
B-like 0.08 —0.40 2s22p — 2s2p? 1/2-1/2 10 - 48 17 -56
1/2 -3/2 13-33
Na-like 0.04 —0.34 3s—3p 1/2-1/2 12 -90 16 —49
1/2 -3/2 16 - 40
K-like 0.025-0.30 4s —4p 1/2-1/2 13-130 24 - 80
1/2-3/2 24 - 58

These are lithium-like ions, beryllium-like ions, etc.

Ergo: At the SIS100, Z = 60 is the maximum (theoretically, for Li-like ions)
However, Li-like xenon (Z=54) seems to be more realistic.



There is (still) an interest in Li-like ions ©

2020

PHYSICAL REVIEW A

coverning atomic, molecular, and opfical physics and quantum information

Highlights Recent Accepted Authors Referees Search Press About Staff =

QED calculation of the 2p fine structure in Li-like ions

Viadimir A. Yerokhin, Mariusz Puchalski, and Krzysztof Pachucki
Phys. Rev. A 102, 042816 — Published 20 October 2020

PHYSICAL REVIEW A 2017

covening atomic, molecular, and opfical physics and quantum information

Search Press About Staff E

Highlights Recent Accepted Authors Referees

Relativistic configuration-interaction calculations of the energy
levels of the 15221 and 1s2I2l' states in lithiumlike ions: Carbon
through chlorine

V. A, Yerokhin, A Surzhykow, and A. Muller
Phys. Rev. A 96, 042505 — Published 26 October 2017; Erratum Phys. Rev. A 96, 0659901 (2017)
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rms momentum spread
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cooling times of only a few seconds are expected,
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Show the two movies
by Lewin Eidam.



™ Doppler-boosted wavelength and fluorescence direction
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At high vy, the ion beam emits like a "searchlight” > Gamma Factory




Experimental setup @ ESR

coupling in

laser beam “

lons
\ s Ly
\ A\ 4.
1l [
scrapers
10l [
=> T €= (hor & vert) :
o
diagnostics: '> Fectron
- Schottky resonator # cOaler
—p || < - fluorescence dgtectio_n @
- ionization profile monitors
1l |
1T bunching T
| of the
ion beam
coupling out// )
laser beam Y/ 8\
&% ‘&

scanning laser S

pulsed laser




moveable Csl-cathode for XUV fluorescence detection

- BMBF funding: group of Prof. Christian Weinheimer (Uni Minster)



moveable Csl-cathode for XUV fluorescence detection

- BMBF funding: group of Prof. Christian Weinheimer (Uni Minster)
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ECDL scanning cw laser system
(20 GHz IR, 3 GHz needed)

Fiber amplifier m Ps
((.)) Build-up Cavity #1
I
Cavity LBO
Locking
A-Lock / w
Locking|
Build-up Cavity #2

ECDL

Fiber Amplifier

1st SHG Built-up Cavity
2nd SHG Built-up Cavity

¢ To Experiment

—->BMBF funding: group of Prof. Thomas Walther (TU-Darmstadt)



‘ " Photograph takep before
' he test beamtime at the ESR
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Photograph taken before
the test beamtime at the ESR

The group in Darmstadt is currently working on a
high rep. rate (~10 MHz), high energy (~1 uJ)
pulsed laser system @257 nm




Pulsed laser system
frequency-selective intra-cavity grating
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<G  SEP .
Ny
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- BMBF Funding: group of Prof. Ulrich Schramm (HZDR, TU-Dresden)
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Photograph taken before
the test beamtime at the CSRe




Lasers at the ESR

Eclgg:'on Concrete
= shielding
blocks

path lenght
collinear 80 m
anticollinear 50 m

= Lab
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Laser beam transport and stabilization

—

Strahllage-
stabilisierung

Umlenk- und
Justierspiegel \

Detektoren zur
Strahllagestabilisierung

Eintrittsfenster ESR

Strahlteiler

motorisierte
Justierspiegel

motorisierter Spiegel flr

Strahllagestabilisierung Austrittsfenster ESR Detektoren zur

Strahllagestabilisierung

- BMBF Funding: group of Prof. Wilfried Noértershauser (TU-Darmstadt)
- ARD M&T — SIS100 (GSI)
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ESR results
Darmstadt



coasting beams



Two ion species stored: 12C3* (88%) & 1°04* (12%)
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coasting beams cannot be laser-cooled to a stable fix point
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burning a hole in a coasting beam (C3*)
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coasting ion beam (no bunching), no electron cooling, scanning CW diode laser (~12 GHz, ~10 s)
- the laser pushes ions from a large momentum range into a narrow band

- scanning over the whole bucket acceptance > Af/f ~ 10

- the UV-fluorescence from the ions is detected in vacuo, and peaks when the laser is resonant
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laser cooling vs. electron cooling - no bunching!
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bunched beams



laser frequency scan < initial momentum spread @ high currents
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Experimental demonstration at the ESR of two possibllities:
1) scanning the bunching frequency at a fixed laser frequency (2006)

4

,2ochottky image”

hor: frequency
vert: time
color: Intensity

2004/2006 ESR data



Experimental demonstration at the ESR of two possibllities:
2) scanning the laser frequency at a fixed bunching frequency (2012)

,2ochottky image”
hor: frequency

vert: time

color: Intensity

2012 ESR data



C3* ions stored in the ESR, 122 MeV/u, scanning the laser frequency
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laser-cooled ion beam = 250 s
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momentum spread reduction independent from ion beam current
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CSRe results
Lanzhou



Laser system, RF-buncher and Schottky pick-up
at the CSRe in Lanzhou, China
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Optical diagnostic system at the CSRe

UV-sensitive Channeltron
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. | CSRe @IMP (CAS)
coasting ion beam S b e A Lanzhou, China
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CSRe @IMP (CAS)
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Nuclear Instruments and Methods in Physics ~ |*
_ Research Section A: Accelerators, Spectrometers,
= Detectors and Associated Equipment =

Volume 532, Issues 1-2, 11 October 2004, Pages 150-156

[on beam cooling at S-LSR project
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Available online 26 June 2004,

Proceedings of COOL 2007, Bad Kreuznach, Germany THM1102

ELECTRON COOLING EXPERIMENTS AT S-LSR
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Gamma Factory LETTER OF INTENT

o e . September 25, 2019
Proof-of-Principle Experiment ~ "

Transverse cooling happens naturally because all components of the ion momentum are lost due
to the emission of radiation but only the longitudinal component is restored in the RF-resonator of the
storage ring. Therefore, the typical time required for the transverse cooling is the time it takes to radiate
the full ion energy.

The equilibrium ion bunch parameters are determined by the balance between the laser cooling and
different sources of beam heating (stochastic heating due to the randomness of emitted photon energy,
heating due to the intra-beam scattering and collective instabilities).

In the case of broad-band laser cooling [8] (with the uniform frequency spectrum of the laser
light), if the photon emission happens in dispersion-free region, and neglecting collective effects, the
equilibrium energy spread can be found as

op _ \/1.4( - D™ "

E me2

where D is the saturation parameter which is normally below one (see [8]] for details), hw]"™ the maxi-
mum energy of the emitted photon, and m the ion mass. The equilibrium emittance reads
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where 3 , is the beta-function in the interaction region.

[8] E. G. Bessonov and K. J. Kim, “Radiative cooling of ion beams in storage rings by broadband
lasers”, Phys. Rev. Lett. 76 (1996) 431-434,
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In the case of non-zero dispersion function in the interaction region it is possible to use dispersive
coupling between longitudinal and transverse motion in order to achieve faster transverse cooling [12].
The mechanism of the longitudinal-horizontal coupling through dispersion is illustrated in Fig.

(b)
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Fig. 2: Horizontal betatron oscillations of a stored ion around the central orbit in a region with positive dispersion.
The moment of photon emission and the corresponding change of the central orbit is indicated by the arrow. A
reduction (increase) of the amplitude of the oscillation which occurs when the ion radiates a photon in a negative
x < 0 (positive = > 0) phase of the betatron oscillation is depicted on the left (a) (right (b)). The transverse
cooling will occur in the case depicted on this figure if more photons are emitted at < 0 rather than at 2 > 0.
(Adapted from [12].)

[12] L. Lauer et al., “Transverse Laser Cooling of a Fast Stored Ion Beam through Dispersive Coupling™,
Phys. Rev. Lett. 81 (1998) 2052-2055.



correspondence with Witek:

Well, as you know (and have cited in your paper), the method of ,dispersive cooling“ and
“betatron coupling” has been demonstrated by Lauer et al. at the TSR in Heidelberg. Indeed,
this method is 3D. The results are good, although the transverse laser cooling effect is by
far not as strong as the longitudinal one.

It think it is important to realize that, at the TSR, they always had the possibility to start with
a pre-cooled ion beam, using the electron cooler.

The electron cooler was also used to achieve “betatron coupling”:

“... by coupling both degrees of freedom by a 40 mT longitudinal field of the electron cooler
solenoid ...”

I do not know if such pleasant initial conditions will exist at the LHC and at the SPS.

Using a calibrated electron cooler, a known ion orbit, and Schottky diagnostics (measuring
the ion revolution frequency), one obtains:

1) a good value for the absolute ion energy and

2) a low initial longitudinal (and transversal) ion momentum spread

If one would need to start (first at the SPS and later at the LHC) with a “large absolute
uncertainty” in the ion velocity (in the LHC and SPS) and a “large longitudinal ion
momentum distribution” (Dp/p), it may be difficult to

1) find the transition in the first place and

2) achieve cooling over the complete ion beam velocity distribution

In your paper, you wrote:

“This scheme requires two different lasers and two different photon—PSI interaction points.
The focal point of the first-laser beam is shifted towards the negative horizontal position with
respect to the ion beam centre (for a positive value of the dispersion function) by a value of
Ax. This laser has a broad frequency spectrum allowing to excite the ions over the full spread
of their energies. The focal point of the second-laser beam is centred on the ion beam axis. Its
frequency band is tuned to excite only those of the ions which carry the energy above its
central value. In order to suppress the vertical betatron oscillations, one needs to couple them
to the horizontal ones using the transverse betatron coupling resonance. To achieve an
efficient coupling, the frequency of the vertical betatron oscillations should be close enough
to the frequency of the horizontal betatron oscillations.”

A few questions:

- What will be used (at SPS and LHC) for the
“betatron coupling”?

- Will it indeed be possible - for a certain (large)
range of ions — to operate the rings at almost equal
hor. and vert. betatron frequencies?

- It is yet another criteria on the experiment, besides
laser wavelength (and width), transition wavelength
in the ion, ion velocity (and width), ion-bunch &
laser-pulse timing.

- Will there be two interaction points
available/possible at the SPS and LHC? Or does this
require a few changes in the rings?
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L cw & pulsed
laser beams

« Laser-cooled relativistic heavy-ion beams (yup to 13, Z =10 - 60)
* Only cooling method at SIS100 energies (Ap/p down to 10°7)
« Extraction of very cold and very short ultra-relativistic ion bunches
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The end.

Thank you for your attention!



