

Muon physics and PSI muon beam lines & future developments

Angela Papa, Paul Scherrer Institut and University of Pisa/INFN On behalf of the HiMB and muCool group Physics Opportunity with Gamma Factory (virtual meeting) **MITP Uni-Mainz 2020, Nov 30th - Dec 4th**

Outline

- The role of low energy precision physics
- The High Intensity Muon Beam project at PSI (HiMB)
- Towards High-Brigthness low energy muon beams (muCool)
- Muon collider and Neutrino factory developments (in connection with low energy muon beam?)

Outline

- \cdot The role of low energy precision physics
- The High Intensity Muon Beam project at PSI (HiMB)
- Towards High-Brigthness low energy muon beams (muCool)
- Muon collider and Neutrino factory developments (in connection with low energy muon beam?)

The role of the low energy precision physics

• The Standard Model of particle physics: A great triumph of the modern physics but not the ultimate theory

Low energy precision physics: Rare/forbidden decay searches, symmetry tests, precision measurements very sensitive tool for unveiling new physics and probing very high energy scale

•

The role of the low energy precision physics

• The Standard Model of particle physics: A great triumph of the modern physics but not the ultimate theory

Low energy precision physics: Rare/forbidden decay searches, symmetry tests, precision measurements very sensitive tool for unveiling new physics and probing very high energy scale

Charged lepton flavour violation

Neutrino oscillations: Evidence of physics Behind Standard Model (BSM)
 Neutral lepton flavour violation

 $\Delta N_i \neq 0$ with i = 1,2,3

Charged lepton flavour violation

Neutrino oscillations: Evidence of physics Behind Standard Model (BSM)
 Neutral lepton flavour violation

$\Delta N_i eq 0$ with i = 1,2,3

Charged lepton flavour violation: NOT yet observed

Charged lepton flavour violation search: Motivation

Complementary to "Energy Frontier"

cLFV searches with muons: Status and prospects

In the near future impressive sensitivities:

	Current upper limit	Future sensitivity
$\mu ightarrow e \gamma$	4.2 x 10 ⁻¹³	~ 4 x 10 ⁻¹⁴
$\mu \rightarrow eee$	1.0 x 10 ⁻¹²	~1.0 x 10 ⁻¹⁶
$\mu N \to e N'$	7.0 x 10 ⁻¹³	few x 10 ⁻¹⁷

• Strong complementarities among channels: The only way to reveal the mechanism responsible for cLFV

cLFV: "Effective" lagrangian with the k-parameter

Outline

- The role of low energy precision physics
- The High Intensity Muon Beam project at PSI (HiMB)
- Towards High-Brigthness low energy muon beams (muCool)
- Muon collider and Neutrino factory developments (in connection with low energy muon beam?)

HiMB motivations

- Aim: O(10¹⁰ muon/s); Surface (positive) muon beam (p = 28 MeV/c); DC beam
- Time schedule: O(2025)
- PSI delivers the highest intensity DC μ^{+} beam: 5 x 108 μ^{+}/s
- Next generation cLFV experiments require higher muon rates
- New opportunities for future muon (particle physics) based
 experiments
- New opportunities for µSR experiments
- Different experiments demand for a variety of beam characteristics:
 - DC vs pulsed
 - Momentum depends on applications: stopped beams require low momenta
- Here focus on DC low momenta muon beams
- Maintain PSI leadership in DC low momentum high intensity muon beams

Control Fermilab →5x10¹⁰ μ⁻/s Mu2e:R_{μe} = *O*(10⁻¹⁷)

Beam features vs experiment requirements

- Dedicated beam lines for high precision and high sensitive SM test/BSM probe at the world's highest beam intensities
 - $DC {or Pulsed}?$ $I_{beam} ~ 10^{10} \mu/s$ DC beam for coincidence experiments
 • μ→eγ, μ→e e e $\mu \rightarrow e\gamma, \mu \rightarrow e e e$ • μ-e conversion

The world's most intense continuous muon beam

- PSI delivers the most intense continuous low momentum muon beam in the world (Intensity Frontiers)
 - Intensity = $5x \ 10^8 \ \text{muon/s}$, low momentum p = $28 \ \text{MeV/c}$

590 MeV proton ring cyclotron Time structure: 50 MHz/20 ns **Power: 1.4 MW**

PSI landscape

The world's most intense continuous muon beam

Two production targets • SINQ neutron source • Neutron spallation source SINQ Neutron experimental hall Injector I 72 MeV Cockcroft-Walton Beamdump 870 keV PiE1 4.6 · 10⁸ µ⁺/s Target | MuE1 Muon & Pion PiE3 MuE4 experimental hall Secondary beamlines PiE5 Target 4·10⁸ u⁺/s Injector II 72 MeV Ring cyclotron Comet 250 MeV 590 MeV Proscan Ultra cold neutron cancer therapy source UCN

Muon production via pion decay

- Single pion production at 290 MeV proton energy (LAB)
- Low-energy muon beam lines typically tuned to surface- $\mu^{\scriptscriptstyle +}$ at
 - ~ 28 MeV/c
- Note: surface-µ —> polarized positively charged muons (spin antiparallel to the momentum)
- Contribution from cloud muons at similar momentum about 100x smaller
- Negative muons only available as cloud muons

 $p + p \rightarrow p + n + \pi^+$ $p + n \rightarrow p + n + \pi^0$ $p + p \rightarrow p + p + \pi^0$ $p + n \rightarrow p + p + \pi^$ $p + p \rightarrow d + \pi^+$ $p + n \rightarrow n + n + \pi^+$ Single pion Double pion production production E_p[MeV] 290 600 μ^+ π^+

Initial HiMB concept: @SINQ

Initial HiMB concept: @SINQ

- Source simulation (below safety window):
 9 x 10¹⁰ surface-µ+/s @ 1.7 mA l_p
- · Profit from stopping of full beam
- Residual proton beam (~1 MW) dumped on SINQ
- Replace existing quadrupoles with solenoids:
 - Preserve proton beam footprint
 - Capture backward travelling surface muons
- Extract muons in Dipole fringe field
- Backward travelling pions stopped in beam window
- Capturing turned out to be difficult :
 - Large phase space (divergence & 'source' extent)
 - Capture solenoid aperture needed to be increased, but constrained by moderator tank
- High radiation level close to target
- Due these constraints and after several iterations with different capturing elements:
 - Not enough captures muons to make an high intensity beam
 - Alternative solution: HiMB @ EH

High Muon Beam Intensity: @Main Experimental Hall

Target E

- Rotating target (1 Hz)
- Polycrystalline graphite
- 40 mm length in beam direction
- 50 kW proton beam energy deposit
- 1700 K radiation cooled
- 30 % loss of protons
- Delivers world most intense surface muon beams

HIMB @ HE

- Back to standard target to exploit possible improvements towards high intensity beams:
 - Target
 - alternate materials
 - geometry
 - Beam line
 - high capture efficiency
 - large phase space acceptance transport channel

Optimization of standard production targets

- Back to standard target to exploit possible improvements towards high intensity beams
- **Target alternate materials**

 μ^+

- Search for high pion yield materials -> higher muon yield
 - Several materials have pion yields > 2x Carbon
 - Relative muon yield favours low-Z materials, but difficult to construct as a target .
 - B₄C and Be₂C show 10-15% gain

relative μ^+ yield $\propto \pi^+$ stop density $\cdot \mu^+$ Range \cdot length

Optimization of standard production targets

- Strategy: either increasing the surface volume (surface area times acceptance depth) or the pion stop density near the surface
 - Target geometry
 - Comparison studies of different target geometries: Different shapes and rotation angles
 - Enhancements normalised to standard target

Standard Grooved Trapezoidal Forked Slanted note: Each geometry was required to preserve, as best as possible, the proton beam characteristics down-stream of the target station (spallation neutron source requirement) x1.5 x1.1 x1.4 X1

Slanted target: towards the test

Upgrade existing graphite production target E 40 mm

- 8° slanting angle: Measurement in forward / backward / sideways direction
- Production and implementation feasible
- · Mechanical and thermal simulations completed and no show-stopper found
- · Installed in week 48 (Nov. 25th, 2019)
- · Goals
 - Increase surface muon rates for all connected beam lines
 - Increase safety margin for "missing" target with the proton beam

Prototype for the New Target E

New Target E

Slanted target: 2019 test Results

- Expect ~30-60 % enhancement
- · Measurements successfully done in different experimental areas in fall 2019
- Analysis still undergoing: increased muon yield CONFIRMED!
- To be seen: impact of higher thermal stress on long term stability of target wheel

Towards the HiMB project @ PSI

- Final position for the HiMB target: "Present" TgM location
- ~90° extraction to existing experimental areas
- Large phase space acceptance solenoidal channel

Target M

Prospects

- Aim: O(10¹⁰ muon/s); Surface (positive) muon beam (**p = 28 MeV/c**); **DC** beam
- Time schedule: O(2025)

Outline

- The role of low energy precision physics
- The High Intensity Muon Beam project at PSI (HiMB)
- Towards High-Brigthness low energy muon beams (muCool)
- Muon collider and Neutrino factory developments (in connection with low energy muon beam?)

D. Taqqu, PRL 97 (2006) 194801 Y. Bao et al., PRL 112 (2014) 224801

The muCool project at PSI

- Aim: High-brightness low energy muon beam
- Phase space reduction based on: dissipative energy loss in matter (He gas) and position dependent drift of muon swarm
- Increase in brightness by a factor 10¹⁰ with an efficiency of 10⁻³

D. Taqqu, PRL 97 (2006) 194801 Y. Bao, A.P. et al., PRL 112 (2014) 224801

The muCool project at PSI

- Aim: low energy high-brightness muon beam
- Phase space reduction based on: dissipative energy loss in matter (He gas) and position dependent drift of muon swarm
- Increase in brightness by a factor 10¹⁰ with an efficiency of 10⁻³

for:

```
μSR (solid state physics)
muonium (spectroscopy, gravitational interaction...)
muon experiments (μEDM, g-2...)
```


D. Taqqu, PRL 97 (2006) 194801Y. Bao et al., PRL 112 (2014) 224801I. Belosevic et al., EPJ C 79 (2019) 430

The muCool project at PSI

Aim: low energy high-brightness muon beam

for:

- Phase space reduction based on: dissipative energy loss in matter (He gas) and position dependent drift of muon swarm
- Increase in brightness by a factor 10¹⁰ with an efficiency of 10⁻³

µSR (solid state physics) muonium (spectroscopy, gravitational interaction...) muon experiments (µEDM, g-2...) 1st stage 2nd stage \vec{E} 12 K OUT > \vec{E} IN 293 K 4 K $\vec{v}_{drift} = \frac{\mu E}{1 + \left(\frac{\omega}{\nu_{col}}\right)^2} \left[\mathbf{\hat{E}} + \frac{\omega}{\nu_{col}} \mathbf{\hat{E}} \times \mathbf{\hat{B}} + \left(\frac{\omega}{\nu_{col}}\right)^2 \left(\mathbf{\hat{E}} \cdot \mathbf{\hat{B}} \right) \mathbf{\hat{B}} \right]$

Trajectories in E and B field + gas

I. Belosevic et al.,

Working principle: 1st Stage

Experimental setup and results: 1st stage and 2 stage

- Separately longitudinal and transverse compression: **PROVED**
- Very good agreement between data and simulations

Experimental setup and results: 1st stage

The muCool project at PSI: Status

- 1st stage + 2nd stage
- Next Step: Extraction into vacuum

Outline

- The role of low energy precision physics
- The High Intensity Muon Beam project at PSI (HiMB)
- Towards High-Brigthness low energy muon beams (muCool)
- Muon collider and Neutrino factory developments (in connection with low energy muon beam?)

Muon Collider & Neutrino Factory (very short intro!)

- Neutrino factory is also a muon factory and viceversa
- In both facilities:

•

- High power protons
- Target → pions
- Capture → **muons**
- Cooling
- Rapid acceleration
- Storage ring

· Challenges:

- Muon beam: **tertiary** ($p \rightarrow \pi \rightarrow \mu$) and **unstable** (muon life time ~ 2.2 µs)
 - Use high power proton driver
 - Use fast cooling (ionisation cooling → MICE)
 - Develop rapid accelerators

What is Muon Ionization cooling? (MICE)

- Energy loss in the absorbers reduces p_{L} and p_{T}
- Scattering heats the beam
- RF cavity restore pL only
- The net effect is the reduction of the beam emittance: cooling
 - Strong focusing, low-Z absorber material and high RF cavity are required

 $d\epsilon_n/ds$ is the rate of change of normalised-emittance within the absorber;

- β , E_{μ} and m_{μ} the muon velocity, energy, and mass, respectively;
- $\boldsymbol{\beta} \bot$ is the lattice betatron function at the absorber;

 L_R is the radiation length of the absorber material.

MICE results

- Muon cooling is last "in principle" challenge for muon collider and neutrino factory R&D.
- MICE:
 - measured the underlying physics processes that govern cooling
 - made an unprecedented single particle measurement of the particle trajectories in an accelerator lattice
 - first observation of ionisation cooling

LEMMA concept

- LEMMA: Low EMmittance Muon Accelerator
- Positron driver muon source
- Muons produced from $e^-e^+ \rightarrow \mu^-\mu^+$
 - 45 GeV positron beam impinging on a target (e⁻ at rest)
 - μ μ produced @ ~22 GeV with low transverse emittance with γ(μ)≈ 200 and μ laboratory lifetime of about
 500 μs
 - Aimed at obtaining high luminosity with relatively small μ^{\pm} fluxes thus reducing background rates and activation problems due to high energy μ^{\pm} decays

European Strategy

From the deliberation document of the European Strategy Update:

High-priority future initiatives

[..]In addition to the high field magnets the accelerator R&D roadmap could contain:

[..] an international design study for a muon collider, as it represents a unique opportunity to achieve a multi-TeV energy domain beyond the reach of e+e--colliders, and potentially within a more compact circular tunnel than for a hadron collider. The biggest challenge remains to produce an intense beam of cooled muons, **but novel ideas are being explored**;

For the European Strategy the Laboratory Directors Group (LDG) established a muon collider working group to provide input on the muon collider

- LDG represents: CERN, DESY, INFN, STFC, IRFU (CEA), CIEMAT, NIKHEF, LNGS, IJCLab(CNRS), PSI
- Proposed to the European Strategy Process to form an international collaboration to study the muon collider

Open questions - We have asked ourself about (discussion just started):

Can muCool&HiMB contribute on this program? Can a low energy high-brightness negative muon beam be produced? What about a muon collider/accelerator concept based on low energy high-brightness muon beams subsequently re-accelerated?

Outlook

- Precision physics is a very sensitive tool to explore and unveil new physics
- HiMB aims at surface high intensity muon beam O(10¹⁰ muon/s)
 - Initial simulations show that such rates are feasible; Target optimisation test: successfully done.
 Increase muon rate as expected. Beam optics and investigations on proton beam modifications underway
 - Put into perspective the target optimisation only, corresponding to 50% of muon beam intensity gain, would corresponds to effectively raising the proton beam power at PSI by 650 kW, equivalent to a beam power of almost 2 MW. If the same exercise is repeated put into perspective the beam line optimisation the equivalent beam power would be of the order of several tens of MW
- muCool aims at low energy high-brightness muon beam
 - Increase in brightness by a factor **10¹⁰** with an efficiency of **10⁻³**
 - First two stages demonstrated independently. Measurements and simulations agree. Current development: combining two stages and extraction into the vacuum
- Future accelerator concepts based on muons are part of the European Strategy recommendations
- Ongoing efforts (Muon collider&Neutrino Factory&New Ideas) open the doors for high energy muon accelerators as a probe of fundamental physics

Target geometry for new target M*

- Change current 5 mm TgM for 20 mm TgM*
- 20 mm rotated slab target as efficient as Target E

20 mm effective length 5° rotated slab

ToDo

- Optimization of capturing
- Optimize final focussing
- Iterative Beam line optimization and implementation of beam monitoring and particle separator locations with max. transmission
- Minimize shielding modifications
- Particle separation
- Investigate impact on proton beam properties
- Study extraction angle
- Determine new target location
- Disposal of highly radioactive waste
- Study Mu3e setup phase space acceptance and optimize final focus properties
- Find solution with current users of Target M

Schematic of the layout in the experimental hall

HiMB Simulation

- · Geant4 pion production cross sections not optimised for low energies
- Implemented our own pion production cross section into Geant4/G4beamline based on measured data and two available parametrizations (HiMB model)
- Valid for all pion energies, proton energies < 1000 MeV, all angles and all materials
- Reliable results at 10% level

R. L. Burman and E. S. Smith, Los Alamos Tech. Report LA-11502-MS (1989)
R. Frosch, J. Löffler, and C. Wlgger, PSI Tech. Report TM-11-92-01 (1992)
F. Berg et al., Phys. Rev. Accel. Beams 19, 024701 (2016)

HiMB model validation

- Full simulation of µE4 and piE5 beam lines starting from proton beam
- Detailed field maps available for all elements
- Very good agreement between simulation and measurements

Initial HiMB concept: @SINQ

- Source simulation (below safety window):
 9 x 10¹⁰ surface-µ+/s @ 1.7 mA l_p
- Profit from stopping of full beam
- Residual proton beam (~1 MW) dumped on SINQ
- Replace existing quadrupoles with solenoids:
 - Preserve proton beam footprint
 - Capture backward travelling surface muons
- Extract muons in Dipole fringe field
- Backward travelling pions stopped in beam window
- Capturing turned out to be difficult :
 - Large phase space (divergence & 'source' extent)
 - Capture solenoid aperture needed to be increased, but constrained by moderator tank
- High radiation level close to target
- Due these constraints and after several iterations with different capturing elements:
 - Not enough captures muons to make an high intensity beam
 - Alternative solution: HiMB @ EH

Optimization of standard production targets

- Strategy: either increasing the surface volume (surface area times acceptance depth) or the pion stop density near the surface
 - Target geometry
 - Comparison studies of different target geometries: TgE for different lengths

Surface muon rate Length [mm] Upstream Downstream Side

y [mm]

С

Optimization of standard production targets

- Strategy: either increasing the surface volume (surface area times acceptance depth) or the pion stop density near the surface
 - Target geometry
 - Comparison studies of different target geometries: Different rotation angles
 - Enhancements normalised to standard target

Slanted target: 2019 test Results

- Two independent detectors
 - SciFi: 0.5x0.5 mm2 scintillating fibers coupled to SiPMs to form a grid
 - Pill: (diam.) 2 mm x (length) 2 mm scintillator coupled to Hamamatsu R9880U-110 photomultiplier

Split capture solenoids

- Two normal-conducting, radiation-hard solenoids close to target to capture surface muons
- Central field of solenoids ~0.35 T
- Field at target ~0.1 T

Solenoid beam line

- First version of beam optics showing that large number of muons can be transported.
- Almost parallel beam, no focus, no separator, ...
- Final beam optics under development

Experimental setup and results: 1st stage

- Separately longitudinal and transverse compression: **PROVED**
- Very good agreement between data and simulations

Experimental setup and results: 2nd stage

- Separately longitudinal and transverse compression: **PROVED**
- Very good agreement between data and simulations

Final remarks

- Astonishing sensitivities in muon cLFV channels are foreseen for the incoming future
- cLFV remains one of the most exciting place where to search for new physics
- Submitted inputs to the European Strategy Committee

Searches for Charged-Lepton Flavor Violation in Experiments using Intense Muon Beams

Thanks for your attention!

Optimal surface muon production

- BUNGAU et al., Phys. Rev. ST Accel. BEAMS 16, 014701 (2013)
- Target: graphite
- Simulation validation: ISIS data

Variation of muon yield with proton energy at

• For standalone muon facility: 500 MeV proton energy is the optimal energy

Normalization of the muon yield to the proton energy

Muon production via pion decay

- Single pion production at 290 MeV proton energy (LAB)
- Low-energy muon beam lines typically tuned to surface- $\mu^{\scriptscriptstyle +}$ at
 - ~ 28 MeV/c
- Note: surface -µ —> polarized positively charged muons (spin antiparallel to the momentum)
- Contribution from cloud muons at similar momentum about 100x smaller
- Negative muons only available as cloud muons

