Present and Future Compton Gamma-ray Sources

Ying K. Wu

DFELL, Triangle Universities Nuclear Laboratory Department of Physics, Duke University

November 30, 2020

Work supported by U.S. DOE Grant: DE-FG02-97ER41033

- Introduction: Light Sources
- Physics of Compton Photon Sources
- Examples of Compton Photon Sources
- HIGS High Intensity Gamma-ray Source at TUNL, USA
- Toward Next-generation Sources: HIGS2; VEGA, ELI-NP
- Next Generation Compton Gamma-ray Sources

Spectrum of Electromagnetic Radiation

ERGET: Energetic Gamma Ray Experiment Telescope (NASA's Compton Gamma Ray Observatory satellite 1991 – 2000) CMB: Cosmic Microwave Background Arno Penzias and Robert Wilson Discovery: 1964; Nobel Price: 1978

http://heasarc.gsfc.nasa.gov/docs/cgro/egret/
 http://en.wikipedia.org/wiki/Cosmic_microwave_background_radiation

Gamma-ray Bursts: GRB 080319B

1. http://en.wikipedia.org/wiki/GRB_080319B

Compton Scattering

Compton Scattering Arthur H. Compton (1892 – 1962) Discovery: 1923 Nobel Price for Physics: 1927

$$\lambda_f - \lambda_i = \frac{h}{m_e c} (1 - \cos \theta)$$

http://fishbein.uchicago.edu/courses.html
 http://missionscience.nasa.gov/ems/12_gammarays.html

A.H. Compton, Bull. Nat. Res. Council (US) 20 (1922) 19; Phys. Rev. 21 (1923) 483.

Compton Photon Beam Flux

Compton Photon Sources = Electron-Photon Colliders

Photon Energy

Energy Distribution of Compton Gamma-beam

C. Sun *et al.* Phys. Rev. ST Accel. Beams 12, 062801 (2009).

Pulse Duration

1. G. Kraff and G. Priebe, Rev. Acc. Sci. & Tech. V3, 147 (2010). 2. Y. Taira *et al.*, TUPD091, IPAC'10, Kyoto, Japan

Polarization Effect

TUNE Duke

C. Sun and Y. K. Wu, Phys. Rev. ST Accel. Beams 14, 044701 (2011)

TUNE Duke

Electron Beam and Photon Beam Sources

E-beam Sources	X-ray	Gamma-ray	Comments
Storage Ring	Several	Common	High reprate Gamma-ray: large charge in a bunch, good emittance, expensive
Linac	Common	Several	Low reprate X-ray: need to improve charge & emittance
SC Linac	JLab (Early 2000s), and KAERI (2009)		High reprate, short pulses, good emitance
ERL	Proposed	Proposed	Expensive; New tech

Photon Beam Sources	X-ray	Gamma-ray	Comment
Cavity: FEL	Several	Several	High reprate; Medium to high avg power Large beam size
Cavity: Fabry-Perot	Several	Several	High reprate; Medium to high avg power Small beam size possible
External Lasers	Common	Common	Low reprate; Low avg power; Very high peak power possible Small beam size possible

Compton Photon Sources around the World Examples

First Compton Gamma-ray Source for Nuclear Physics Research

- LADON Project on Adone storage ring at Frascati, Italy
- 5–80 MeV, 5x10⁵ ph/s (max, total flux) (1978–1993)

Compton X-ray Sources: TTX, Tsinghua University, China

Facility/Project: Tsinghua Thomson Scattering X-ray Source (TTX) Institution: Tsinghua University Country: China Energy (keV): 24, 48 (90, 180 deg) Accelerator: Linac, 45 MeV Laser: Ti: Sapphire TW, 800 nm Total flux (@300mA): $8.4 \times 10^6 - 5.5 \times 10^7$ ph/s (design)

Status: Operational + Development

-signal+background

Compton X-ray Sources: AIST, Japan

Facility/Project: (hard x-ray project) Institution: AIST Country: Japan Energy (kev): 10 - 40Accelerator: Linac, 40 MeVLaser: Ti:Sapphire (800 nm) Flux: $5x10^6$ ph/pulse (10 Hz) ($5x10^9$ ph/s, est with multiple collisions)

Status: Operational + Development Applications: Medical and industrial imaging

Last update: 2012

Compton X-ray Sources: Compact Light Source, Lyncean Tech., Inc.

Sources:

1. www.lynceantech.com

2. G. Kraff and G. Priebe, Rev. Acc. Sci. & Tech. V3, 147 (2010).

3. R. Ruth, http://www.eurekalert.org/pub_releases/2009-01/lti-fsf010609.php

Facility/Project: Compact Light Source Company: Lyncean Technologies, Inc Country: USA Energy (keV): 7 to 35 Accelerator: Storage Ring Laser: FP cavity Total flux: about 10¹¹ ph/s Status: Commercial product

Compton X-ray Sources: Compact Light Source, Lyncean Tech., Inc.

microtomography

Last update: 2012

17

Compton Gamma-ray Sources: LEPS, SPring-8, Japan

Last update: 2012

Compton Gamma-ray Sources: SLEGS, SSRF, China

Access to various basic and applied studies

- Basic physics (nuclear structure, nuclear astrophysics, etc.)
- National strategic demands (nuclear power, aerospace, etc.)
- Industry or Medicine (NMR-CT, SPE-CT, etc.)

Shanghai Synchrotron

Radiation Facility

Facility/Project: SLEGS Institution: Shanghai Syn. Rad. Fac. (SSRF) Country: China Energy (MeV): 2 - 20, 300 - 550Accelerator: Storage fling, 3.5 GeV Laser: CO₂ ,or YAG Total flux (@300mA): $10^5 - 10^7$ g/s (low eng) $6X10^6$ g/s (high eng)

Status: Under Development

Last update: 2012

SSRF

Courtesy of Wang Xu, SSRF

HIGS/TUNL: Accelerator Facility

Facility/Project: HIGS Institution: TUNL Country: US Energy (MeV): 1–100 Accelerator: Storage Ring, 0.24–1.2 GeV Laser: FEL, 1060 – 190 nm (1.17–6.53 eV) Total flux: 10⁷–3x10¹⁰g/s (max ~10 MeV) Status: User Program Research: Nuclear physics, Astrophysics, National Security Accelerator Facility 160 MeV Linac pre-injector 160 MeV–1.2 GeV Booster injector 240 MeV–1.2 GeV Storage ring FELs: OK-4 (lin), OK-5 (cir) HIGS: two-bunch, 40–120 mA (typ)

HIGS R&D Team (2008–2020): M. Busch, M. Emamian, J. Faircloth, B. Jia, H. Hao, S. Hartman, C. Howell, S. Huang, B. Li, J. Li, W. Li, P. Liu, S. Mikhailov, M. Pentico, V. Popov, C. Sun, G. Swift, B. Thomas, P. Wang, P. Wallace, W. Wu, Y.K. Wu, W. Xu, J. Yan

Operation Principle of HIGS

TUN

Gamma Energy Tuning Range with OK-5 FEL (3.5 kA)

HIGS Flux Summary

Electron/Photon Collision Angle Monitor

Aiming at a golf ball at the end of 150 football fields

Figure 15: Horizontal beam angle at OK4 for about 36 hours operation from Aug. 20 to Aug. 21, 2009. The angle varied 2.5μ rad (peak to peak) during this operation, this value corresponds to 150μ m variation of gamma ray beam position at the gamma vault which is located 60 m downstream of the collision point. Typically, the collimator radius of the γ ray beam is 6 mm to 15 mm, therefor the misalignment caused by the beam orbit is about 2.5% to 1.0% of radius of the beam.

Gamma beam energy resolution in high-flux operation: Typically 3 - 5% (FWHM), or larger, selected by collimation

Electron/Photon Collision Angle Monitor

• Spin polarizabilities

Operational Compton Gamma-ray Sources for Nuclear Physics

Table 1: A list of major laser Compton gamma-ray sources around the world which are being operated for nuclear physics research.

Project Name	HIGS	LEPS/LEPS2	NewSUBARU	UVSOR-III
Parameters				
Location	Durham, U.S.	Hyogo, Japan	Hyogo, Japan	Okazaki, Japan
Accelerator technology	Storage Ring	Storage ring	Storage ring	Storage ring
Laser technology	FEL	Solid state laser	Solid state	Fiber laser
			or gas laser	or gas laser
Collision technology	Intra-cavity,	External laser,	External laser,	External laser,
	head-on	head-on	head-on	head-on
Electron energy [MeV]	240 - 1,200	8,000	$500\!-\!1,500$	750
Laser wavelength [nm]	1,060-190	266 and 355	532 - 10,600	1,940&10,600
Charge and pulse				
CW: Avg. current [mA]	10 - 120	100	300	300
Q [nC] @ reprate [MHz]	1.8 – 22 @5.58	0.2 - 2 @50 - 500	0.6 @ 500	3 @ 90
γ -beam energy [MeV]	1 - 100	$1,300\!\!-\!\!2,900$	1 - 40	1 - 5.4
Polarization	Lin, Cir	Lin, Cir	Lin, Cir	Lin, Cir
γ -beam	$0.8\% \ -10\%$	< 15%	10%	2.9%
energy resolution			$(\phi = 3 \text{ mm})$	$(\phi = 2 \text{ mm})$
(FWHM)	collimation	tagging	$\operatorname{collimation}$	collimation
γ -beam pulse structure				
a. CW operation [MHz]	5.58 (typical)	50 - 500	500	90
b. Pulsed operation	0.5-1.5 ms (FW)		8 ns pulse,	
	$2100~\mathrm{Hz}$		10-100 kHz,	
	Gain modulated		Q-switched	
On-target flux	10^{3} - $3 imes 10^{9}$	$10^{6} - 10^{7}$	$10^{5} - 3 \times 10^{6}$	4×10^5
$[avg, \gamma/s]$			$(\phi = 3 \text{ mm})$	$(\phi = 2 \text{ mm})$
Total flux [avg, γ/s]	$10^{6} - 3 imes 10^{10}$	$10^{6} - 10^{7}$	$10^{7}-4 \times 10^{7}$	10^{7}
Operation date	Since 1996	Since 1999	Since 2005	Since 2015

TUNE Duke

HIGS2: Next-Generation Gamma-ray Source

High-res capability: 0.6% (FWHM)

Compton Gamma-ray Sources: VEGA System, ELI-NP, Europe

Facility/Project: Variable Energy Gamma-Ray (VEGA) System Institution: Extreme Light Infrastructure, Nuclear Physics Country: Romania

Optical Cavity

Storage Ring

Energy (MeV): 1 – 10 (1030 nm); 2 – 19.5 (515 nm)

Accelerator: Storage ring Laser: IR laser: 1030 nm; Green laser: 515 nm Total flux: > 1.1 x 10¹¹ ph/s, > 5.0 x 10³ ph/s/eV Status: Under development

Image by Lyncean Technologies

Transport Line

Courtesy: Catalin Matei (ELI-NP), Benjamin Hornberger and Ronald Ruth (Lyncean Tech.)

Next Generation

Compton Gamma-ray Sources

Unconventional Approaches

Laser-plasma Accelerator Based Compton Sources

Gamma Factory at Large Hadron Collider (LHC), CERN

Atomic-beam-driven light source using resonant photon absorption to reach several orders of magnitude higher flux than conventional Compton gamma-ray sources

Low-Energy CGS: Storage Ring

Electron beam				
Beam energy	$500 { m ~MeV}$			
Stored currents	1000 mA			
Bunch filled	24			
Hori./Vert. emittance	7.5/0.75 nm-rad			
Hori./Vert. size (rms)	$212/39~\mu{ m m}$			
Bunch length (rms)	$150 \mathrm{\ ps}$			
Laser beam				
Wavelength	1064 nm			
Intracavity power	100 kW			
Pulse length (rms)	$20 \mathrm{\ ps}$			
Hori./Vert. size (rms)	$40/40~\mu{ m m}$			
Gamma-ray beam				
Max. energy	$4.43 { m MeV}$			
Collision rate	$121.66 \mathrm{~MHz}$			
Collision angle	6°			
Luminosity	$3.3 \times 10^{36} \mathrm{~cm}^{-2} \mathrm{s}^{-1}$			
Total flux (in 4π solid angle) 2.2×10^{12} //s				
E-beam:	FP cavity: 100 kW			
E = 500 MeV, $I = 1$ A	Beam size: $40/40 \ \mu m$			
Laser wavelength (nm)	$\lambda_1 = 1064 \lambda_2 = 1550$			
Tot. flux (γ /s): θ =6°	2.2×10^{12} 2.8×10^{12}			
Tot. flux (γ/s) : head-on	2.4×10^{13} 3.1×10^{13}			

Whitepaper: "International Workshop on Next Generation Gamma-Ray Source," C.R. Howell *et al.*, 2020

High-Energy CGS: Storage Ring

- 1
-1
-1
-1 1m;
-1 1m; n
-1 nm; n

Next-generation CGS: ERL Based Low Energy CGS

1064 nm1064 nm1064 nm1000 mm1000 mm

E-beam	E_{γ}	$\lambda_1 \ (nm)$	$\lambda_1/2$
(MeV)	(MeV)	1064	532
100	$E_{\gamma,\min}$	0.18	0.36
750	$E_{\gamma,\max}$	9.9	19.5

Beam energy	$500 { m MeV}$
Average current	20 mA
Hori./Vert. emittance (norm.)	1mm-mrad
Hori./Vert. size (rms)	$15 \ \mu { m m}$
Bunch length (rms)	3 ps
Laser beam	
Wavelength	$1064~\mathrm{nm}$
Intracavity power	70 kW
Pulse length (rms)	$10 \mathrm{\ ps}$
Hori./Vert. size (rms)	$15/15~\mu\mathrm{m}$
Gamma-ray beam	
Max. energy	$4.41~{\rm MeV}$
Collision rate	$81.25 \mathrm{~MHz}$
Collision angle	6°
Luminogity	$2.6 \times 10^{36} \text{ cm}^{-2} \text{ c}^{-1}$

Luminosity Total flux (in 4π solid angle) 2.6×10^{30} cm⁻²s 1.7×10^{12} γ/s

E-beam current (mA)	20	20	40
FP cavity power (kW)	70	70	70
Laser beam size (μm)	30/30	15/15	15/15
Tot. flux (γ /s): θ =6°	1.1×10^{12}	1.7×10^{12}	3.4×10^{12}
Tot. flux (γ/s) : head-on	5.4×10^{12}	1.3×10^{13}	2.7×10^{13}

33

Low-Energy CGS: Energy-Recovery Linac Duke

Electron beam