Epsilon Factorized Differential Equations for Elliptic Feynman Integrals

Hjalte Frellesvig
Niels Bohr International Academy (NBIA), University of Copenhagen.

September 15, 2022

! The Niels Bohr
s s Jass  [nternational Academy

H. Frellesvig Epsilon factorized dif eqs September 15, 2022 1/24



Introduction

PREPARED FOR SUBMISSION TO JHEP

On Epsilon Factorized Differential Equations for
Elliptic Feynman Integrals

Hjalte Frellesvig®
“Niels Bohr International Academy, University of Copenhagen

Blegdamsvej 17, 2100 Kobenhavn, Denmark

E-mail: hjalte.frellesvig@nbi.ku.dk

ABSTRACT: In this paper we develop and demonstrate a method to obtain epsilon factorized
differential equations for elliptic Feynman integrals. This method works by choosing an
integral basis with the property that the period matrix obtained by integrating the basis
over a complete set of integration cycles is diagonal. This method is a generalization of a
similar method known to work for polylogarithmic Feynman integrals. V

lemonstrate the

method explicitly for a number of Feynman integral families with an elliptic highest s
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Introduction

All Feynman Integrals (Fls)

Fls expressable as integrals over elliptic integrals

FIs expessable on dlog/canonical form
and as GPLs

Fls expressable as
classical polylogs

Fls expressable as
logarithms
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Introduction

The method of differential equations is the most fruitful approach

to the computation of Feynman integrals

In general the equation system dsJ = A) J will be hard to solve.

Differential equations in canonical form [Henn (2013)]
8sJ = eA) T (1)
A is free of epsilon dependence, and additionally

Al = Z B;9slog(fi(s)) 2
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Introduction

The method of differential equations is the most fruitful approach

to the computation of Feynman integrals

In general the equation system dsJ = A) J will be hard to solve.

Differential equations in canonical form [Henn (2013)]
8sJ = eA) T (1)
A is free of epsilon dependence, and additionally

Al = Z B;9slog(fi(s)) 2

In many such cases, this can be trivially integrated order by order in € to give
J; = Z Gl‘j ej
J

where G;; are combinations of generalized polylogarithms (GPLs) of weight j.
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Introduction

The method of differential equations is the most fruitful approach

to the computation of Feynman integrals

In general the equation system dsJ = A) J will be hard to solve.

Differential equations in canonical form [Henn (2013)]
8sJ = eA) T (1)
A is free of epsilon dependence, and additionally

Al = Z B;9slog(fi(s)) 2

In many such cases, this can be trivially integrated order by order in € to give
J; = Z Gl‘j ej
J
where G;; are combinations of generalized polylogarithms (GPLs) of weight j.

Eq. (2) does not generalize beyond GPLs. But how about eq. (1)?

Let us go through how to obtain the canonical form in a way that generalizes.
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Let us start by a non-elliptic example from [Henn (2013)], to motivate our method.

ki, ks,
p1 — 4&
Massless double box:
b NS

This integral family has eight master integrals - only two in the highest sector

-ag 38
uxg °d°z - d d
8 d—6_5—3 2—5 d—5
Ttay */ ar a7 Irxat */u7><cut ¢dz Urxeut = 877227 (2+8)"T 2 (2—1)
xyt - x c
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Let us start by a non-elliptic example from [Henn (2013)], to motivate our method.

ki, ks,
p1 — 4&
Massless double box:
b NS

This integral family has eight master integrals - only two in the highest sector

-ag 38
uxg °d°z - d d
8 d—6_5—3 2—5 d—5
Ttay */ ar a7 Irxat */u7><cut ¢dz Urxeut = 877227 (2+8)"T 2 (2—1)
xyt - x c

It is known that J1 = s2tI1111111;0, J2 = s211111111;-1 gives canonical form.

2 2 2 2
BT =eA T with  AG) = | Tt s s stE
e

How can we reproduce that?
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Let us start by a non-elliptic example from [Henn (2013)], to motivate our method.

ki, ks,
p1 — 4&
Massless double box:
b NS

This integral family has eight master integrals - only two in the highest sector
-ag 38
uxg °d°z - d d
—6_2_ 24 —
I{a}:/iwaf i I7><cut:/u7><cut pdz uzeeut = 5702273 (245)2 7 2 (2—1) 40
ozl ¢

It is known that J1 = s2tI1111111;0, J2 = s211111111;-1 gives canonical form.

2 2 2_ 2
BT =eA T with  AG) = | Tt s s stE
s+t s s+t
How can we reproduce that?
—za
Traditional method: continue cutting: I1111111;0 — dz

c s2z(z—t)
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Let us start by a non-elliptic example from [Henn (2013)], to motivate our method.

ki, ks,
p1 — 4&
Massless double box:
b NS

This integral family has eight master integrals - only two in the highest sector

-ag 38
uxg °d°z - d d
8 d—6_5—3 2—5 d—5
Ttay */ ar ar I7><cut*/u7><cut ¢dz Urxeut = 877227 (2+8)"T 2 (2—1)
xyt - x c

It is known that J1 = s2tI1111111;0, J2 = s211111111;-1 gives canonical form.

2 2 2 2
dsJ =eA® T with A<S>[S+t1 s, ot }

—2_ 1
s+t S s+t
How can we reproduce that?

727(1
Traditional method: continue cutting: I1111111;0 — —dz
c s2z(z—t)
a=0: one pole in z=00of 1/(st) and one pole in z
a=—1:

=t of —1/(s%t)
and  one pole in z = co of 1/(s?)

The above prefactors make the integrals pure.

one pole in z =t of —1/(s2)
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Motivation

Let us do again in a different way

We still want to reproduce J; = 52t11111111;0, Jo = 5211111111;_1
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Motivation
Let us do j:l:( again in a different way

We still want to reproduce J; = 82t11111111;0, Jo = 5211111111;_1

Possible integration contours: L

e
(=X}

J1 = fili111111,0, J2 = f2l1111111;-1 and also v1 = Co, 72 = Co

We write down the period matrix P;; = fv }i)idz
fi

. il s
Pi=—F——— = P=2mi| i
s2z(z — t) 0

o'm‘;" =]

P =2mil = f1 = s%t, fo = s°
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Motivation
Let us do j:l:( again in a different way

We still want to reproduce J; = 82t11111111;0, Jo = 5211111111;_1

Possible integration contours: L

e

J1 = fili111111,0, J2 = f2l1111111;-1 and also v1 = Co, 72 = Co

We write down the period matrix P;; = fv }i)idz
fi

A —zt1 —];1 0
b=——" = P=2m| >
T s22(2 —t) ™10 el
S

P =2mil = f1 = s%t, fo = s°

f%l f122
Ji = firliao + fieliiiiii;-1 gives P=2mi| $F g
s2t s2

P =2mil = fi11 = 5%, fi2 =0, fa1 = 0, faz = s°
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Motivation

Another non-elliptic example: around d = 2

N
N
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Motivation

around d = 2

Another non-elliptic example: O
sne I . € 2\ — & —e —1—2¢
IP™l3xcut = [ ugpdz with uw=z2 (z(zf4m )) 2 (zfs)
C

2 Mls: “precanonicals” I111;0 and I111;-1 correspond to ¢A>1 =1, <f>2 =z

i—1
so in d = 2 we have the integrand &®; = c

v z(z—4m?2)(z—s)
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/AR
N

R 1
I*™3xcut = /ud)dz with u = 2¢ (z(zf4m2))7§76 (,275)7172E
C

Another non-elliptic example: around d = 2

2 Mls: “precanonicals” I111;0 and I111;-1 correspond to ¢A>1 =1, <f>2 =z

Zi—1

v z(z—4m?2)(z—s)

so in d = 2 we have the integrand &; =

i gy bt e are possible integration contours
fia+sfio —f12
. . \/ —4m?2
Ji = fi;I; and v1 =Cs,72 =Coo gives P =2mi f52(15+sf7;2) o

V/s(s—4m?2)
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/AR
N

R 1
I*™3xcut = /ud)dz with u = 2¢ (z(zf4m2))7§76 (,275)7172E
C

Another non-elliptic example: around d = 2

2 Mls: “precanonicals” I111;0 and I111;-1 correspond to ¢A>1 =1, <f>2 =z

Zi—1

v z(z—4m?2)(z—s)

so in d = 2 we have the integrand &; =

O I e o i oare possible integration contours
_fuitsfio —fio
. ) —
Ji = fijlj and 71 =Cs,72 =Coo  gives P =2mi m —fa2

V/s(s—4m?2)
P =2mil gives J1 = \/s(s—4m?)L111;0, J2 = slii1;0 — T111;-1
and indeed we get 0sJ = eAJ
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The algorithm

For J;, = / up;d"z write uPp; = ad;
C
where o is pure and @ free of ¢ exponents

< In our previous example

ze(z(z—4m2))7%75(z—s)71725¢ = (z—4’m2)’5(z—s)’26 X >

2(z—4m?2)(z—s)
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The algorithm

For J;, = / up;d"z write uPp; = ad;
C
where o is pure and @ free of ¢ exponents

< In our previous example

1
2 (2(2—4m?)) 27 (2—8) 1T2p = (2—4m?) (z—s) P X —— P
(=( ) (=) v ( ) (=) z(z—4m2)(z—s)>
then | claim: The set of J; will have epsilon factorized diff-egs if
P=2m)"I  where P = /éid%

. R
where the 7; are a complete set of integration cycles.
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The algorithm

For J;, = / up;d"z write uPp; = ad;
C
where o is pure and @ free of ¢ exponents

< In our previous example

1
2 (2(2—4m?)) 27 (2—8) 1T2p = (2—4m?) (z—s) P X —— P
(=( ) (=) v ( ) (=) z(z—4m2)(z—s)>
then | claim: The set of J; will have epsilon factorized diff-egs if
P=2m)"I  where P = /éid%

. R
where the 7; are a complete set of integration cycles.

In practice: ¢; =3, f“(Z)l where the qgl are an intermediate basis.

P = (2rnI)™I gives v2 constraints, fixes all f;; uniquely.
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The algorithm

For J;, = / up;d"z write uPp; = ad;
C
where o is pure and @ free of ¢ exponents

< In our previous example

1
2 (2(2—4m?)) 27 (2—8) 1T2p = (2—4m?) (z—s) P X —— P
(=( ) (=) v ( ) (=) z(z—4m2)(z—s)>
then | claim: The set of J; will have epsilon factorized diff-egs if
P=2m)"I  where P = /éid%

. R
where the 7; are a complete set of integration cycles.

In practice: ¢; =3, f“(Z)l where the qgl are an intermediate basis.

P = (2rnI)™I gives v2 constraints, fixes all f;; uniquely.

Disclaimer: This did not appear fully formed. See
[Primo and Tancredi (x2)], [Bosma, Sggaard, Zhang], [HF, Papadopoulos], [Bourjaily et al.], ...
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The algorithm

For J;, = / up;d"z write uPp; = ad;
C
where o is pure and @ free of ¢ exponents

< In our previous example

1
2 (2(2—4m?)) 27 (2—8) 1T2p = (2—4m?) (z—s) P X —— P
(=( ) (=) v ( ) (=) z(z—4m2)(z—s)>
then | claim: The set of J; will have epsilon factorized diff-egs if
P=2m)"I  where P = /éid%

. R
where the 7; are a complete set of integration cycles.

In practice: ¢; =3, f“(Z)l where the qgl are an intermediate basis.

P = (2rnI)™I gives v2 constraints, fixes all f;; uniquely.

Disclaimer: This did not appear fully formed. See
[Primo and Tancredi (x2)], [Bosma, Sggaard, Zhang], [HF, Papadopoulos], [Bourjaily et al.], ...

P will be square as the sets of v and ¢ are dual:
They are bases for (twisted de Rahm) homology and cohomology groups.

This basis choice is a freedom in the algorithm. P

The Niels Bohr
Incernational Academy

H. Frellesvig Epsilon factorized dif eqs



Examples

| have done a number of examples:

N
—/

i
/
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Examples: npt

First elliptic example: The non-planar double triangle

Again two integrals in the highest, elliptic sector.
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Examples: npt

First elliptic example: The non-planar double triangle

Again two integrals in the highest, elliptic sector. Around d = 4
1
uloxcut = s 12 (2(2+5) (22 +s2—4m?s)) 27 ¢

Factorizing out the pure part we get integrals of the form

QASdz . . > 5
/(27 with Y = \/z(z+s)(z +sz—4m?2s)
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Examples: npt

First elliptic example: The non-planar double triangle

Again two integrals in the highest, elliptic sector. Around d = 4
1
uloxcut = s 12 (2(2+5) (22 +s2—4m?s)) 27 ¢

Factorizing out the pure part we get integrals of the form

QASdz . . > 5
/(27 with Y = \/z(z+s)(z +sz—4m?2s)

We pick intermediate basis I111111;0 and I211111;0 corresponding to

- 1 - (142¢€)(z+s)
== d =\ TEORETS)
2 s an %2 s (22+s2—4m?2s)
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Examples: npt

First elliptic example: The non-planar double triangle

Again two integrals in the highest, elliptic sector. Around d = 4
1
uloxcut = s 12 (2(2+5) (22 +s2—4m?s)) 27 ¢

Factorizing out the pure part we get integrals of the form

QASdz . . > 5
/(27 with Y = \/z(z+s)(z +sz—4m?2s)

We pick intermediate basis I111111;0 and I211111;0 corresponding to

- 1 - (142¢€)(z+s)
== d =\ TEORETS)
2 s an %2 s (22+s2—4m?2s)

Y? = (z=ri)(z=mi)(z=rii) (z=riv)  with

ri=—3Vs(Vs+V16m2+s), rmi=—s, ri=0, 7y, =—1v5(/s—V16m2+s)
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Examples: npt

What are the independent contours for

¢dz , s youe ue—_— S
/07 with Y = /(z—n)(z—ri) z—ii) (z—7iv)

T Tii Tiii Tiv
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Examples: npt

What are the independent contours for

¢dz , s youe ue—_— S
/07 with Y = /(z—n)(z—ri) z—ii) (z—7iv)
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Examples: npt
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Examples: npt

The non-planar double triangle:

We have
- 1 - (142€)(z+s)
=2 = i a2 = Ciiii » = Ciii,
& s ¢2 s (224sz—4m2s) n 2
and we want
R odo)d
P;; :/ M = fugy with Y = \/Z(Z+S)(22+sz—4m25)

Vi
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Examples: npt

The non-planar double triangle: X}

We have
- 1 - (142€)(z+s)
=2 = i a2 = Ciiii » = Ciii,
1 s ¢2 s (22+4s2—4m?2s) n i
and we want
s odo)d
P = M = fugy with Y = \/Z(Z+S)(22+sz—4m25)
i
/ $1dz 8K (k2) . 22 4/5v/16m2+s
= = where [ S S
IZ LY T SR(/1emE st (VIOmZ+s++/5)?
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Examples: npt
The non-planar double triangle: X}

We have
- 1 - (142€)(z+s)
= = . a2 = Ciiii » = Ciii
o s ¢2 s (224sz—4m2s) n 2

and we want

s odo)d
P = M = fugy with Y = \/Z(Z+S)(22+sz—4m25)
i
/ $1dz 8K (k2) . 22 4/5v/16m2+s

= = where -

IZ LY T SR(/1emE st (VIOmZ+s++/5)?
Complete elliptic integrals of the first, second, and third kind
V1 — k2224
1—12)(1—162 CVI—a22

. 1 dx
m(n, k )'_/0 (1 —n222)\/(1 — 22)(1 — k222)
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Examples: npt

5 Lo (14+2¢)(2+s)
s = aira o 1 =Gk, 72 =Cii
=7, b2 s(Ptsz—dm2s)’ yo
; 4 16m2
Pij = fugi; where g :/ ¢rdz Also o aysVIGTs
u Y (V16m2+s++/5)2
_ 8K (k?)
g11 = 33/2(\/m+\/§)
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Examples: npt

(142¢€)(z+s)

m , 71 = Ciiiii, 72 = Ciii

¢1:17 P2 =
S

bydz 4,/5V/16m?2+s
ij = filglj where gi; = / ¢l Also kz = \[
¥

Y (VIGmZ s ty5)?
B 8K (k?) B —8iK(1—k?)
g = $3/2(v/16m2+5++/5) g2 = 53/2(v/16m2+s++/5)

B —8(1+2¢) 2y 4 YIOm2+s+y/s V16m2 +s+\f B(k?)
921 = 53/2(v/16m2+5++/5) V16m2+s—+/s

_i(142¢) [ K(1-k?) \/16m2+s+\f BE(1—k?)
922 = $3/2m2 /;161712«#5 2(16m2+s)
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Examples: npt

L1 (1420(+9)
= = . a2 = Ciiii » = Ciii
é1 e @2 s (2tso—dmzs)’ 72
prdz . 4y/5V16m?+s
= fugri Where = / Also k= —————
ij leglj gij - Y ( 16m2+s+\/§)2
_ 8K (k?)  —8iK(1-k?)
= B (TomPrstvs) 7 $/2(V/I6m2tstys)

B —8(1+2¢) 2y 4 YIOm2+s+y/s V16m2 +s+\f B(k?)
921 = 53/2(v/16m2+5++/5) V16m2+s—+/s

_i(142¢) [ K(1-k?) \/16m2+s+\f BE(1—k?)
922 = $3/2m2 /;161712«#5 2(16m2+s)

Imposing P = 2mil fixes the f;; uniquely, for instance

fi1 = 2is¥/2(V16m2+s + Vs) E(1—k?) — is%/2y/16m2+sK (1-k?)
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Examples: npt

So now we have J; = fi11111111;0 + f1'21211111;0 with fil fixed.
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Examples: npt

So now we have Ji = fi11111111;0 + f1'21211111;0 with fil fixed.

We get 8sJ = €AJ with «-----
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Examples: npt

A =

Ap =

Agx =

So now we have Ji = fi11111111;0 + fi21211111;0 with fil fixed.

We get 8sJ = €eAJ with
8(12m2+s) K (k?) K (1—k?) 2 (. 8m? NG 5 2
/5 (16m-+5) (VIm? T4 v/5) (1 o Vi) FOEO)
N —4(12m2+s) K (k?) E(1—k?) N —2(V16m2+s++/s) E(k?) K (1—k?)

ws(16m2+s) m/s(16m2+s)
—64im2 K (1—k?)2 N i(V16m2+s + /s)?E(1—k?)?
7r\/§§/16m2+s(\/16m2+8 —Z V/s) ms(16m2+s)
* ﬁ (\/15572“ a 1657;7:;—1—3) K(-k)B1-k)
(12m ) (VTGS — JAPK()? | i/ TomP s — /A2 B(K)?
4m27rs(16m2+s) ms(16m2+s)
N —4iK (k?)E(k?)

2(V/16m2+s — /5)2 K (k?) K (1—k2) N -2 (17 gm? /s
78V16m2+s(vV/16m2+s + \/s) s 16m2+s  /16m2+s
16m? K (k2)E(1—k?) —32m2E(k?) K (1-k2)

ws(16m2+s) 75V16m2+s(vV/16m2+s + /s)

) E(2)E(Q1—k?)
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Examples: s3m

Next example: The three mass elliptic sunrise
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Examples: s3m

Next example: The three mass elliptic sunrise

€

S1_ S1_.
ul3xcut = 2° (32—2(m§+m§)z+(m%—m%)2) 2 (22—2(m§+s)z+(m§—s)2) 2

There are four Mls. We pick intermediate basis I111;00, I211;00, 111;-10, 1111;0-1

(142¢€) (z+m2+m2) 3 2 é 1
’ =%z, 4~
22—2(m2+m2)z+(m2—m2)2 s z

)

$1=1,

2 =
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Examples: s3m

Next example: The three mass elliptic sunrise

_1_, S1_.
ul3xcut = 2° (32—2(m§+m§)z+(m%—m%)2) 2 (22—2(m§+s)z+(m§—s)2) 2

There are four Mls. We pick intermediate basis I111;00, I211;00, 111;-10, 1111;0-1

(142¢€) (z+m2+m2) 3 2 é 1
’ =%z, 4~
22—2(m2+m2)z+(m2—m2)2 s z

)

$1=1,

2 =
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Examples: s3m
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Examples: s3m

The three mass sunrise:

(142€)(z4+m3+m3) 3 . é 1
’ 3 = %, 4~ —
22—2(m2+m2)z+(m2—m2)2 z

Integrands (;31 =1, qBQ =

and contours  v1 = Ciiiiii, 72 = Ciii, 73 =Coo, 74 =Co
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Examples: s3m

The three mass sunrise:

(142€)(z4+m3+m3) - N

N A 1
Integrands =1, = , =z, ~ =
g é1 @2 a2 +m2) e (m2—m2)? ¢3 ®a .

and contours  v1 = Ciiiiii, 72 = Ciii, 73 =Coo, 74 =Co

qgldz
Y

The period matrix P;; = fyg9i; with g;; =
i
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Examples: s3m

The three mass sunrise:

~ ~ 14+2 2 2
Integrands ¢1 =1, ¢o = (142¢)(2+m3+m3)

X 1
» Pz =2, da~ -
22—2(m2+m2)z+(m2—m2)2 z

and contours  y1 = Ciiiii

bid
The period matrix Pij = fugi; with g =/ hidz

i Y
4K (k2) ,  16mimamsy/s 3
= =— On 1= i — 2mnp
I = 5001020 50516203 ;m "
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Examples: s3m

The three mass sunrise: 6—

~ ~ 14+2 2 2
Integrands ¢1 =1, ¢o = (142¢)(2+m3+m3)

N ~ 1
’ =z, ~ =
22—2(m2+m2)z+(m2—m2)2 93 94

and contours

hid
The period matrix Pij = fugi; with gi; = ¢’YZ
i
4K (k2) 5 16mimamsy/s 3
= —7 k2= On = ;-2
gL kY4 5061 6253 5061 6263 " ; e e
2 6+601 502603)\3+H(TL2, k2)
g31 = —————— (201 2o K(K?) —
V60010203 Az— ( *) Py
g13 = 07 g33 = _271—7:’ .

We also see I1(72, k?)

. Frellesvig
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Examples: s3m

The three mass sunrise: 6—

~ ~ 14+2 2 2
Integrands ¢1 =1, ¢o = (142¢)(2+m3+m3)

. A 1
) =z, ~ -
22—2(m2+m2)z+(m2—m2)2 93 94

and contours

hid
The period matrix Pij = fugi; with gi; = ¢’YZ
Vi
4K(k¢2) 2 16m1m2m3\/§ 3
- ——L K= =S mi -2
gL kY4 5051 6253 5051 6263 " ; e e
2 64001 502603)\3+H(TL2, k2)
931 = ————=— | 2M1-X2_ K k?) —
V60010203 Az— ( *) Py
g13 = 07 g33 = _271—7:’ .

We also see I1(72, k?)

We may then impose P = 27il. 16 constraints fix the f;; uniquely.
8sJ = €A(5) J. The expressions are too big to be written here ...

. Frellesvig
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Discussion

The elephant in the room: How do we integrate 9,J = eAJ ?
We need elliptic generalization of GPLs.
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Discussion

The elephant in the room: How do we integrate 9,J = eAJ ?
We need elliptic generalization of GPLs.

One option (by Broedel, Duhr, Dulat, Tancredi 2018)

L Yo(0,2) = 2 Yy (c,m) = —L

1
vilez) = T—c y y(z—c)’

Yo1(o0,a) = =,
Yy
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Discussion

The elephant in the room: How do we integrate 9,J = eAJ ?

We need elliptic generalization of GPLs.

One option (by Broedel, Duhr, Dulat, Tancredi 2018)

By (Wl 0k / At n,(c1, ) Ea (720 0k
cq T
Vi(e,x) = ——, $o(0,2) = <, Yoae,a) = —Ls, Ya(oo,x) = -,
—c Y y(z—c)’ Yy
Another option (by Adams, Bogner, Weinzierl 2015)
oo o .’.Ej yk . T
ELin,m(z,9) =Y > kaijk or  I(fi,. o, fn57) =/ dri fai(r)I(f2,- .., fn;71)
j=1k=1 70

where f,, are modular forms on the lattice defined by the elliptic curve.

Also T', ", and many other approaches. It is a booming field.
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Discussion

The elephant in the room: How do we integrate 9,J = eAJ ?

We need elliptic generalization of GPLs.

One option (by Broedel, Duhr, Dulat, Tancredi 2018)

By (Wl 0k /dt¢n1(clv VB4 (7200
cq T
Vi(e,x) = ——, $o(0,2) = <, Yoae,a) = —Ls, Ya(oo,x) = -,
—c Y y(z—c)’ Yy
Another option (by Adams, Bogner, Weinzierl 2015)
oo o .’.Ej yk . T
Blinm(@y) =3 > imd® or I(fi. fui) =/ dri fr(r)I(f2, -, fai 1)
j=1k=1 70

where f,, are modular forms on the lattice defined by the elliptic curve.
Also T', ", and many other approaches. It is a booming field.

Yet none of this is directly suitable.

Numerical integration of the dif-eq will definitely work.

The Niels Bohe
Incernational Academy
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Discussion

P = (2mi)"1 is sufficient, not necessary.
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Discussion

P = (2mi)"1 is sufficient, not necessary.

There are other options: For the nonplanar double-triangle we may pick

I = flllﬂ)tnu;o ) Jpr = f21[;§t1111;0 + f22[3§)t1111;0 with
Fii = €53/2(\/16m2+s++/5) Fia =0
11 1K (E2) 12

for = /2 (VIO BB + (VTP —vA) (14 200 e
fan = 733/2(16m2+s)(\/M*\/§)K(k2)
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Discussion

P = (2m2)™1 is sufficient, not necessary.

There are other options: For the nonplanar double-triangle we may pick

A= LN o0 = faliline + fee byl with
o €5%/2(V/16m2+s++/5) flo=0
1 4K (k2) "

for = /2 (VIO BB + (VTP —vA) (14 200 e
fan = 733/2(16m2+s)(\/M*\/§)K(k2)

This system gives dJ;7"/ds = eA;; j;pt with

Ay = —(8m?+s) Ay = (V16m?+s+4/5)*
s(16m2+s) 8v/25(16m24-5) K (k2)2

Ayt — 8v/2(8m?2+5)2 K (k?)2 Agy — —(8m?+s)
5(16m245)(vV16m2+s++/5)2 s(16m2+s)

A variable change to the period ratio T = K(1—k?)/K (k?)
might help integrating the system following [Adams, Weinzierl (2018)]
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Incernational Academy

H. Frellesvig Epsilon factorized dif eqs



Discussion

P = (2mi)™I is sufficient, not necessary.

npt __ npt Fnpt __ npt npt
JiT = f111111111;0 ) Jy = f211111111;0 + f221211111;0

What is the period matrix in this other representation?
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Discussion

P = (2mi)™I is sufficient, not necessary.
jnpt _ f Inpt jnpt _ f Inpt +f Inpt
1 — J1tfi1111150 0 2 — J21411111150 22421111150
What is the period matrix in this other representation?
K(1-k?)
K(k?)

(16m2+5)(vV16m2+s — /) K(k2)
m2(V16m2+s + /s)

P =2¢ Py = —2ie

Po1 = 2eK (K?) <8E(k2) -

Paz = dri + 2ie K (k) <8E(1—k2) n (8m2+s)V16m2+s — (24m2+s)\/§K(1_k2)>

m2(y/s+v16m2+s)

but det(P) = 8ime(142¢)
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Discussion

P = (2mi)™I is sufficient, not necessary.
jnpt _ f Inpt jnpt _ f Inpt +f Inpt
1 — J1tfi1111150 0 2 — J21411111150 22421111150
What is the period matrix in this other representation?
K(1-k?)
K(k?)

(16m2+5)(vV16m2+s — /) K(k2)
m2(V16m2+s + /s)

P =2¢ Py = —2ie

Po1 = 2eK (K?) <8E(k2) -

Paz = dri + 2ie K (k) <8E(1—k2) n (8m2+s)V16m2+s — (24m2+s)\/§K(1_k2)>

m2(y/s+v16m2+s)
but det(P) = 8ime(142¢)

fi2 =0, and P11 and det(ﬁ) are constant: 3/4 constraints.

Does this generalize beyond two-master cases?
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Discussion

P = (2mi)™I is sufficient, not necessary.
jnpt _ f Inpt jnpt _ f Inpt +f Inpt
1 — J1tfi1111150 0 2 — J21411111150 22421111150
What is the period matrix in this other representation?
K(1-k?)
K(k?)

(16m2+5)(vV16m2+s — /) K(k2)
m2(V16m2+s + /s)

P =2¢ Py = —2ie

Po1 = 2eK (K?) <8E(k2) -

Paz = dri + 2ie K (k) <8E(1—k2) n (8m2+s)V16m2+s — (24m2+s)\/§K(1_k2)>

m2(y/s+v16m2+s)
but det(P) = 8ime(142¢)

fi2 =0, and P11 and det(ﬁ) are constant: 3/4 constraints.

Does this generalize beyond two-master cases?

See upcoming work by Stefan Weinzierl and |
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Discussion

Number of master integrals can be counted with the Lee-Pomeransky criterion

v = number of solutions to “w = 0" where w = dlog(u)
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Discussion

Number of master integrals can be counted with the Lee-Pomeransky criterion

v = number of solutions to “w = 0" where w = dlog(u)

This criterion miscounts for the non-planar double-triangle (it counts three, there are two)
We had intermediate basis ITrlJtllll;O and I;Tllll;o corresponding to

- 1 (142¢€)(z+s)
P11 = 3 P2 = S (P tse—dm2s) and  v1 = Ciiii, 72 = Ciii

Why not a third 1;55111»1 corresponding to 433 =z/s and 3 =Cxo?

e T
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Discussion

Number of master integrals can be counted with the Lee-Pomeransky criterion

v = number of solutions to “w = 0" where w = dlog(u)

This criterion miscounts for the non-planar double-triangle (it counts three, there are two)
. . . npt npt H
We had intermediate basis 11?1111;0 and 1251111;0 corresponding to
1 (142¢€)(z+s)

b1 = 3 P2 = S (P tse—dm2s) and 71 = Ciiii, 72 = Ciii

Why not a third 1111111 _; corresponding to ¢3 =z/s and 3 =Cxo?

npt _
1111111;0 + lower = g3; = 75 g1i

npt _
From IBPs we know 1111111;—1 =
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Discussion

Number of master integrals can be counted with the Lee-Pomeransky criterion

v = number of solutions to “w = 0" where w = dlog(u)

This criterion miscounts for the non-planar double-triangle (it counts three, there are two)
. . . npt npt H
We had intermediate basis 11?1111;0 and 1251111;0 corresponding to
1 (142¢€)(z+s)

b1 = 3 P2 = S (P tse—dm2s) and 71 = Ciiii, 72 = Ciii

Why not a third 1111111 _; corresponding to ¢3 =z/s and 3 =Cxo?

npt _ npt . .
From IBPs we know 1111111;—1 = ?1111111;0 + lower = g3; = ?gh

g3z =0, g13 = —2mi, g31 depends on H(ng, k2) but it works on v1

1 _ 2. —16x
H((1+r)2’ (z— 3)(1+x)3) - 3(zf1)K((a¢73)(1+x)3) ... . N
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Discussion 4+ Conclusion

An elliptic generalization of canonical forms?
Canonical forms are defined by

85T = AT (1) and A =3B, dslog(fi(s)) (2)

We have (1) but not (2)
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Discussion 4+ Conclusion

An elliptic generalization of canonical forms?
Canonical forms are defined by

85T = AT (1) and A =3B, dslog(fi(s)) (2)

We have (1) but not (2)
While my expressions

A Reduce to canonical forms in the polylogarithmic case

B Are free of higher poles (just as dlog forms)
they are NOT

C Integrating directly to elliptic polylogarithms

D The nicest form available
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Discussion 4+ Conclusion

An elliptic generalization of canonical forms?

Canonical forms are defined by

8sJ =eAB) T (1) and A =3"B;d;log(fi(s)) (2)
i
We have (1) but not (2)
While my expressions
A Reduce to canonical forms in the polylogarithmic case
B Are free of higher poles (just as dlog forms)
they are NOT

C Integrating directly to elliptic polylogarithms
D The nicest form available

| hope my algorithm and expressions can be a step in the generalization

of canonical forms to the elliptic case and beyond.
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For more information:

Diff-eqs for Feynman Integrals:
[Kotikov (1991)], [Gehrmann and Remiddi (2000)], [Henn (2013)]
“Canonicalization”:
[Henn (2013,15)], [Lee (2015)], [Wasser (2016)], [Gituliar and Magerya (2017)],
[Argeri, Di Vita, Mastrolia, Mirabella, Schlenk, Schubert, Tancredi (2014)],
[Henn, Mistlberger, Smirnov, Wasser (2020)], [Chen, Jiang, Xu, Yang (2021)]
Baikov Parametrization:
[Baikov (1997)], [Frellesvig, Papadopoulos (2017)]

Cuts and Integral Relations:
[Bosma, Sogaard, Zhang (2017)], [Primo and Tancredi (2x2017)]

Pure Functions and Prescriptive Unitarity:

[Arkani-Hamed, Bourjaily, Cachazo, Trnka (2012)], [Bourjaily, Herrmann, Trnka (2017)],
[Bourjaily, Kalyanapuram, Langer, Patatoukos (2021)]

Vector Space Structure:
[Lee and Pomeransky (2013)], [Mastrolia and Mizera (2019)],
[Frellesvig, Gasparotto, Laporta, Mandal, Mastrolia, Mattiazzi, Mizera (2x2019,2021)],
[Chestnov, Frellesvig, Gasparotto, Mandal, Mastrolia (2022)], Seva's talk on Tuesday

Elliptic Feynman Integrals and Elliptic Polylogs:
[Laporta and Remiddi (2005)], [Brown and Levin (2011)], [Bloch and Vanhove (2015)]
[Remiddi, Tancredi (2016,2017)], [Broedel, Duhr, Dulat, Tancredi (2017,3x18,19)]
[Adams, Bogner, Ekta, Weinzierl (2015,16,17,2x18,21)]
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Discussion 4+ Conclusion

Thank you for inviting me
and thank you for listening!

Hjalte Frellesvig
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