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Part I

Introduction: QCD corrections
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precision at colliders

• improved experimental precision at colliders

• in order to detect potential deviations from SM, require precise theory predictions

• determination of SM parameters: top mass mt , strong coupling αs etc.

• master equation for hadron colliders:

dσ =
∑
i ,j

∫
dx1dx2 fi/p(x1) fj/p(x2) d σ̂ij(x1P1, x2P2) (1)
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• improved experimental precision at colliders

• in order to detect potential deviations from SM, require precise theory predictions

• determination of SM parameters: top mass mt , strong coupling αs etc.

• master equation for hadron colliders:

dσ =
∑
i ,j

∫
dx1dx2 fi/p(x1) fj/p(x2) d σ̂ij(x1P1, x2P2) (1)

• fi/p: parton distribution function (PDF)
• d σ̂ij : partonic cross-section
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parton distribution function

dσ =
∑
i ,j

∫
dx1dx2 fi/p(x1) fj/p(x2) d σ̂ij(x1P1, x2P2) (2)

• parton distribution function contain information about the content of the proton

[NNPDF collaboration]
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parton distribution function

dσ =
∑
i ,j

∫
dx1dx2 fi/p(x1) fj/p(x2) d σ̂ij(x1P1, x2P2) (2)

• parton distribution function contain information about the content of the proton

• PDFs usually extracted from experimental data

→ recent progress on PDF fits:
• PDF4LHC21: 2203.05506
• NNPDF40: 2109.02653
• MSHT20: 2012.04684
• ...

• extracted order by order in perturbation theory (LO, NLO, NNLO)

• July 2022: approximate N3LO MSHT20 PDF (2207.04739) available now!

→ sole PDF effect (NNLO/aN3LO) for N3LO Higgs production is about ∼ 7.3%

→ relevant for precision studies
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partonic cross-section

dσ =
∑
i ,j

∫
dx1dx2 fi/p(x1) fj/p(x2) d σ̂ij(x1P1, x2P2) (3)

• partonic cross-section can be represented by Feynman diagrams
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Drell-Yan N3LO ∼ 1% correction [Duhr, Dulat, Mistlberger; JHEP 11 (2020) 143]
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Q ∼ 30− 100 GeV
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→ non-perturbative corrections may become relevant!
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elliptic integrals and QCD

• calculation of higher-order corrections require knowledge of special functions (see
Lorenzo’s talk)

• for processes with massless particles (e.g. massless form-factors)

→ functions in the class of multiple polylogarithms (MPLs) are usually sufficient
[Goncharov, Remiddi, Vermaseren]

• for processes involving massive particles (e.g. tt production)

→ one needs to extend space of functions to elliptic integrals
[Brown, Levin, Broedel, Duhr, Dulat, Tancredi, Weinzierl, ...]

• in contrast to MPL functions, elliptic integrals still remain to be fully explored ...
(see other talks here at workshop)
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elliptic integrals and QCD

• for amplitude calculations with elliptic functions, there are interesting & relevant
questions as:

• how can the elliptic expressions be simplified analytically in an efficient way? Are there
’hidden’ relations between elliptic integrals and how to find them?

• how can the elliptic expression be evaluated numerically in an efficient way?
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elliptic integrals and QCD

• collection of processes or sub-processes that involve elliptic functions:

• three-loop contributions to the ρ-parameter
[Abreu, Becchetti, Duhr, Marzucca, 1912.02747]

• leading-colour contribution to Hgg form-factor at NNLO
[Prausa, Usovitsch, 2008.11641]

• leading-colour contribution to tt production at two loops
[Badger, Chaubey, Hartanto, Marzucca, 2102.13450]

• full-colour contribution to pseudo-scalar quarkonium form-factors at two loops
[Abreu, Becchetti, Duhr, Ozcelik, 2206.03848, 22XX.XXXXX]

• linear power corrections to e+e− shape variables in the three-jet region
[Caola, Ferrario Ravasio, Limatola, Melnikov, Nason, Ozcelik, 2204.02247]
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Part II

perturbative QCD:

two-loop master integrals and form-factors for

pseudo-scalar quarkonia

[Abreu, Becchetti, Duhr, Ozcelik, 2206.03848, 22XX.XXXXX]
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Introduction: What is a Quarkonium?

• similar to positronium bound state e+e− in QED

• bound state of heavy quark and its anti-quark in QCD, e.g. Charmonium (charm quark)
and Bottomonium (bottom quark)

[Figure from Wikipedia ’Quarkonium’]

• Toponium (tt) bound state: high mass of top quark → decays via weak interaction before
formation of bound state

• for light quarks: mixing between (u,d,s) quarks due to low mass difference → π-meson,
the ρ-meson and the η-meson

Melih A. Ozcelik (TTP) Elliptics & QCD Elliptics 2022 10 / 66



Motivation: Why study Quarkonia?

• charmonium production allows us to probe QCD at its interplay between the perturbative
and non-perturbative regimes

• deeper understanding of confinement (production mechanism)

• access to spin/momentum distribution of gluons in protons
→ use quarkonia to constrain the gluon PDFs in
the proton

• it is interesting to assess the convergence of perturbative expansion in αs where
αs(mc) ∼ 0.34 and αs(mb) ∼ 0.22
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the ηc - a good gluon probe

• ηc is a gluon probe at low scales at Mηc = 3 GeV

• is a pseudo-scalar particle and simplest of all quarkonia as far as computation of
hadro-production

• ηc cross section computation known
• at NLO since 1992 in collinear factorisation

[J. Kühn, E. Mirkes, Phys.Lett. B296 (1992) 425-429]

• at LO since 2012 and at NLO since 2013 in TMD factorisation
[D. Boer, C. Pisano, Phys.Rev. D86 (2012) 094007]

[J.P. Ma, J.X. Wang, S. Zhao, Phys.Rev. D88 (2013) no.1, 014027]
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scale variations and negative cross-sections
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• large scale uncertainties

• issue of negative cross-sections

• due to over-subtraction of initial-state collinear singularities into PDFs
• resolved with new scale prescription for µF (green curve)

[J.-P. Lansberg, Melih A. Ozcelik, Eur.Phys.J.C 81 (2021) 6, 497 (arXiv:2012.00702)]

• for general scale reduction need NNLO calculation

→ need two-loop form-factors
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Form-factors

• compute two-loop form-factors analytically in different channels that contribute at NNLO
accuracy

• γγ ↔ ηQ

(
1S

[1]
0

)
→ exclusive/inclusive decay

• gg ↔ ηQ

(
1S

[1]
0

)
→ hadro-production and hadronic decay width

• γg ↔ 1S
[8]
0 → colour-octet contribution

• gg ↔ 1S
[8]
0 → colour-octet contribution

• γγ ↔ para-Positronium

• form-factors applicable to both production and decay

• in the past form-factors have been computed only in numerical form
• ηQ → γγ [A. Czarnecki, K. Melnikov, Phys.Lett.B 519 (2001) 212-218] [F. Feng, Y. Jia, W.-L. Sang, Phys.Rev.Lett. 115 (2015) 22,

222001]

• para-Positronium→ γγ [A. Czarnecki, K. Melnikov, A. Yelkhovsky, Phys.Rev.A 61 (2000) 052502]
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Amplitude generation & partial fraction

γ(k1) + γ(k2)→ Q(p1)Q(p2) (4)

• p2 = m2
Q for final-state heavy quarks with p = p1 = p2

• k2
1 = k2

2 = 0 for initial-state photons

• threshold kinematics with ŝ = M2
Q = 4m2

Q where MQ = 2mQ

• generate Feynman diagram with FeynArts (∼ 450 diagrams for gg ↔ ηQ case)
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Q = 4m2

Q where MQ = 2mQ

• generate Feynman diagram with FeynArts (∼ 450 diagrams for gg ↔ ηQ case)

Melih A. Ozcelik (TTP) Elliptics & QCD Elliptics 2022 15 / 66



Amplitude generation & partial fraction

γ(k1) + γ(k2)→ Q(p1)Q(p2) (4)

• p2 = m2
Q for final-state heavy quarks with p = p1 = p2

• k2
1 = k2

2 = 0 for initial-state photons

• threshold kinematics with ŝ = M2
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Amplitude generation & partial fraction
The fact that the two heavy-quark momenta are equal allows us to simplify some integrals
beforehand via the procedure of partial fractioning

Example

Feynman diagram:

k1

k2

p

p

ICoul. =

∫
dDq1

1

D1D2D3D4
=

k2

k1 p

pD3

D4D2

D1

(5)

Denominators are linearly dependent: D4 = 1
2 (D1 + D3)
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Amplitude generation & partial fraction

Example

Feynman diagram:

k1

k2

p

p

ICoul. =

∫
dDq1

1

D1D2D3D4
=

∫
dDq1

2

D1D2D2
3

−
∫

dDq1
1

D2D2
3D4

(6)

k2

k1 p

pD3

D4D2

D1

= 2

k2

k1

D3

2p
D2

D1

−
k2

k1 − p

D3

p
D2

D4

(7)
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Amplitude generation & partial fraction

• partial fraction allows us to simplify integrals,
4-point function → 3-point function

• at higher loop orders, many denominators are involved
→ linearly dependent denominators can be systematically detected

• partial fractioning can be performed with $Apart-package
[F. Feng, Comput.Phys.Commun. 183 (2012) 2158-2164]

• perform tensor integral decomposition in new basis

• reduce integrals to master integrals via IBP with FIRE

[A.V. Smirnov, Comput.Phys.Commun. 189 (2015) 182-191]
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Amplitude

• two-loop Amplitude A(2):

A(2) = A(0)
nmaster∑
i=1

ci (ε)MI[i ] (8)

• tree-level Amplitude A(0)

• coefficient ci contains information on:
• rational factor depending on dimensional regulator ε
• colour factor (CA, CF , TF )
• number of massive (nh) and massless (nl) closed fermion loops (vacuum & light-by-light)

• need to compute master integrals MI[i ]
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Topologies and master integrals

Some examples of topologies:

4m2 4m2
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Topologies and master integrals

• Appearance of 76 master integrals in total

• some are known in general kinematics (see later) but not usable at special kinematics

• Master integrals are seemingly independent, however we find some interesting equivalence
relations beyond IBP

• Partial Fraction Relations
• Triangle Relations
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Partial Fraction Identities

Identity

4m2

D3D1
=

1

2 m2

m2

D2

D1

+
1

2

m2

m2
D3

D2
(9)

relation at integrand level:

1[
(q + p)2 −m2

]
︸ ︷︷ ︸

D1

[
(q − p)2 −m2

]
︸ ︷︷ ︸

D3

=
1

2

1[
(q + p)2 −m2

]
︸ ︷︷ ︸

D1

q2︸︷︷︸
D2

+
1

2

1

q2︸︷︷︸
D2

[
(q − p)2 −m2

]
︸ ︷︷ ︸

D3

Example

4m2

= (10)
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Partial Fraction Identities

• linear relations between integrals in different topology families

• not detected during IBP reduction (e.g. Kira, ...)

• need to find these relations manually,

→ can find additional relations by combining with IBP reduction, e.g.

m45 =
2 (3d − 11)m2

(d − 3) (3d − 10)
m53 −

8m4

(d − 3) (3d − 10)
m54 +

(d − 2)2

4 (d − 3) (3d − 10)m4
m76

• question for future: can one systematically incorporate partial fraction relations into IBP
reduction system (useful for phase-space integrations)?
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Triangle Relations

Identity

k21 = 0

p21 p22

m2
2 m2

2

m2
1

=

k21 = 0

p21 p22

m2
1 m2

1

m2
2

(11)

relation at integral level:∫
ddq

1[
q2 −m2

1

]2 [
(q + p1)2 −m2

2

] [
(q − p2)2 −m2

2

] =

∫
ddq (m1 ↔ m2)

no constraint for p1 and p2 (can involve loop momenta), only constraint is that k2
1 = 0

Example

= (12)

questions for future: can we systematically incorporate these relations into IBP? And are there
more of these relations (box, pentagon integrals)?
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Topologies and master integrals

• Appearance of 76 master integrals in total

• some are known in general kinematics (see later) but not usable at special kinematics

• Master integrals are seemingly independent, however we find some interesting equivalence
relations beyond IBP

• Partial Fraction Relations
• Triangle Relations

• Analytical results for most of the integrals in these topologies are not available in the
literature
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Example: Topology 2

• some topologies would occur also for open tt-production

•

has been considered for open tt-production at general kinematics [M. Becchetti et al, JHEP 08 (2019)

071]

• However, some prefactors scale as 1/
√
ŝ − 4m2

Q

→ cannot use analytical results at threshold kinematics ŝ = 4m2
Q

• In addition, these prefactors induce a weight drop at ŝ = 4m2
Q

→ need one order higher in ε than available

→ computed nearly entire topology family via direct integration at threshold
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Q

• In addition, these prefactors induce a weight drop at ŝ = 4m2
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Special functions

• Multiple Polylogarithms - points on the Riemann sphere

• elliptic Multiple Polylogarithms - points on the torus

• iterated integrals of modular forms - rational points on the torus
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Multiple Polylogarithms (MPLs)

Multiple Polylogarithms (MPLs) [Goncharov,Remiddi,Vermaseren]

G (a1, ..., an; z) =

∫ z

0
dt

1

t − a1
G (a2, ..., an; t) (13)

G (0; t) = log t (14)

• weight of function corresponds to number of indices w = n

• m-loop amplitude usually exhibits functions up to weight of w = 2m → will be useful as
cross-check of amplitude

• numerical evaluation can be achieved with GiNaC-interface
[Vollinga, Weinzierl]
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elliptic Multiple Polylogarithms (eMPLs)
elliptic Multiple Polylogarithms (eMPLs) [Brown,Levin;Broedel,Duhr,Dulat,Tancredi;Weinzierl...]

E4( n1...nm
c1...cm ; x , ~q) =

∫ x

0
dt ψn1 (c1, t, ~q)E4( n2...nm

c2...cm ; t, ~q) (15)

E4

(
~1
~c

; x , ~q
)

= G (~c ; x) (16)

• ~q are the roots of the elliptic curve defined by

y2 = (t − q1) (t − q2) (t − q3) (t − q4) (17)

• ψn1 (c1, t, ~q) are the elliptic kernels

• e.g. ψ0 (0, t, ~q) = c4

y where c4 = 1
2

√
(q1 − q3) (q2 − q4)

• e.g. ψ1 (c , t, ~qr ) = 1
t−c

• define weight as w =
∑m

i |ni | and length as l = m
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elliptic Multiple Polylogarithms (eMPLs)

eMPLs in torus representation [Brown,Levin;Broedel,Duhr,Dulat,Tancredi;Weinzierl...]

Γ̃( n1...nm
z1...zm ; z , τ) =

∫ z

0
dz ′ g (n1)

(
z ′ − z1, τ

)
Γ̃
(
n2...nm
z2...zm ; z ′, τ

)
(18)

• a torus is double-periodic and can be defined as a two-dimensional lattice

Λτ = Z + Z τ = {m + n τ |m, n ∈ Z} (19)

• τ characterises the shape of the torus

• z are the points on the torus within Λτ
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Iterated integrals of modular forms

if all zi are rational points on the torus of the form

zi =
r

N
+

s

N
τ with 0 ≤ r , s < N and r , s,N ∈ N (20)

→ can rewrite them in terms of iterated integrals of modular forms

I (f1, ..., fn; τ) =

∫ τ

i∞

dτ ′

2πi
f1 I (f2, ..., fn; τ) (21)

fi = h
(n)
N,r ,s(τ) = −

∑
(a,b)∈Z2

(a,b) 6=(0,0)

e2πi (bs−ar)
N

(aτ + b)n
(22)
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Direct Integration
Feynman integral can be represented via two graph polynomials U and F which are the first
and second Symanzik polynomial respectively.

I = (−1)a (eεγE )h Γ

(
a− h

D

2

)∫ ∞
0

dx1...

∫ ∞
0

dxmδ(1−∆H)×

×
m∏
i=1

(
xai−1
i

Γ(ai )

)
Ua−(h+1)D

2

Fa−hD
2

(23)

• each xi corresponds to a edge/propagator in a graph

• the second Symanzik polynomial F distinguishes between massive and massless
propagators

• each massless propagator/edge contributes linearly to F
• each massive propagator/edge contributes quadratically to F

• need to integrate out each single edge xi ; one done via Cheng-Wu delta function
δ(1−∆H).
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Direct Integration

We now briefly discuss different cases that we have to consider,

• linear reducibility: an order of integration variables can be found where the integration
kernels are all linear

→ master integral expressible in terms of MPLs

• elliptic linear reducibility: an order of integration variables which is linear reducible
excluding the last integration which introduces a square-root

→ master integral expressible in terms of eMPLs

• elliptic next-to-linear reducibility: an order of integration variables which is linear
reducible excluding the second-last integration which introduces a square-root

→ requires rationalisation, e.g. RationalizeRoots, [Besier, Wasser, Weinzierl]

→ master integral expressible in terms of eMPLs
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elliptic next-to-linear reducibility & 2nd delta function
The following integral is elliptic next-to-linear reducible,

New approach:

• introduce a 2nd delta function similarly to Cheng-Wu delta function, which introduces a
new fictitious edge

I = (−1)a (eεγE )h Γ

(
a− h

D

2

)∫ ∞
0

dx1...

∫ ∞
0

dxmδ(1−∆H)×

×
∫ ∞
−∞

dx̃ δ
(

1− ∆̃H

) m∏
i=1

(
xai−1
i

Γ(ai )

)
Ua−(h+1)D

2

Fa−hD
2

(24)

→ with suitable choice of ∆̃H can make the integral elliptic linear reducible → no
rationalisation necessary anymore
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elliptic next-to-linear reducibility & 2nd delta function

For the following integral

• find entangled square-roots at second-last integration → requires simultaneous
rationalisation

• apply new approach with 2nd delta function → square-roots are no longer entangled
→ can apply elliptic next-to-linear reducibility approach
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Elliptic Integrals - Last Integration

• For the more difficult integrals encountered, several spurious roots appeared at the last
integration, in some cases on order of O(20) square-roots

• entangled square-roots usually beyond scope of eMPLs
→ hyper-elliptic structure

• however, can eliminate all spurious roots using a systematic and algorithmic approach

• classify and fibrate terms in integrand according to different criteria

• weight of functions
• prefactors depending on integration variable

• all spurious roots disappear one by one and we are left with a single elliptic curve →
eMPLs
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Master Integrals - Elliptic Curves

We encounter two different types of elliptic curves,

• one is associated to the elliptic sunrise

~q =

(
1

2

(
1−
√

1 + 2i
)
,

1

2

(
1−
√

1− 2i
)
,

1

2

(
1 +
√

1 + 2i
)
,

1

2

(
1 +
√

1− 2i
))

(25)

• the other is associated to the master integral

4m2

~q =
(

1−
√

5, 0, 2, 1 +
√

5
)

(26)

and appears only in light-by-light scattering contribution

Melih A. Ozcelik (TTP) Elliptics & QCD Elliptics 2022 37 / 66



Analytics and Numerics
• computed all integrals analytically via direct integration

• class 1: MPL integrals
→ high-precision numerics with GiNaC-package [Vollinga, Weinzierl]

• class 2: iterated integrals of modular forms
→ high-precision numerics with algorithm [Duhr, Tancredi, JHEP 02 (2020) 105]

• class 3: eMPLs integrals
→ numerics: convergence is rather slow

→ need a different method:
• make use of Auxiliary Mass Flow (AMFlow) technique [Liu, Ma, 2201.11669]

• cross-check/alternative: make use of differential equation approach and solve numerically via
series expansion approach, e.g. DiffExp [Hidding, 2006.05510]

→ produced high-precision numerics (1500 digits)

• validation of results numerically with pySecDec (only few digits)

• PSLQ procedure: find additional relations between elliptic integrals beyond equivalence
relations shown earlier
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PSLQ procedure

• PSLQ procedure: find additional relations between elliptic integrals beyond equivalence
relations shown earlier:

• linear relations between master integrals at given order in ε in the Laurent expansion

→ express large elliptic expressions as combination of smaller ones

• big question: can these relations be somehow derived analytically (without using its
numerical evaluation)? Maybe using symbol calculus (see Matt’s and Chi’s talks)?
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Form-factors

Now ready to plug in analytics and numerics for the form-factors. Validation of results,

• compare to known numerical results for γγ ↔ ηQ case
→ find full agreement [A. Czarnecki, K. Melnikov, Phys.Lett.B 519 (2001) 212-218] [F. Feng, Y. Jia, W.-L. Sang, Phys.Rev.Lett. 115

(2015) 22, 222001]

• for the new form-factors, validation is based on universal IR pole structure → amplitudes
are manifestly finite after UV and IR renormalisation [Catani; Becher, Neubert]

• all amplitudes contain functions of maximal weight w = 4 (e.g. π4, log4 2, πζ3) and
maximal length l = 4 for the elliptic functions.

• regular Abelian corrections
(
C 2
F ,CFTFnh/l

)
are identical for all form-factors → further

confirmation of the new form-factor results

• QED corrections to para-Positronium result, agreement with existing numerical results in
literature [A. Czarnecki, K. Melnikov, A. Yelkhovsky, Phys.Rev.A 61 (2000) 052502]
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Application: para-Positronium decay width to di-photon
The decay width of para-Positronium to di-photon can be expressed as

Γp-Ps→γγ = Γ0

[
1 +

(αem

π

)
K1 + 2α2

em log
1

αem
+
(αem

π

)2
(K2 + K2,soft)

−3α3
em

2π
log2 1

αem
+
α3
em

π
C2 log

1

αem
+O

(
α3
em

)] (27)

• we computed two-loop coefficient K2 analytically and have numerics up to > 1000 digits
accuracy
→ in a position to provide ultra-precise predictions for total decay width (2γ, 4γ)

Γtheory, NNLO
p-Ps decay = 7989.618221(4) (µs)−1 (28)

Γexp.
p-Ps decay = 7990.9(1.7) (µs)−1 (29)

→ experimental precision studies in future, e.g. J-PET
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Summary: Form-factors

• computed all two-loop master integrals analytically

• produced high-precision numerics (> 1000 digits)

• find some interesting equivalence relations

• have complete analytical results for form-factors available

• form-factors are finite after UV and IR renormalisation

→ ready for phenomenological applications
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Part III

non-perturbative QCD:

renormalons & power corrections to event shapes

[Caola, Ferrario Ravasio, Limatola, Melnikov, Nason, Ozcelik, 2204.02247]
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non-perturbative physics: Renormalons
• Renormalon model identifies simple class of diagrams that dominate in the large nf limit

[Beneke, Braun, Dokshitzer, Marchesini, Smye, Webber, etc.]

= +

• example: 3-jet event Z ∗/γ∗ → qqγ

• each diagram can be computed perturbatively,

dσ = dσ(0) +
(αs

π

)
dσ(1) +

(αs

π

)2
nf dσ

(2) +
(αs

π

)3
n2
f dσ

(3) + ... (30)
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non-perturbative physics: Renormalons

• can resum leading-nf contributions via integral∫ Q

0
dk kp−1αs(k) = αs(Q)Qp

∞∑
n=0

(
β0

2π
αs(Q)

)n 1

pn+1
n!︸ ︷︷ ︸

factorial growth

, (31)

with αs(µ) =
1

β0
2π log µ

ΛQCD

, β0 =
11

3
CA −

4

3
TFnf . (32)

• series is not Borel summable, ambiguity given by∫
dk kp−1 2π

β0

ΛQCD

k − ΛQCD
= ±iπ2π

β0
Λp

QCD

→ ambiguity removed by non-perturbative power corrections Λp
QCD/Q

p

Melih A. Ozcelik (TTP) Elliptics & QCD Elliptics 2022 45 / 66



linear power corrections

• power corrections can be computed by considering perturbative corrections with massive
gluon of mass λ

λ λ

• direct relation between λp → Λp
QCD

• for phenomenological applications only linear terms λ/Q are relevant, higher orders in λ
are surpressed by O

(
Λ2

QCD/Q
2
)
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Event shapes: The C -parameter

• event shapes describe the geometry of the collision (C -parameter, thrust, ...)

• definition of C -parameter:

C = 3− 3
N∑
i>j

(pipj)
2

(piq) (pjq)
. (33)

pi : momentum of particle i
q: sum of all momenta pi
N: number of final-state particles
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Event shapes: αs determination

• e+e− event shapes can be used for precise determination of strong coupling αs

→ need both perturbative and non-perturbative (np) corrections

• C -parameter: αs = 0.1123± 0.0015 [A. Hoang et al, (2015), PhysRevD.91.094018]

• using only non-perturbative corrections in the 2-jet limit C = 0
• several standard deviations away from PDG value

• PDG value: αs = 0.1179± 0.0010

• non-perturbative corrections at symmetric three-jet point C = 3/4
[G. Luisoni, P. Monni, G. Salam, Eur.Phys.J.C 81 (2021) 2, 158]

• is half the value compared to 2-jet limit C = 0
• different interpolation models C = [0, 3/4]

→ significant effect on αs determination

• for αs determination, we need analytic results in entire 3-jet region!
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presence or absence of linear power correction

Statements on presence or absence of linear power corrections: [Caola et al, JHEP 01 (2022) 093]

• virtual corrections do not induce linear corrections

• real corrections

• hard region does not induce linear corrections
• soft radiation at next-to-soft approximation may lead to linear corrections
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soft radiation at next-to-soft approximation

p1

p2

k

dσ = dLipsO(λ,k) × |M|2O(k) ×OO(k)

• total cross-sections and kinematic distribution of colorless particles

• no linear λ-dependence from dLipsO(λ,k) × |M|2O(k)

→ absence of linear power corrections

• only source of linear λ-dependence comes from OO(k)

• condition: OO(k) must exhibit non-analytic dependence on λ, e.g.
√
k2 with k2 = λ2

• event shape observables (C -parameter, etc.) have non-analytic λ-dependence

→ presence of linear power corrections
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• dLipsO(λ,k): phase-space

• |M|2O(k): matrix element squared

• OO(k): observable
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linear power corrections

λ

• can factorise out phase-space of soft partons q, q

→ leads to master equation:

IC ({p̃, λ}) =

∫
[dk]

JµJν

λ2
θ

(
ωmax −

(k · q)√
q2

)∫
[dl ][dl ] (2π)4 δ(4)

(
k − l − l

)
× Tr

[
l̂γµ l̂γν

] [
C
(
{p̃}, l , l

)
− C ({p̃})

] (34)
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linear power corrections: master equation

IC ({p̃, λ}) =

∫
[dk]

JµJν

λ2
θ

(
ωmax −

(k · q)√
q2

)∫
[dl ][dl ] (2π)4 δ(4)

(
k − l − l

)
× Tr

[
l̂γµ l̂γν

] [
C
(
{p̃}, l , l

)
− C ({p̃})

] (35)

• current Jµ is defined as

Jµ =
pµ1

p1 · k
− pµ2

p2 · k
(36)

• shift in C -parameter is given by

∆C = C
(
{p̃}, l , l

)
− C ({p̃}) =

3∑
i=1

(p̃i · l)2

(p̃i · q) (l · q)
+
(
l → l

)
(37)
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linear power corrections

λ

• integrate out quark and gluon momenta in rest frame of decaying particle

• → one-dimensional integral over energy/velocity remaining:

IC (p1, p2, p3, λ) = − 3λ

4π3q

5∑
i=1

∫ βmax

0
dβ Gi (β, x , y) (38)

→ require class of elliptic multiple polylogarithms (eMPLs)
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linear power corrections

• first perform a variable transformation in β to rationalise one square-root

→ find y =
√

(z − q1) (z − q2) (z − q3) (z − q4) with branch-cuts:

q1 = −1 + s12

1− s12
, q2 = −1, q3 = 1, q4 =

1 + s12

1− s12
.

• integrate out the expressions using MPL and eMPL kernels

→ obtain polylogarithmic G and elliptic E4 functions
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• next step: rewrite E4 to Γ̃ representation
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linear power corrections

• iterated integrals of modular forms with Γ(4)

• have the following g -kernels:
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linear power corrections

→ we obtain a remarkable simple and compact result:

Tλ[IC ] =
15

128π

s3
12

1− z3

(
λ

q

)[
(1 + z3)

2
K
(
c2

12

)
− (1− z1z2)E

(
c2

12

)]
(39)

→ simplicity of result calls for an explanation and suggests deeper structure
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Factorisation

IC ({p̃, λ}) =

∫
[dk]

JµJν

λ2
θ

(
ωmax −

(k · q)√
q2

) ∫
[dl ][dl ] (2π)4 δ(4)

(
k − l − l

)
× Tr

[
l̂γµ l̂γν

] [
C
(
{p̃}, l , l

)
− C ({p̃})

] (40)

• we need to approach the computation in a different manner

• result should be independent of choice of regulator

• change order of integration and integrate out momentum of quark transverse to radiating
dipole plane p1, p2

−→
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Factorisation

IC ({p̃, λ}) =

∫
[dk]

JµJν

λ2 ���
���

���
�XXXXXXXXXX

θ

(
ωmax −

(k · q)√
q2

) ∫
[dl ][dl ] (2π)4 δ(4)

(
k − l − l

)
× Tr

[
l̂γµ l̂γν

] [
C
(
{p̃}, l , l

)
− C ({p̃})

] (40)

• we need to approach the computation in a different manner

• result should be independent of choice of regulator

• change order of integration and integrate out momentum of quark transverse to radiating
dipole plane p1, p2

−→
IC ({p̃, λ}) = WC × λF

(
p1, p2, l̃

)
(41)
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The universal factor

IC ({p̃, λ}) = WC × λF
(
p1, p2, l̃

)
(42)

WC = −3

∫
dηdφ

2(2π)3
C̃αβ

l̃α l̃β

( ˜l · q)
with C̃αβ =

3∑
i=1

pαi p
β
i

(pi · q)
(43)

F
(
p1, p2, l̃

)
= 16π

∫
[dk]

JµJν
λ3

{
−2l̃µ l̃ν

λ8

(2k · l̃)5
− gµνλ6

2(2k · l̃)3

}
(44)

• the function F is completely independent of

• observable
• kinematics of radiating dipole

• same universal factor appears for different observables in arbitrary N-jet kinematics!

• rigorous derivation and generalisation of similar factor known from 2-jet limit (so-called
Milan factor) [Y. Dokshitzer, A. Lucenti, G. Marchesini, G. Salam, JHEP 05 (1998) 003] and many more
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Event shapes: Thrust

• similarly can compute other observables with factorised formula and can generalise
factorisation to N-jet kinematics (4-jet, 5-jet, ...)

• now compute linear power corrections to thrust T

T = max
~n

∑
i

|~n · ~pi |
q

(45)

• need to compute observable-dependent part WT :
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• now compute linear power corrections to thrust T

T = max
~n

∑
i

|~n · ~pi |
q

(45)

• need to compute observable-dependent part WT :

WT =
1

q

∫
dηdφ

2(2π)3

∣∣∣~nm ·~̃l∣∣∣ (46)

Melih A. Ozcelik (TTP) Elliptics & QCD Elliptics 2022 62 / 66



Event shapes: Thrust

• similarly can compute other observables with factorised formula and can generalise
factorisation to N-jet kinematics (4-jet, 5-jet, ...)

• now compute linear power corrections to thrust T

T = max
~n

∑
i

|~n · ~pi |
q

(45)

• need to compute observable-dependent part WT :

WT =

−
1

2π3q

[
2E
(
n2

m,t

)
− K

(
n2

m,t

)]
if min (z1, z2, z3) 6= z3

−nm,t

π3q

[
E
(

1
n2

m,t

)
− 2n2

m,t−1

2n2
m,t

K
(

1
n2

m,t

)]
if min (z1, z2, z3) = z3

(46)
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linear power corrections to C -parameter & thrust
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→ find agreement previous with results (2-jet limit, ...)

→ have analytic results for entire 3-jet region and these are superior to numerical
methods
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Summary: Power corrections

• used formalism of elliptic polylogarithms and iterated integrals of modular forms to
compute power corrections to C -parameter

• improved understanding of analytic structure of linear power corrections

• derived a factorisation formula which allows us to easily compute linear power corrections
for different observables

• shown that same universal factor appears for different observables

• computed analytically linear power corrections for C -parameter and thrust T in entire
three-jet region

→ can now be used for pheno and αs determination

Melih A. Ozcelik (TTP) Elliptics & QCD Elliptics 2022 64 / 66



Part IV

Conclusions & Outlook
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Conclusions & Outlook

• progress in QCD phenomenology thanks to understanding and formalism of elliptic
polylogarithms and iterated integrals of modular forms

• in the future:
• need to optimise and understand relations among elliptic integrals
• require fast and efficient numerical evaluations for phenomenology
• ...
• near/far future: for physical processes or observables that exhibit multiple elliptic curves
→ need to generalise elliptic polylogs to higher genus...
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Thank you for attention!
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