

Calabi-Yau Geometries and 2D Fishnet Integrals

Franziska Porkert

Based on: 2209.05291

with Claude Duhr, Albrecht Klemm, Florian Loebbert, Christoph Nega

Elliptic Integrals in Fundamental Physics — 14. 9. 2022

1

Christoph's talk:

Next Goal: Understand fishnet integrals from a geometric viewpoint

Random example

Three-loop traintrack

Feynman rules:

(Position space, D real dimensions)

$$= \int d^{D} \xi_{i} \qquad i \qquad \nu = \frac{1}{\xi_{ij}^{2\nu}} = \frac{1}{(\xi_{i} - \xi_{j})^{2\nu}}$$

 $\nu = D/4$ for conformal fishnet integrals

Fishnet integral:

$$I_G(\alpha) \sim \int \left(\prod_{j=1}^l d^D \xi_j \right) \frac{1}{P_G(\underline{\xi}, \underline{\alpha})}$$

$$P_G(\underline{\xi},\underline{\alpha}) = \left[\prod_{i,j} (\xi_i - \xi_j)^{2\nu_{ij}}\right] \left[\prod_{i,j} (\xi_i - \alpha_j)^{2\nu_{ij}}\right]$$

Massless Fishnet Integrals — Existing results in 4 dimensions

One loop:

Bloch-Wigner Dilogarithm $\sim \frac{1}{\sqrt{\Delta}} \text{Vol}\left(\frac{1}{x_k}\right)$ [Davydychev, Delbourgo; 1997]

Two loops:

Elliptic Polylogarithms

[Kristensson, Wilhelm, Zhang; 2021]

One parameter:

Basso Dixon formula:

Recursive relations for all-loop 4-point fishnets in terms of ladders [Basso, Dixon; 2017]

Can we understand fishnet integrals from a geometric viewpoint?

One parameter:

Recursive relations for all-loop 4-point fishnet integrals in 2 dimensions [Derkachov, Kazakov, Olivucci; 2019]

Can we understand fishnet integrals in 2 dimensions from a geometric viewpoint?

Goal: Understand 2D fishnet integrals from a geometric viewpoint

Introduction: Massless fishnet integrals in 2 dimensions and their symmetries

Question 1: Can we relate fishnet integrals and Calabi-Yau geometries?

Question 2: Is there a connection between the symmetries of fishnet integrals and these geometries?

Results

Question 3: Can we interpret fishnet integrals as volumes of Calabi-Yau I-folds?

Summary: Dictionary

Massless, conformal fishnet integrals in 2 dimensions

Three-loop traintrack

Feynman rules:

(D=2,
$$\nu_i = \frac{1}{2}$$
)

$$= \int dx_i \wedge d\bar{x}_i$$

$$= \frac{1}{|x_{ij}|} = \frac{1}{|x_i - x_j|}$$

 $\nu_i = D/4 = 1/2 \rightarrow \text{conformal}$

Fishnet integrals:

(**D=2**,
$$\nu_i = \frac{1}{2}$$
)

$$I_G(a) = \int_{\mathbb{C}^l} \left(\prod_{j=1}^l \frac{d\bar{x}_j \wedge dx_j}{2\pi} \right) \frac{1}{|P_G(\underline{x}, \underline{a})|}$$

$$P_G(\underline{x},\underline{a}) = \left[\prod_{i,j} (x_i - x_j)\right] \left[\prod_{i,j} (x_i - a_j)\right]$$

Massless 2D fishnet integrals — Symmetries

$$I_G(a) = \int_{\mathbb{C}^l} \left(\prod_{j=1}^l \frac{d\bar{x}_j \wedge dx_j}{2\pi} \right) \frac{1}{|P_G(\underline{x},\underline{a})|} \quad \text{with} \quad P_G(\underline{x},\underline{a}) = \left[\prod_{i,j} (x_i - x_j) \right] \left[\prod_{i,j} (x_i - a_j) \right]$$

Symmetries:

- 1. Permutation symmetries of the graph
- 2. Yangian invariance

$$I_G(a) = \int_{\mathbb{C}^l} \left(\prod_{j=1}^l \frac{d\bar{x}_j \wedge dx_j}{2\pi} \right) \frac{1}{|P_G(\underline{x},\underline{a})|} \quad \text{with} \quad P_G(\underline{x},\underline{a}) = \left[\prod_{i,j} (x_i - x_j) \right] \left[\prod_{i,j} (x_i - a_j) \right]$$

Permutation Symmetries:

The topology of the graph G defines a subgroup of permutations $S_G \subseteq S_n$ that exchanges the external points while leaving the value of the integral invariant:

$$I_G(\sigma(\underline{a})) = I_G(\underline{a}) \text{ for all } \sigma \in S_G$$

Example: The three-loop traintrack integral

$$P_{G_1}(\underline{x},\underline{a}) = P_{G_2}(\underline{x},\underline{a})$$

Level-0 Yangian constraints

$$J^a = \sum_{k=1}^n J_k^a \quad \text{with} \quad J_k^a \in \begin{cases} D_k = -ix_k^\mu \partial^\mu - i\triangle_k \\ P_k^\mu = -i\partial_k^\mu \\ K_k^\mu = -i\left(2x_k^\mu x_k^\nu - \eta^{\mu\nu} x_k^2\right)\partial_{k,\nu} - 2i\triangle_k x_k^\mu \\ L_k^{\mu\nu} = ix_k^\mu \partial_k^\nu - ix_k^\nu \partial_k^\mu \end{cases}$$

$$I_G(\underline{a}) = V_G(\underline{a}) \phi(z_1, z_2, \dots)$$
 prefactor conformally-invariant function

Level-1 Yangian constraints

$$\hat{J}^{A} = \frac{1}{2} f_{BC}^{A} \sum_{k=1}^{n} \sum_{j=1}^{k-1} J_{j}^{C} J_{k}^{B} + \sum_{a=1}^{n} s_{j} J_{j}^{A}$$

Set of partial differential equations:

$$PDE_{jk}\phi = 0 \quad 1 \le j < k \le n$$

[Corcoran, Loebbert, Miczajka; 2021]

$$\begin{array}{ll} \textbf{D=2} & & a_1 & \\ \hline \\ a_2 & \\ \hline \\ a_3 & = \int \frac{d^2y}{|y-a_1|\,|y-a_2|\,|y-a_3|\,|y-a_4|} \quad \text{with } z = \frac{(a_1-a_2)(a_3-a_4)}{(a_1-a_3)(a_2-a_4)} \\ & = \frac{4}{\pi} \frac{1}{|a_2-a_4||a_1-a_3|} \left[K(z)K(1-\bar{z}) + K(\bar{z})K(1-z) \right] \quad \text{[Corcoran, Loebbert, Miczajka; 2021]} \\ & \text{periods of the torus} - \text{a Calabi-Yau 1-fold} \\ \end{array}$$

$$\mathbf{D=4} \qquad a_1 \qquad a_3 \qquad \sim \frac{1}{\sqrt{\triangle}} \operatorname{Vol}\left(\mathbf{x}_{\mathbf{x}_i}\right)$$

- → Could we write the higher-loop fishnet integrals in terms of periods of Calabi-Yau I-folds? Monodromy invariance?
- → Is there a volume interpretation for general fishnets?

Question 1: Can we relate fishnet integrals and Calabi-Yau geometries?

Question 1 — Can we relate fishnet integrals and Calabi-Yau geometries?

$$I_{G}(\underline{a}) = \int_{\mathbb{C}^{l}} \left(\prod_{j=1}^{l} \frac{d\bar{x}_{j} \wedge dx_{j}}{2\pi} \right) \frac{1}{\sqrt{P_{G}(\underline{x},\underline{a})} \sqrt{P_{G}(\underline{x},\underline{a})}} \quad \text{with} \quad P_{G}(\underline{x},\underline{a}) = \left[\prod_{i,j} (x_{i} - x_{j}) \right] \left[\prod_{i,j} (x_{i} - a_{j}) \right]$$

Torus

Elliptic curve defined by $y^2 = f(x)$.

$$\longrightarrow \text{ Differential form: } \omega = \frac{dx}{y} = \frac{dx}{\sqrt{f(x)}}$$

 \longrightarrow Periods: $\int_{\alpha}^{\cdot} \omega$ and $\int_{\beta}^{\cdot} \omega$

Calabi-Yau geometry

Calabi-Yau I-fold defined by $y^2 = P_G(\underline{x}, \underline{a})$.

$$\longrightarrow$$
 Differential form: $\Omega = \frac{\mu_B(\underline{x})}{\sqrt{P_G(\underline{x},\underline{a})}}$

 \longrightarrow Periods: $\Pi_i = \int_{\Gamma_i} \Omega$

holomorphic measure on the projective base space

$$I_G(\underline{a}) \sim \int_{M_{G-13}} \Omega \wedge \bar{\Omega} \sim \Pi^+ \Sigma \Pi$$

Question: Can we relate fishnet integrals and Calabi-Yau geometries?

$$I_G(\underline{a}) \sim \int_{M_G} \Omega \wedge \bar{\Omega} \sim \Pi^+ \Sigma \Pi \sim e^{-K}$$

Claim:

A fishnet integral is related to the Kähler potential K(z) of a specific Calabi-Yau geometry defined by $P_G(\underline{x},\underline{a})$.

Vector of periods Π_i : Solutions of the Picard-Fuchs ideal

$$I_G(\underline{a}) \sim \int_{M_G} \Omega \wedge \bar{\Omega} \sim \Pi^{+} \Sigma \Pi \sim e^{-K}$$

Intersection matrix: Obtained from Griffiths transversality

Question 2:
s there a connection between the symmetries of fishnet integrals and their related geometries?

Torus:

Legendre-family of elliptic curves: $y^2 = x(x-1)(x-z)$ with periods $\int_{\alpha} \frac{dx}{y}$ and $\int_{\beta} \frac{dx}{y}$

Picard-Fuchs differential operator:
$$\mathcal{L}_{\text{Leg}} = \theta^2 - z \left(\theta + \frac{1}{2}\right)^2 \text{ with } \theta = z \partial_z$$

Calabi-Yau I-fold:

Family of Calabi-Yau I-folds defined by $y^2=P_G(\underline{x},\underline{a})$ with periods $\int_{\Gamma_i}\Omega$

Picard-Fuchs differential operators: ?? — Non-trivial!

Yangian symmetry $Y(\mathfrak{sl}_2(\mathbb{R}))$: Differential operators L from the holomorphic part of the Yangian invariance: $L\phi_G(z)=0 \ \Rightarrow \ \Pi^+\Sigma(L\Pi)=0$

Permutation symmetries $S_G \subset S_n$: Additional differential operators $\sigma \cdot L$ with $\sigma \in S_G$: $(\sigma \cdot L)\Pi = 0$

We find empirically that $Y_S(\mathfrak{sl}_2(\mathbb{R}))$ generates the Picard Fuchs ideal of the integral.

Question 2:

Is there a connection between the symmetries of fishnet integrals and their related geometries?

The ideal of differential operators generated by $\mathcal S_G\cdot Y(\mathfrak{sl}_2(\mathbb R))$ is equivalent the Picard Fuchs ideal of the periods on M_G .

Results

- One-parameter traintracks up to 5 loops (agree with known result [Derkachov, Kazakov, Olivucci; 2018])
- Fully general 2-loop traintrack (new result, agrees with numerical evaluation)
- Fully general 3-loop traintrack (new result, agrees with numerical evaluation)
- Relations between fishnet operators

1-loop ladder

[Derkachov, Kazakov, Olivucci; 2018 | Corcoran, Loebbert, Miczajka; 2021]

$$I_1(\underline{a}) \sim \frac{1}{|a_{12}||a_{34}|} \left(K(z)K(1-\bar{z}) + K(1-z)K(\bar{z}) \right)$$

2-loop ladder

$$I_2(\underline{a}) \sim \frac{1}{|a_{12}||a_{34}||a_{24}|} (K_+ \overline{K}_- + K_- \overline{K}_+)^2 \text{ with } K_\pm = K \left(\frac{1}{2} \left(1 \pm \sqrt{1-z} \right) \right)$$

2-loop ladder

$$I_2(\underline{a}) \sim rac{1}{|a_{12}||a_{34}||a_{24}|} (K_+ \overline{K}_- + K_- \overline{K}_+)^2 ext{ with } K_\pm = K \left(rac{1}{2} \left(1 \pm \sqrt{1-z}
ight)
ight)$$

Every Calabi-Yau operator of degree three is equivalent to the symmetric square of a Calabi-Yau operator of degree two.

 \longrightarrow The solutions space of the Picard-Fuchs operators for the periods in the two-loop fishnet is spanned by $(K_+^2, K_+ K_-, K_-^2)$.

[Michael Bogner; 2013]

n-loop ladder with n > 2

It is not possible to express the periods in terms of elliptic integrals anymore but in terms of Hadamard products of elliptic functions.

Question 3: Can we interpret fishnet integrals as volumes of Calabi-Yau I-folds?

There is no canonical metric on the Calabi-Yau (M_G,Ω) .

Consider the mirror (W_G, ω) with the classical volume:

$$Vol_{clas}(W_G) = \int_{W_G} \frac{\omega^l}{l!}$$

Interpretation of the fishnet integral as a classical volume of the mirror Calabi-Yau: only for I=1,2.

Interpretation of the fishnet integral as the quantum volume of a mirror Calabi-Yau.

Defined by three axioms:

- The quantum volume is a positive real quantity.
- ullet The quantum volume extends uniquely over the moduli space of the Calabi-Yau M_G .
- The quantum volume approaches the classical volume at the MUM-point.

$$I_G(\underline{a}) \sim \Pi^+ \Sigma \Pi \sim \mathrm{Vol}_Q(W_G)$$

I-loop fishnet integral

Calabi-Yau I-fold

$$\frac{\prod_{i=1}^{l} dx_i \wedge d\bar{x}_i}{|P_G(\underline{x}, \underline{a})|}$$

Calabi-Yau I-fold defined by
$$y^2 = P_G(\underline{x}, \underline{a})$$

$$Y_S(\mathfrak{sl}_2(\mathbb{R})) = S_G \cdot Y(\mathfrak{sl}_2(\mathbb{R}))$$

$$I_G(a) = \int_{\mathbb{C}^l} \left(\prod_{j=1}^l \frac{d\bar{x}_j \wedge dx_j}{2\pi} \right) \frac{1}{|P_G(\underline{x}, \underline{a})|} \qquad \begin{cases} e^{-K} \\ \operatorname{Vol}_Q(W_G) \end{cases}$$

$$e^{-K}$$

$$\operatorname{Vol}_Q(W_G)$$

$$W_G = \operatorname{mirror of } M_G$$