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Motivation

® Feynman integrals are cornerstone of perturbative QFT and necessary for
predictions in collider and gravitational wave experiments.

® High precision measurements require multi-loop Feynman integral computations.
@® In Feynman integral computations special functions and their properties are needed.
@® There are many examples at two-loop order where elliptic functions show up.

® Usually these functions are properly defined on certain geometries, e.g. K (\) on elliptic curve &.

—~=y  Interplay between geometry and special functions

® For loop orders [ > 2 also more complicated geometries than elliptic curves appear.

-m% a natural candidate is a Calabi-Yau geometry

Generalization
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Calabi-Yau Manifolds

' Definition:

A Calabi-Yau (CY) n-fold X is a complex n-dimensional Kahler manifold equipped
with a Kahler (1, 1)-form w. There are the (equivalent) additional properties: |

e the first Chern class vanishes: c1(Tx) =0

e there exists a Ricci flat metric g: R;5(g9) =0 |
| e there exists a no-where vanishing holomorphic (n,0)-form 2

I |
e the holonomy group of X is SU(N) t‘

| e on X there exist two covariant constant spinors. )

| = — = = — —_——— p— =

_ = = —p———— — — — = J— — . —_— —_—
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Calabi-Yau Manifolds

' Definition:

A Calabi-Yau (CY) n-fold X is a complex n-dimensional Kahler manifold equipped
with a Kahler (1, 1)-form w. There are the (equivalent) additional properties: '

e the first Chern class vanishes: c1(Tx) =0

e there exists a Ricci flat metric g: Riz(g) =0

| e there exists a no-where vanishing holomorphic (n,0)-form 2

I |
e the holonomy group of X is SU(N) t‘

| e on X there exist two covariant constant spinors. 1

| I = — — —_— _— =

_ = = —p———— — ————— — — = J— — . — —_—

® Forms 2 and w are both characteristicforaCY X —= (X, w) cf. (€, da/y, dz A dy)

® The tangent space of the complex structure deformation space of a CY M. is given by H"~ 1! (X).

l A

® |t is natural to consider families of CYs: X X

K
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Constructions of CYs

How can we construct CYs?
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Constructions of CYs

How can we construct CYs?

@® CYs can be defined via polynomial constraints:

JE— T —— M. - .

! "Vanishing of the first Chern class ¢;
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Constructions of CYs

How can we construct CYs?

@® CYs can be defined via polynomial constraints:

By a single polynomial constraint:

Cubic one-fold:

Quintic three-fold:

By many polynomial constraints:

One-fold as two quadrics:

Hypersurface CY

Y?Z —4X° + g2(t) X Z° + g3(t) Z2° = 0} C P?

(X5 + X7+ X5+ X3+ X —pXoX1X2X3X, =0} C P*

Complete Intersection CY

{X?+Y? = AZW =Z> + W? = AXY =0} C P°

VvV
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Constructions of CYs

How can we construct CYs?

@® CYs can be defined via polynomial constraints:

By a single polynomial constraint: Hypersurface CY
Cubic one-fold: Y?Z —4X° + g2(t) X Z° + g3(t) Z2° = 0} C P?
Quintic three-fold: (X5 + X7+ X5+ X3+ X —pXoX1X2X3X, =0} C P*
By many polynomial constraints: Complete Intersection CY
One-fold as two quadrics: {X?+Y? - NZW = Z> + W? — AXY =0} C P°

@ CY ambient spaces can be very general: projective spaces, weighted

projective spaces, toric spaces, ... "
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Comments on Constructions of CYs

@® Also more general constructions are possible, e.g. non-linear sigma models.

—~=y How many CYs can one construct? Is the number of CYs finite?
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Comments on Constructions of CYs

@® Also more general constructions are possible, e.g. non-linear sigma models.

—~=y How many CYs can one construct? Is the number of CYs finite?

@ For fixed dimension n it is believed that there are only finitely many CYs.

@® The vanishing of the first Chern class gives a boundary in the classification of varieties:

': W=A IE4 T <2
k'3 ‘(‘N’G;fa [Kodaira]
CY.J- { Jogif,' d [Iskovskih,
4 !J& " ° Mori, Mukai]

VvV

7/ UNIVERSITAT



Comments on Constructions of CYs

@® Also more general constructions are possible, e.g. non-linear sigma models.

—~=y How many CYs can one construct? Is the number of CYs finite?

@ For fixed dimension n it is believed that there are only finitely many CYs.

@® The vanishing of the first Chern class gives a boundary in the classification of varieties:

K2 Kodaira

[Kodaira]
CY.J- { Jogif;,l [Iskovskih,
? !J& " ) Mori, Mukai]
—~=y  CYs live between "simple" and "general type" varieties. '.
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____reriodsof

- Definition: )
| Periods define a pairing between the homology H,, (X, Z) and the cohomology H" (X, C) of the CY X: |

| M: H,(X,Z)x H"(X,C) — C |

| (T, @) L Foz ‘
|

On a CY there is a monodromy invariant intersection matrix X defining a bilinear pairing on the periods. |

VvV
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|
|
|

Periods of
E— - = ——— E— __ __ _ — — _ — = = I ‘
Definition: 1
Periods define a pairing between the homology H,,(X,Z) and the cohomology H" (X, C) of the CY X: |
II: H,(X,Z)x H"(X,C) — C |

(T, @) L Foz ‘
|

On a CY there is a monodromy invariant intersection matrix X defining a bilinear pairing on the periods. |

Example: CY one-fold (elliptic curve) Ps=Y? - X(X-1)(X -\
9 ‘_ fra « fFa B
- B
frb o frb &
dX XdX —
=5 B = v Elliptic integrals
K(A), K(1=A)
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___criodsofa

~ Definition: )

| Periods define a pairing between the homology H,, (X, Z) and the cohomology H" (X, C) of the CY X: |
II: H,(X,Z)x H"(X,C) — C |

| (T, a) — [ [
|

On a CY there is a monodromy invariant intersection matrix X defining a bilinear pairing on the periods. |

Example: CY one-fold (elliptic curve) Ps=Y? - X(X-1)(X -\
9 > H . fra . fFa 5 i
* | B Joooo [r, B the shape of a CY." ||
dx XdX T R
=5 B = v Elliptic integrals
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Perids of C

~ Definition: )

' Periods define a pairing between the homology H,,(X,Z) and the cohomology H" (X, C) of the CY X: |
II: H,(X,Z)x H"(X,C) — C |

| (T, @) — : Q ‘
|

On a CY there is a monodromy invariant intersection matrix . defining a bilinear pairing on the periods. |

— _ —_— — _ _ = — |

Example: CY one-fold (elliptic curve) Ps=Y? - X(X-1)(X -\
9 > H . fra . fFa 6 i
* | B Joooo [r, B the shape of a CY." ||
dX XdX o S
=5 B = v Elliptic integrals

K\, K(1—)\)

® Particularly interesting are the periods over {2, which can be defined through the defining constraints:

1% dX AdY dX
S P > I'; S1 P3 Y

® For generic CYs it is not even simple to explicitly define all cycles I'; € H,,(X,Z). "
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Computing Periods

How can we compute periods?
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Computing Periods

How can we compute periods?

i "Use differential equations" |

@® Periods are governed by linear differential equations known as Gauss-Manin System
or Picard-Fuchs equations.
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Computing Periods

How can we compute periods?

@® Periods are governed by linear differential equations known as Gauss-Manin System
or Picard-Fuchs equations.

® There are different techniques to find these differential equations:

Integration by Parts identities, Griffiths reduction method or GKZ approach
Via the torus period: 1l = / Q)
i) Perform a residue calculation to obtain I1;.

i) Construct an operator L s.t. L1l = 0.

VvV

9 UNIVERSITAT



Computing Periods

How can we compute periods?

@® Periods are governed by linear differential equations known as Gauss-Manin System
or Picard-Fuchs equations.

® There are different techniques to find these differential equations:

Integration by Parts identities, Griffiths reduction method or GKZ approach
Via the torus period: 1l = / Q)
i) Perform a residue calculation to obtain I1;.

i) Construct an operator L s.t. L1l = 0.

e.g. for elliptic curve:

XX f)fxx -y mZ @) (2:) /T X g)m (ﬁ) > (2:)2 (43) ~ KX

n=0

Lrog =41 = N8 =400 =X with 0=22

O u
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Computing Periods

® A basis of the solution space {w; } to these differential equations can be obtained by
standard techniques, e.g. Frobenius Method.

® This is particularly simple if a MUM point (= total degeneration of indicials) exists:

. . Ty = POWer series in z
logarithmic structure reflects 0=P

= wpl Y
the cohomology of the CY @1 = @ log(2) + X

1
W = 5o log(2)? 4+ 1 log(z) + %5
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Computing Periods

® A basis of the solution space {w; } to these differential equations can be obtained by
standard techniques, e.g. Frobenius Method.

® This is particularly simple if a MUM point (= total degeneration of indicials) exists:

. . Ty = POWer series in z
logarithmic structure reflects 0=P

= wpl Y
the cohomology of the CY @1 = @ log(2) + X

1
W = 5o log(2)? 4+ 1 log(z) + %5

@ Finally, a basis change from {w@; } to {II; } (basis over Z) has to be determined.
This change of basis can be found from monodromy considerations: & @ 3

There exist special points in Mswhere the CY gets singular.

Analytic continuation around these points
corresponds to a monodromy:  II — M, 11

All monodromies have to respect the intersection pairing 22 between the periods.

-~ In a good basis {II; } all monodromies M., have to be "integral", i.e. M., € O(%,Z)

10 UNIVERSITAT
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Computing Periods

® A basis of the solution space {w; } to these differential equations can be obtained by
standard techniques, e.g. Frobenius Method.

® This is particularly simple if a MUM point (= total degeneration of indicials) exists:

. . Ty = POWer series in z
logarithmic structure reflects 0=P

= wpl Y
the cohomology of the CY @1 = @ log(2) + X

1
W = 5o log(2)? 4+ 1 log(z) + %5

@ Finally, a basis change from {w@; } to {II; } (basis over Z) has to be determined.

This change of basis can be found from monodromy considerations: > @

There exist special points in Mswhere the CY gets singular.

Analytic continuation around these points
corresponds to a monodromy:  II — M, 11

All monodromies have to respect the intersection pairing 22 between the periods.

-~ In a good basis {II; } all monodromies M., have to be "integral", i.e. M., € O(%,Z)
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Griffiths Transversality

Qc H"'(X)

n,0 n—1,1
of Griffiths transversality: 0.Q0e€ H(X)® H (X)
0°Qec H'(X)o H" V(X))o H" %?%(X)

@® On a CY there exists the phenomenon

Ve H'(X)®...o H™"(X)

VvV
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Griffiths Transversallty

@® On a CY there exists the phenomenon
of Griffiths transversality:

@® Consideration of type forbids many integrals:

.“/ QA FQ =TT £ 911
X

The rational function C,, is called the Yukawa Coupling.

11
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Griffiths Transversallty

@® On a CY there exists the phenomenon - i
of Griffiths transversality: 0.t e H™ (X) ©H" " (X)

@® Consideration of type forbids many integrals:

The rational function C,, is called the Yukawa Coupling.

@® From this we can define a whole matrix Z of quadratic relations between the periods:
Z(z) = W(2)XW(z)" with the Wronskian W (z); ; = {9\, }

For n = 1, 2 these relations are known:

n = 1| Legendre relations n = 2| K3 is a symmetric square
_ [ 2 2
K()\) K(l—)\) __E 1 {w())wl)wZ}_{fl?flfQ)fQ}
K'(A) K'(1-=X)|  4(1-XA\ /‘77 ?\
£(3)wz =0 £(2)f7, =0

11

[2]

[Bogner]

VvV
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Kahler Potential

® On a CY there exists a natural real, positiv and monodromy invariant object namely the
exponential of the Kahler potential:

Monodromy invariance follows from:

'S — (M., IDT S M, 11 =11 M! SM,, 11 = 1T S1I
/
: T
it M’l — M%'
® So if the periods in an integer basis are known the Kahler potential is easily constructed. X

follows from Griffiths transversality.

-~y The hard part is always to construct an integer basis of solutions.

VvV
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Kahler Potential

® On a CY there exists a natural real, positiv and monodromy invariant object namely the
exponential of the Kahler potential:

Monodromy invariance follows from:

TSI — (M., IS M, I =T M SM, 1T =1I"SI1
| 7
if MI = M

® So if the periods in an integer basis are known the Kahler potential is easily constructed. X
follows from Griffiths transversality.

-~y The hard part is always to construct an integer basis of solutions.

® This object will be very important in Franziska Porkert’s talk!
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Mirror Symmetry

@ Only two Hodge numbers for a m\;\sﬁ " 1
CY three-fold are undetermined: W,\" \,\m\" o 0 ° .9 0
\,\'-'.o \,\2 A hl.z Mﬁl cyY 1'2‘{4’7 4 \,3--" Wn/\ /]
W W W 0 O
K.o M’,d O O
W 1

® These two Hodge numbers describe the complex structure and Kahler deformations of a CY:

pr bl = dim (M) and = dim(Mks)

vV
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Mirror Symmetry

® Only two Hodge numbers for a m\"‘w: " 1
CY three-fold are undetermined: WM \,\m\" s 0 ©.° 0
\,\'-'.o \,\2 Y h»«.z Mﬁl cy 1'2"{4’7 4 \,3"‘ Wn/\ /]
W W 0 O
K.o M’,d O O
W 1

® These two Hodge numbers describe the complex structure and Kahler deformations of a CY:

pr bl = dim (M) and = dim(Mks)

@® Mirror symmetry exchanges these two deformation spaces. This means that CYs come generically in
mirror pairs (M, W) such that:

h M) = RBH (W) and h N (M) = BN (W)

13 UNIVERSITAT
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Mirror Symmetry

® Only two Hodge numbers for a m\"‘}p’ " 1
CY three-fold are undetermined: WM \,\m\" s 0 ©.° 0
\,\'-'.o \,\2 Y hd.z Mﬁl cy 3'2"{4’7 4 \,3"‘ Wn/\ /]
W W 0 O
K.o M’,d O O
W 1

® These two Hodge numbers describe the complex structure and Kahler deformations of a CY:

pr bl = dim (M) and = dim(Mks)

@® Mirror symmetry exchanges these two deformation spaces. This means that CYs come generically in
mirror pairs (M, W) such that:

hn—l,l(M) _ hl,l(W) and hl,l(M) _ hn—l,l(w)
® One very general construction of mirror pairs (M, W) is given by Batyrev’s mirror construction: [Batyrev]
[Batyrev-
(PA, PA) Borison]
X / polynomial \
(AvA) (Mvw):({PA:O}CPA7{PA:O}CPA)

captures combi\ /
natorial data (IP)Aa PA) u

ambient space 13 UNIVERSITAT



Mirror Symmetry

What do we learn from Mirror Symmetry?
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Mirror Symmetry

What do we learn from Mirror Symmetry?

~ "Some objects are simpler to compute on the mirror CY. Via |
g mirror symmetry one can relate them to the original CY." |
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Mirror Symmetry

What do we learn from Mirror Symmetry?

~ "'Some objects are simpler to compute on the mirror CY. Via |
g mirror symmetry one can relate them to the original CY." |

@ Via the I'-class one can construct an integer basis of periods:

On the mirror CY W an integer basis is given asymptotically through a topological integral:

Ig(t) = /W e“'T(TW)ch(G) + O(e™)

Using the mirror map this gives the asymptotics of an integral basis on M::

t(z) = —* and g (t(2))

wo

vV

14 UNIVERSITAT



Mirror Symmetry

What do we learn from Mirror Symmetry?

i = : — —————— = ,. 
. "Some objects are simpler to compute on the mirror CY. Via ||
g mirror symmetry one can relate them to the original CY." |

@ Via the I'-class one can construct an integer basis of periods:

On the mirror CY W an integer basis is given asymptotically through a topological integral:

Ig(t) = /W e“'T(TW)ch(G) + O(e™)

Using the mirror map this gives the asymptotics of an integral basis on M::

t(z) = —* and g (t(2))
wo
® Mirror symmetry permits an interpretation of the exponential of the Kahler potential as

quantum volume of the mirror CY W

n

w
The mirror map gives a Kahler form on W: t(z) — ww =1Im(t), Volag(W)= /W TV'V

. L 5
The.e.xp. of the Kahler pot.entla.l is the.natural o~ K — in Ity = ]HO\QVOLJ(W)
positive and monodromy invariant object that

has the classical volume as leading term: ~ ’HO‘ZVOICI(W) u
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CYs and Banana Integrals

® One of the simplest families of Feynman integrals:

Banana integrals Function Space
Which functions show

/’/_‘,:.,7 up in banana integrals? \\,\}
—~ >

Boundary Conditions
How do we have

to combine them?

Calabi-Yau

vV
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CYs and Banana Integrals

® One of the simplest families of Feynman integrals:

Banana integrals Function Space
Which functions show

ﬂ up in banana integrals? \\,\}
—~ >

Boundary Conditions
How do we have

to combine them?

Calabi-Yau

@® Symanzik approach:

ff Graph polynomials:

o) (52

1=1

@D =2—2¢ 1
= — O
/O_l]_-m+ (€)

—~=y |n two dimensions banana
integrals are particularly simple.

VvV
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Hypersurface Calabi-Yau

® Using the second Symanzik polynomial we can associate a Calabi-Yau variety to the banana integrals

F (PQ, m?; T) =Sy Newton Polytope 4]

VvV
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Hypersurface Calabi-Yau

® Using the second Symanzik polynomial we can associate a Calabi-Yau variety to the banana integrals

F(p*,m*; z) =y Newton Polytope
=4 =1
Gm?\f\: ."_1_6__. L@—
W M}

?2_: Qo+ Xt % + % -3'1&_)(1'
oy ch,\—-\—ﬁ_\' Yo 405 XAY

Polyhedrow: .

@® From the Batyrev mirror construction we get pairs of Calabi-Yau varieties:

e

- I

Mirror Symmetry |

[4]

Mi_1 = {Pa, =0 C Pas} 3 > Wi—1 ={Pa; =0CPxs,}

16
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Hypersurface Calabi-Yau

® Using the second Symanzik polynomial we can associate a Calabi-Yau variety to the banana integrals

F (PQ, m?; T) =Sy Newton Polytope 4]
= it e-%
L WA 1 - v e
Grogh : Y oO— ey I3
Loyo A ™
\ = +
Lolynoum 4-6(;_‘, Lo % 4 XA¥e

Rabhedron: . QZ?

@® From the Batyrev mirror construction we get pairs of Calabi-Yau varieties:

Mirror Symmetry |

Mi_1 = {Pa, =0 C Pas} 3 > Wi—1 ={Pa; =0CPxs,}

® Unfortunately these CYs have far too many parameters:

Complex moduli:  #({z}) = A" =2 VS. Physical parameters: #(p?>,m?) —1=1+1 '.
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Compete Intersection CY

@® Better Approach is to analyze the "torus period" carefully:

2 [4+1

max 1 k;
g rnF " (2™ Z 2 ( kl+1) 1=

n=0 |k|=n

VvV
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Compete Intersection CY

@® Better Approach is to analyze the "torus period" carefully:

2 [4+1

1
= Sy Y 1=
i o F (2mi) ki, .. le “
n=0 |k|=n ’ i=1
There exists a nice complete intersection CY defined by the following constraints: [Kerr]
[3]
(1) (1+1)
l w
Pl_w§1>...wé+1) (1—m%ﬁ—...—mf+lﬁ> I+1
2 Wy ) 1
o) s ey erly, M, =P =P =0c Fc XP
Py D [ 2 W 9 Wy .
2 = Wy "Wy p + (1) +...+ ml—l—l (1+1)
wy wy
m;
Correct number of parameters:  z; = — fore=1,...,[+1
p
UNIVERSITAT
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Compete Intersection CY

@® Better Approach is to analyze the "torus period" carefully:

2 [4+1

1
Imax _ 27.‘.,1/ [+1 Z Z ( ) szz
1
T f n=0 | k|=n ]{?1,.. kl_|_1 Pl
There exists a nice complete intersection CY defined by the following constraints: [Kerr]
[3]
(1) (1+1)
w w
Py _wél)"'wélﬂ) (1_m%ﬁ_”'_mlz+1 %l+1)> I+1
2 Wy i i 1
o) e (wi? :wi) e BY), MY Pi=P,=0c F,c X P,
Py — oD 4+ ( 2, Wy 2 Wy .
2 = Wy "Wy p + (1) +...+ ml—l—l (1+1)
wy wy
2
m; ,
Correct number of parameters:  z; = — fore=1,...,[+1
p

The periods follow from a GKZ system defined through ¢-vectors:

Periods of the Calabi-Yau: II, = / Q(z) with T'y € Hj_1(M;—1)
'y

D-module: D, Il =0 for r=1,...,rank({D})

VvV
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CYs and Banana Integrals

® We have still to deal with simplex integration domain: [3,4]

Jo; #0  which means o ¢ H_1(M;_1)
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CYs and Banana Integrals

® We have still to deal with simplex integration domain: [3,4]

Jo; #0  which means o ¢ H_1(M;_1)

—~=y Banana integral is in truth a relative Calabi-Yau period integral.
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CYs and Banana Integrals

® We have still to deal with simplex integration domain: [3,4]

Jo; #0  which means o ¢ H_1(M;_1)

—~=y Banana integral is in truth a relative Calabi-Yau period integral.

® We need an extension to include inhomogeneities from boundaries terms:

introduce boundary on

e >

integration domain

—= Inhomogeneous diff. eqs.: D, I(z) = q,(z,log(2))
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CYs and Banana Integrals

® We have still to deal with simplex integration domain: [3,4]

Jo; #0  which means o ¢ H_1(M;_1)

—~=y Banana integral is in truth a relative Calabi-Yau period integral.

® We need an extension to include inhomogeneities from boundaries terms:

introduce boundary on

e >

integration domain

—= Inhomogeneous diff. eqs.: D, I(z) = q,(z,log(2))

@ Full Feynman integral is linear combination of basis solutions {@;} which are the Calabi-Yau
periods plus additional special solutions of the inhomogeneous D-module:

I(z) = Z)\z' w;i(2)
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CYs and Banana Integrals

® We have still to deal with simplex integration domain: [3,4]

Jo; #0  which means o ¢ H_1(M;_1)

—~=y Banana integral is in truth a relative Calabi-Yau period integral.

® We need an extension to include inhomogeneities from boundaries terms:

introduce boundary on

e >

integration domain

—= Inhomogeneous diff. eqs.: D, I(z) = q,(z,log(2))

@ Full Feynman integral is linear combination of basis solutions {@;} which are the Calabi-Yau
periods plus additional special solutions of the inhomogeneous D-module:

I(z) = Z)\z' w;i(2)

® For simplicity we now consider the one-parameter equal-mass case.

VvV
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CYs and Banana Integrals

® The additional special solution can be interpreted as iterated Calabi-Yau period: Lili(z)=—(+1)z

Using variation of parameters/constants we find: [2]

Ii(z) ~ Hl(z)T/ dz’ W;(2/)~! Inhom, (2')
0 use quadratic relations
ds/ & from Griffiths transversality

~I)7E [ I
0o <

VvV
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CYs and Banana Integrals

® The additional special solution can be interpreted as iterated Calabi-Yau period: Lili(z)=—(+1)z

Using variation of parameters/constants we find: [2]

Ii(z) ~ Hl(z)T/ dz’ W;(2/)~! Inhom, (2')
0 use quadratic relations
ds/ & from Griffiths transversality

~I)7E [ I
0o <

Iterated CY period integrals as generalization of elliptic polylogarithms?
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CYs and Banana Integrals

® The additional special solution can be interpreted as iterated Calabi-Yau period: Lili(z)=—(+1)z

Using variation of parameters/constants we find: [2]

I;(z) ~ Hl(z)T/ dz’ W;(2/)~! Inhom, (2')
0 5 use quadratic relations
z from Griffiths transversalit
dz’ , Y
~ ﬂz(Z)TEZ/O ZTQEZ(Z/) <

iterated CY period

integrals of M;_1

Iterated CY period integrals as generalization of elliptic polylogarithms?

® The coefficients A\; follow from the T-class: [Iritani]

Im(\):  Im(I(T)) = /W STH(TW, 1) + O(T)

Re(\): Re(I(T)) = / engg ) cos(mey) + O(eh)

—I—C1)
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Analytic Structure of the Banana Integrals

Equal Mass Case: 1) PF equation:

Li=1-5z+ (—4+282)0 + (6 — 632 + 262> — 2252°)6° + (—4 + 70z — 4502°)6°

+(1—2)(1-92)(1 - 253)94 AESZ 34 [AImquist, Enckefort,
L414(2) = =5z van Straten and Zudilin]

2) Frobenius basis:

k

k .
wk=Z<j) log(2)? Xk—; fork=1,...,4—1

wo = 2z + 522 + +4523 + 5452% + 78852° + - - -

4148 , 64 198
5=0 Y1 = 82° +100z° + 3 2+ . LT
I 197 5 33637 , 2402477
[ _ _9,2 903 4 5, ..
@ = ()" +1)) () log(z)? X e L T T R
=0V S— 19,2 2073 19295 4 933155 5
5T 2 18 144
Y= 183023 + 112 720z4 + 4722%25 4.
3) Linear combination I4(z) = (—450¢(4) — 80¢(3)im)wwg + (80¢(3) — 120((2)im)woy

from I'-conjecture: +180( (2)wwa + 20imws + wy
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Analytic Structure of the Banana Integrals

Equal Mass Case: 1) PF equation:
L4=1—5z+(—4+282)0 + (6 — 63z + 262 — 22523)0? + (—4 + 70z — 4502°)6°
+(1—2)(1-92)(1 - 253)94 AESZ 34 [AImquist, Enckefort,
5414( ) — _5l, van Straten and Zudilin]

2) Frobenius basis:

Zk: (k) Gy wo = 2+ 52% + +452% + 5452* 4 78852° + - - -
W = ) log(2)? Xgk—; fork=1,...,4—1
=0 \J ’ 21=8z2—|—100z3—|—41348z4+643198 2’ +
! _ o2 197 5 33637 , 2402477 ;
wp = (1) (1 + Z( )log 2y 5 e N T R
- » 267 5 19295 , 933155
j=0 Yg=—1222 — 23 — 2t T2 TR0
2 18 144
¥, = 183023 + 112 72024 + 4722%2:5 +
3) Linear combination I4(z) = (—450¢(4) — 80¢(3)im)wwg + (80¢(3) — 120((2)im)woy
fromI'-conjecture: + 180((2) w2 + 20imws + w4

qwxly-éic, couél'uuaﬁbu

W owrloppug  regous
4) Analytic structure: / 3

v -

. R EREEED
=1 A 220 e (%)

\ oef  the qldml Solubon of tre loavana
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Analytic Structure of the Banana Integrals

Equal Mass Case: 1) PF equation:
L4=1—52+ (—4+282)0 + (6 — 63z + 262° — 2252°)0% + (—4 + 70z — 4502°)6°
+(1—2)(1-92)(1 - 253)94 AESZ 34 [AImquist, Enckefort,
5414( ) — _5l, van Straten and Zudilin]

2) Frobenius basis:

wo = 2z + 522 + +4523 + 5452% + 78852° + - - -
4148 , 64 198 o

k
wE = Z (l;) log(2)! Tk fork=1,...,4—1
5=0

¥ = 82% +1002% + 5 7+
! 2, 197 5 33637 , 2402477 ;
wp = (1) (1 + Z()log 2y 5 e N T R
= 5 __122_@3_192954_933155z5
3T TR TR 18 - 144
¥4 = 18302% + 12720 4 4722%? +
3) Linear combination I4(z) = (—450¢(4) — 80¢(3)im)wwg + (80¢(3) — 120((2)im)woy
fromI'-conjecture: + 180((2) w2 + 20imws + w4
4) Analytic structure:
% :
ﬁ;‘: 2=1s = = =0
. 4% \ |
howo&row\y acbion: Ly —= H“— I'f \oromch cut —
’\:-q x > IL‘ ‘ hquo_u\u '0.“{2 ral & "eQL
‘ ~)W webiou fﬁ?'ﬁﬁh&\e‘bu\
et by the el G t v
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The lce Cone Family

@® Consider the following one-parameter family
of ice cone graphs in two dimensions:

external parameters: Pp1 and p2with p% = p% =0
so we have only s = 2pq - po

internal masses: all equal tom

—~=y |n truth, only one parameter given by the ratio S/m2 :

L
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The lce Cone Family

@® Consider the following one-parameter family
of ice cone graphs in two dimensions:

L2 2
external parameters: P1and Pawith p7 = Py =
so we have only s = 2pq - po

internal masses: all equal tom

—~=3 In truth, only one parameter given by the ratio S/m2 :

@® Naively, we expect that the banana integrals play a prominent role for ice cone
integrals since they explicitly appear in their diagrams.

~-~—=y How is the function space for ice cone integrals related to the banana function space?
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The lce Cone Family

@® Consider the following one-parameter family
of ice cone graphs in two dimensions:

external parameters: Pp1 and p2with p% = p% =0
so we have only s = 2pq - po

internal masses: all equal tom

—~=3 In truth, only one parameter given by the ratio S/m2 :

@® Naively, we expect that the banana integrals play a prominent role for ice cone
integrals since they explicitly appear in their diagrams.

—-~=y How is the function space for ice cone integrals related to the banana function space?

® Our strategy to compute ice cone integrals has three steps:
i) Find a good basis of master integrals such that the GM connection is simple.
i) Solve the GM differential equation in terms of banana integrals.
iii) Use monodromy considerations to obtain the correct linear combination. u
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Bananas in lce Cones

@® Consider the following representation of the ice cone:

d
0 _ d%k (1-1) 2
Iice — / (k2 . m2)((k _|_p1 _|_p2)2 — mQ)Iban ((k +p2) )
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Bananas in lce Cones

@® Consider the following representation of the ice cone:

d
0 _ d%k (1-1) 2
Iice — / (k2 . m2)((k +p1 _|_p2)2 — mQ)Iban ((k +p2) )

@ First, we analyze the maximal cuts in two dimensions. We consider the
Baikov representation:

du I—1 s (1+ )2
O / z 7-1) _
ice, cut b i (ZC i ’U,)(l i ZBU) ban,cut (U) m2 T

Landau variable
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Bananas in lce Cones

@® Consider the following representation of the ice cone:

d
0 _ d%k (1-1) 2
Iice — / (k2 . m2)((k +p1 _|_p2)2 — mQ)Iban ((k +p2) )

@ First, we analyze the maximal cuts in two dimensions. We consider the
Baikov representation:

du I—1 s (1+ )2
O / z 7-1) _
ice, cut b i (ZC i ’U,)(l i ZBU) ban,cut (U) m2 T

/\/,.7 ]\\ Landau variable

have two choose two CY periods
different residues
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Bananas in lce Cones

@® Consider the following representation of the ice cone:

d
0 _ d%k (1-1) 2
Iice — / (k2 . m2)((k +p1 _|_p2)2 — mQ)Iban ((k +p2) )

@ First, we analyze the maximal cuts in two dimensions. We consider the
Baikov representation:

du I—1 s (1+ )2
O / z 7-1) _
ice, cut b i (ZC i U)(l i ZBU) ban,cut (U) m2 T

/\/..7 {\\ Landau variable

have two choose two CY periods
different residues

-~y \We see now that two copies of the cut banana integrals appear in the cuts of ice cone:

l l l
{Ilt();n, cut(_x)7 Il()a?n, cut(_l/x)} C {Ii(cg, cut}
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Bananas in lce Cones

@® Consider the following representation of the ice cone:

d
0 _ d%k (1-1) 2
Iice — / (k2 . m2)((k +p1 _|_p2)2 — mQ)Iban ((k +p2) )

@ First, we analyze the maximal cuts in two dimensions. We consider the
Baikov representation:

du I—1 s (1+ )2
O / z 7-1) _
ice, cut b i (ZC i U)(l i ZBU) ban,cut (U) m2 T

/\/..7 {\\ Landau variable

have two choose two CY periods
different residues

-~y \We see now that two copies of the cut banana integrals appear in the cuts of ice cone:

l l l
{Ilt()a?n, cut(_x)7 Il()a?n, cut(_l/x)} C {Ii(cg, cut}

® A good basis of master integrals is now obtained if these two residues really decouple.
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Master Integrals and Gauss-Manin Connection

@® We found that a good basis is given by:

trivial master integrals: non-trivial master integrals:
L] ]
@ @~ | 1 Ny,
?:O ) -
o “hﬁ)
- — ) « - ) | —— —
constant log, algebraic 20 — 1 transcendental
I, master integrals
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Master Integrals and Gauss-Manin Connection

@® We found that a good basis is given by:

trivial master integrals: non-trivial master integrals:
L] ]
@ @~ c@ | 1 Ny,
?:O ) -
P=o “:*ﬂ)
- — ) « - ) | —— —
constant log, algebraic 20 — 1 transcendental
I, master integrals

@ After a simple rotation in the space of non-trivial master integrals the GM connection for
these integrals splits into three pieces:

I I 0 B
d( z )GM&J%@( ; )+( z ) , la1 =@+ o)
fia L1 a(z)lo

I I 0 a(z), B(x),v(x),6()
al : |=eMm"Viymy | o |+ are rational functions
B(

Iog—1) Ig—1) known for any loop order.
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Master Integrals and Gauss-Manin Connection

@® We found that a good basis is given by:

trivial master integrals: non-trivial master integrals:
L] ]
@ @~ c@ | 1 Ny,
?:O ) -
P=o “hﬁ)
. — ) « - ) | —— —
constant log, algebraic 20 — 1 transcendental
I, master integrals

@ After a simple rotation in the space of non-trivial master integrals the GM connection for
these integrals splits into three pieces:

I I 0
Iy 1 = I1 +4(x)l
N N e e NN S I o = ot
I I a(x)ly
I I, 0 a(z), B(x),v(z), ()
al : |=eMm"Viymy | o |+ are rational functions
Io—1) Iog—1) B(z) Iy known for any loop order.

— I E——— —

 —-=3 The function space of ice cone integrals is given by one-fold iterated CY period integrals. |

L _ _ e R
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Linear Combination and Monodromy

® We still have to combine these function to obtain the ice cone integral.

® For s = 0 the ice cone integrals get proportional to the banana integral:

Ifjg(()) = l—|—1Il()la)n(O) normalization

® The ice cone integrals have a branch cut from s = 4 until infinity:

V\ovw(i%clion
V
] | | —MW*>
"v—-’ S=0 S=y =

VvV

25 UNIVERSITAT



Linear Combination and Monodromy

® We still have to combine these function to obtain the ice cone integral.
® For s = 0 the ice cone integrals get proportional to the banana integral:

I-(l)(()) = —H%Iégn(()) normalization

1ce

® The ice cone integrals have a branch cut from s = 4 until infinity:

V\m(i%clion
\E
— ' ﬁ(-w%%}
—) S=0 S=y S0 S
Ty
tor =< ?

:: Using the monodromy properties of the iterated CY periods and t
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Linear Combination and Monodromy

® We still have to combine these function to obtain the ice cone integral.

® For s = 0 the ice cone integrals get proportional to the banana integral:

I(l)(()) = l+1]é2n(0) normalization

1ce

® The ice cone integrals have a branch cut from s = 4 until infinity:

V\O\'Wa[i%clion
N
— ' —HAAAAAAAAAN—>
""‘—J S=0 S=y S0 S
s\va
f " 4ff.¢.
lor =<0

‘ Usmg the monodromy properties of the |terated CY periods and the |

l
normallzatlon we could fix the linear combination.

® We could even construct a basis of solutions such that all monodromies are integral. The ice
cone integral itself was a member of this basis. The intersection form in this basis was the one
related to the banana integrals inside the ice cone.

-~y \What is the meaning/interpretation of such an integral basis? '.
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Conclusions

® Unterstanding CY geometries is essential for understanding higher loop Feynman integrals.

@® Many concepts from the world of CYs have a direct interpretation and profit for (some) Feynman integrals:

(Relative) CY period integrals of varieties M < = Feynman integral

Complex moduli of M D Physical parameters
Cohomology group of M, S Master integrals, differential
GM connection relations between them
Monodromy relations M Analytic properties

@® CY geometries give a function space and simultaneously M Iterated CY period integrals

boundary conditions for Feynman integrals: —— |
Monodromy properties

@® So far CY techniques could successfully be applied on three different families of Feynman graphs:
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Conclusions

® Unterstanding CY geometries is essential for understanding higher loop Feynman integrals.

@® Many concepts from the world of CYs have a direct interpretation and profit for (some) Feynman integrals:

(Relative) CY period integrals of varieties M < = Feynman integral

Complex moduli of M D Physical parameters
Cohomology group of M, D Master integrals, differential
GM connection relations between them
Monodromy relations M Analytic properties

@® CY geometries give a function space and simultaneously M Iterated CY period integrals

boundary conditions for Feynman integrals: —— |
Monodromy properties

@® So far CY techniques could successfully be applied on three different families of Feynman graphs:

Further Questions:

® How useful is the function space of iterated CY period integrals for Feynman integrals?
What is a proper definition of it?

® Which other graphs can be solved using CY techniques? What is the best starting point? "
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Thank you for
vour attention




