

Calabi-Yau Geometries and Feynman Integrals

Bananas & Ice Cones

Christoph Nega

Joint work with:

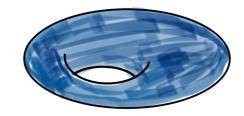
Kilian Bönisch, Claude Duhr, Fabian Fischbach, Albrecht Klemm, Reza Safari & Lorenzo Tancredi

"Ice Cone Graphs and Iterated Calabi-Yau Period Integrals" [1], "Feynman Integrals in Dimensional Regularization and Extensions of Calabi-Yau Motives" [2], "Analytic structure of all Banana integrals" [3], "The I-loop Banana amplitude from GKZ systems and relative Calabi-Yau periods" [4]

Elliptic Integrals in Fundamental Physics Mainz September 14, 2022

Motivation

- **Feynman integrals** are cornerstone of perturbative QFT and necessary for predictions in collider and gravitational wave experiments.
- High precision measurements require multi-loop Feynman integral computations.
- In Feynman integral computations special functions and their properties are needed.
- There are many examples at two-loop order where elliptic functions show up.
- Usually these functions are properly defined on certain **geometries**, e.g. $K(\lambda)$ on elliptic curve \mathcal{E} .
 - Interplay between geometry and special functions
- For loop orders $l \geq 2$ also **more complicated** geometries than elliptic curves appear.
 - a natural candidate is a Calabi-Yau geometry



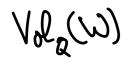
Today

World of Calabi-Yaus

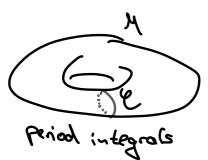
Feynman Integrals

Mirror Symmetrie

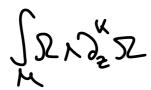
moduli spaces

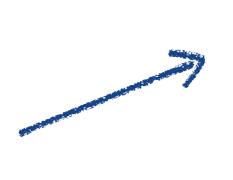


F- dass



TTZT





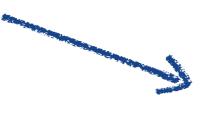


Table of Content

1) Introduction to Calabi-Yau Geometries

[A. Klemm B-Model, introduction to string theory]

2) Banana Integrals

[2,3,4]

3) Ice Cone Integrals

[1]

4) Conclusion and Remarks

Calabi-Yau Manifolds

Definition:

A Calabi-Yau (CY) n-fold X is a complex n-dimensional Kähler manifold equipped with a Kähler (1,1)-form ω . There are the (equivalent) additional properties:

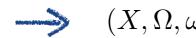
- the first Chern class vanishes: $c_1(T_X) = 0$
- there exists a Ricci flat metric g: $R_{i\bar{j}}(g)=0$
- ullet there exists a no-where vanishing holomorphic (n,0)-form Ω
- the holonomy group of X is SU(N)
- on X there exist two covariant constant spinors.

Calabi-Yau Manifolds

Definition:

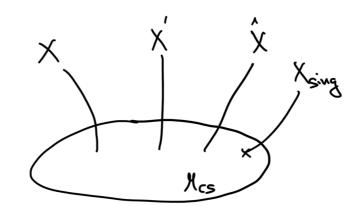
A Calabi-Yau (CY) n-fold X is a complex n-dimensional Kähler manifold equipped with a Kähler (1,1)-form ω . There are the (equivalent) additional properties:

- the first Chern class vanishes: $c_1(T_X) = 0$
- $R_{i\bar{j}}(g) = 0$ • there exists a Ricci flat metric *g*:
- ullet there exists a no-where vanishing holomorphic (n,0)-form Ω
- \bullet the holonomy group of X is SU(N)
- on X there exist two covariant constant spinors.
- Forms Ω and ω are both **characteristic** for a CY X \longrightarrow (X, Ω, ω)



cf. $(\mathcal{E}, dx/y, dx \wedge dy)$

- The tangent space of the complex structure deformation space of a CY \mathcal{M}_{cs} is given by $H^{n-1,1}(X)$.
- It is natural to consider families of CYs:



How can we construct CYs?

How can we construct CYs?

• CYs can be defined via polynomial constraints:

"Vanishing of the first Chern class $c_1(T_X)$ gives relation between ambient space and degree of the constraints."

How can we construct CYs?

• CYs can be defined via polynomial constraints:

"Vanishing of the first Chern class $c_1(T_X)$ gives relation between ambient space and degree of the constraints."

• By a single polynomial constraint:

Hypersurface CY

Cubic one-fold:

Quintic three-fold:

$$\{Y^2Z - 4X^3 + g_2(t)XZ^2 + g_3(t)Z^3 = 0\} \subset \mathbb{P}^2$$

$$\left\{X_0^5 + X_1^5 + X_2^5 + X_3^5 + X_4^5 - \psi X_0 X_1 X_2 X_3 X_4 = 0\right\} \subset \mathbb{P}^4$$

By many polynomial constraints:

One-fold as two quadrics:

Complete Intersection CY

$$\left\{X^2 + Y^2 - \lambda ZW = Z^2 + W^2 - \lambda XY = 0\right\} \subset \mathbb{P}^3$$

How can we construct CYs?

• CYs can be defined via polynomial constraints:

"Vanishing of the first Chern class $c_1(T_X)$ gives relation between ambient space and degree of the constraints."

By a single polynomial constraint:

Hypersurface CY

Cubic one-fold:

$$\{Y^2Z - 4X^3 + g_2(t)XZ^2 + g_3(t)Z^3 = 0\} \subset \mathbb{P}^2$$

Quintic three-fold:

$$\left\{X_0^5 + X_1^5 + X_2^5 + X_3^5 + X_4^5 - \psi X_0 X_1 X_2 X_3 X_4 = 0\right\} \subset \mathbb{P}^4$$

By many polynomial constraints:

Complete Intersection CY

One-fold as two quadrics:

$$\{X^2 + Y^2 - \lambda ZW = Z^2 + W^2 - \lambda XY = 0\} \subset \mathbb{P}^3$$

 CY ambient spaces can be very general: projective spaces, weighted projective spaces, toric spaces, ...

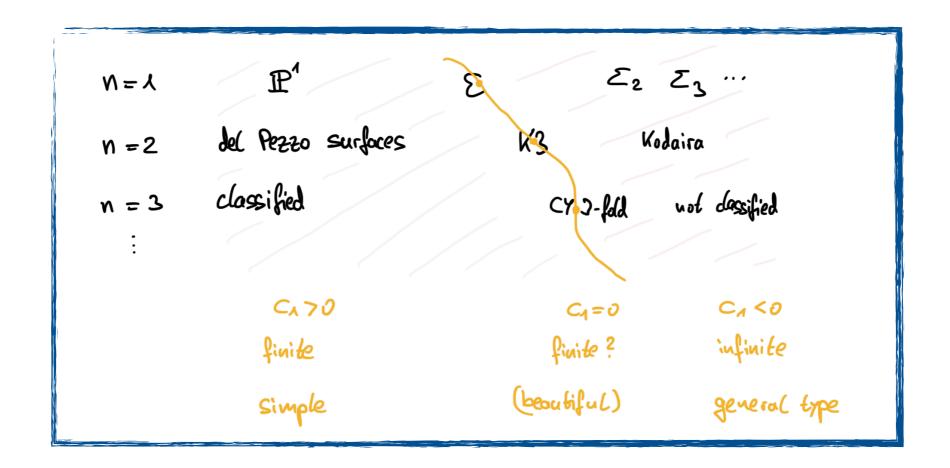
Comments on Constructions of CYs

Also more general constructions are possible, e.g. non-linear sigma models.

How many CYs can one construct? Is the number of CYs finite?

Comments on Constructions of CYs

- Also more general constructions are possible, e.g. non-linear sigma models.
 - How many CYs can one construct? Is the number of CYs finite?
- For fixed dimension n it is believed that there are only finitely many CYs.
- The vanishing of the first Chern class gives a boundary in the classification of varieties:

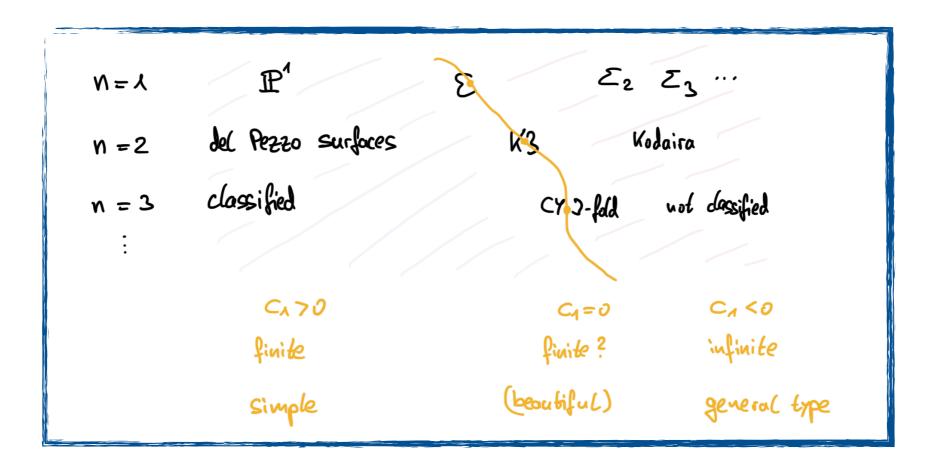


[Kodaira]

[Iskovskih, Mori, Mukai]

Comments on Constructions of CYs

- Also more general constructions are possible, e.g. non-linear sigma models.
 - How many CYs can one construct? Is the number of CYs finite?
- For fixed dimension n it is believed that there are only finitely many CYs.
- The vanishing of the first Chern class gives a boundary in the classification of varieties:



[Kodaira]

[Iskovskih, Mori, Mukai]

CYs live between "simple" and "general type" varieties.

Definition:

Periods define a pairing between the homology $H_n(X,\mathbb{Z})$ and the cohomology $H^n(X,\mathbb{C})$ of the CY X:

$$\Pi: H_n(X,\mathbb{Z}) \times H^n(X,\mathbb{C}) \longrightarrow \mathbb{C}$$

$$(\Gamma,\alpha) \longmapsto \int_{\Gamma} \alpha$$

On a CY there is a monodromy invariant intersection matrix Σ defining a bilinear pairing on the periods.

Definition:

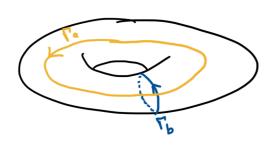
Periods define a pairing between the homology $H_n(X,\mathbb{Z})$ and the cohomology $H^n(X,\mathbb{C})$ of the CY X:

$$\Pi: \quad H_n(X,\mathbb{Z}) \times H^n(X,\mathbb{C}) \longrightarrow \mathbb{C}$$

$$(\Gamma,\alpha) \qquad \longmapsto \int_{\Gamma} \alpha$$

On a CY there is a monodromy invariant intersection matrix Σ defining a bilinear pairing on the periods.

Example: CY one-fold (elliptic curve)



$$\alpha = \frac{\mathrm{d}X}{Y} \quad \beta = \frac{X\mathrm{d}X}{Y}$$

$$P_3 = Y^2 - X(X - 1)(X - \lambda)$$

$$\Pi = \begin{pmatrix} \int_{\Gamma_a} \alpha & \int_{\Gamma_a} \beta \\ \int_{\Gamma_b} \alpha & \int_{\Gamma_b} \beta \end{pmatrix}$$

Elliptic integrals
$$K(\lambda), K(1-\lambda)$$

Definition:

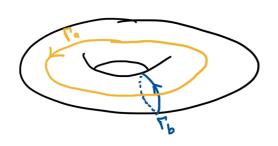
Periods define a pairing between the homology $H_n(X,\mathbb{Z})$ and the cohomology $H^n(X,\mathbb{C})$ of the CY X:

$$\Pi: \quad H_n(X,\mathbb{Z}) \times H^n(X,\mathbb{C}) \longrightarrow \mathbb{C}$$

$$(\Gamma,\alpha) \qquad \longmapsto \int_{\Gamma} \alpha$$

On a CY there is a monodromy invariant intersection matrix Σ defining a bilinear pairing on the periods.

Example: CY one-fold (elliptic curve)



$$\alpha = \frac{\mathrm{d}X}{Y} \quad \beta = \frac{X\mathrm{d}X}{Y}$$

$$P_3 = Y^2 - X(X - 1)(X - \lambda)$$

$$\Pi = \begin{pmatrix} \int_{\Gamma_a} \alpha & \int_{\Gamma_a} \beta \\ \int_{\Gamma_b} \alpha & \int_{\Gamma_b} \beta \end{pmatrix}$$

Elliptic integrals $K(\lambda), K(1-\lambda)$

"Periods describe the shape of a CY."

Definition:

Periods define a pairing between the homology $H_n(X,\mathbb{Z})$ and the cohomology $H^n(X,\mathbb{C})$ of the CY X:

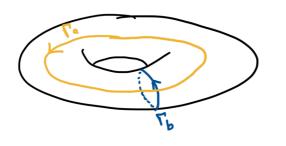
$$\Pi: \quad H_n(X,\mathbb{Z}) \times H^n(X,\mathbb{C}) \longrightarrow \mathbb{C}$$

$$(\Gamma,\alpha) \qquad \longmapsto \int_{\Gamma} \alpha$$

On a CY there is a monodromy invariant intersection matrix Σ defining a bilinear pairing on the periods.

Example: CY one-fold (elliptic curve)

$$P_3 = Y^2 - X(X - 1)(X - \lambda)$$



$$\alpha = \frac{\mathrm{d}X}{Y} \quad \beta = \frac{X\mathrm{d}X}{Y}$$



Elliptic integrals $K(\lambda), K(1-\lambda)$

"Periods describe the shape of a CY."

Particularly interesting are the periods over which can be defined through the defining constraints:

$$\Pi_i = \int_{\Gamma_i} \Omega$$

cf.
$$\Omega = \int_{S^1} \frac{\mathrm{d}X \wedge \mathrm{d}Y}{P_3} \sim \frac{\mathrm{d}X}{Y}$$

• For generic CYs it is not even simple to explicitly define all cycles $\Gamma_i \in H_n(X,\mathbb{Z})$.

How can we compute periods?

How can we compute periods?

"Use differential equations"

 Periods are governed by linear differential equations known as Gauss-Manin System or Picard-Fuchs equations.

How can we compute periods?

"Use differential equations"

- Periods are governed by linear differential equations known as Gauss-Manin System or Picard-Fuchs equations.
- There are different techniques to find these differential equations:
 - Integration by Parts identities, Griffiths reduction method or GKZ approach
 - lacksquare Via the **torus period**: $\Pi_0 = \int_{T^n} \Omega$
 - i) Perform a residue calculation to obtain Π_0 .
 - ii) Construct an operator $\mathcal L$ s.t. $\mathcal L\Pi_0=0$.

How can we compute periods?

"Use differential equations"

- Periods are governed by linear differential equations known as Gauss-Manin System or Picard-Fuchs equations.
- There are different techniques to find these differential equations:
 - Integration by Parts identities, Griffiths reduction method or GKZ approach
 - ullet Via the **torus period**: $\Pi_0 = \int_{T^n} \Omega$
 - i) Perform a residue calculation to obtain Π_0 .
 - ii) Construct an operator $\mathcal L$ s.t. $\mathcal L\Pi_0=0$.

e.g. for elliptic curve:

$$\int_{T^1} \frac{\mathrm{d}X}{\sqrt{X(X-1)(X-\lambda)}} = \sum_{m,n} \binom{2m}{m} \binom{2n}{n} \int_{T^1} \frac{\mathrm{d}X}{X} \left(\frac{X}{4}\right)^m \left(\frac{\lambda}{4X}\right)^n = 2\pi i \sum_{n=0}^{\infty} \binom{2n}{n}^2 \left(\frac{\lambda}{4^2}\right)^n \sim K(\lambda)$$

$$\mathcal{L}_{\mathrm{Leg}} = 4(1-\lambda)\theta^2 - 4\lambda\theta - \lambda$$
 with $\theta = \lambda \frac{\partial}{\partial \lambda}$

- A basis of the solution space $\{\varpi_i\}$ to these differential equations can be obtained by standard techniques, e.g. Frobenius Method.
- This is particularly simple if a MUM point (= total degeneration of indicials) exists:

logarithmic structure reflects the cohomology of the CY

$$\varpi_0 = \text{power series in z}$$

$$\varpi_1 = \varpi_0 \log(z) + \Sigma_1$$

$$\varpi_2 = \frac{1}{2} \varpi_0 \log(z)^2 + \Sigma_1 \log(z) + \Sigma_2$$

$$\vdots$$

- A basis of the solution space $\{\varpi_i\}$ to these differential equations can be obtained by standard techniques, e.g. Frobenius Method.
- This is particularly simple if a **MUM point** (= total degeneration of indicials) exists:

logarithmic structure reflects the cohomology of the CY

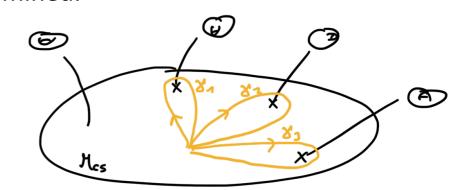
$$\varpi_0$$
 = power series in z
$$\varpi_1 = \varpi_0 \log(z) + \Sigma_1$$

$$\varpi_2 = \frac{1}{2} \varpi_0 \log(z)^2 + \Sigma_1 \log(z) + \Sigma_2$$

$$\vdots$$

• Finally, a **basis change** from $\{\varpi_i\}$ to $\{\Pi_i\}$ (basis over \mathbb{Z}) has to be determined. This change of basis can be found from **monodromy considerations**:

• Analytic continuation around these points corresponds to a monodromy: $\Pi \longmapsto M_{\gamma_i}\Pi$



- A basis of the solution space $\{\varpi_i\}$ to these differential equations can be obtained by standard techniques, e.g. Frobenius Method.
- This is particularly simple if a **MUM point** (= total degeneration of indicials) exists:

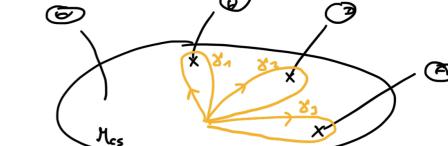
logarithmic structure reflects the cohomology of the CY

$$\varpi_0$$
 = power series in z
$$\varpi_1 = \varpi_0 \log(z) + \Sigma_1$$

$$\varpi_2 = \frac{1}{2} \varpi_0 \log(z)^2 + \Sigma_1 \log(z) + \Sigma_2$$

$$\vdots$$

• Finally, a **basis change** from $\{\varpi_i\}$ to $\{\Pi_i\}$ (basis over \mathbb{Z}) has to be determined. This change of basis can be found from **monodromy considerations**:



- ullet There exist special points in \mathcal{M}_{cs} where the CY gets singular.
- Analytic continuation around these points corresponds to a monodromy: $\Pi \longmapsto M_{\gamma_i}\Pi$
- ullet All monodromies have to respect the intersection pairing Σ between the periods.
 - In a good basis $\{\Pi_i\}$ all monodromies M_{γ_i} have to be "integral", i.e. $M_{\gamma_i} \in \mathcal{O}(\Sigma, \mathbb{Z})$

cf.
$$\begin{pmatrix} K(\lambda) \\ K(1-\lambda) \end{pmatrix} = \begin{pmatrix} \pi/2 & 0 \\ 2\log(2) & -1/2 \end{pmatrix} \begin{pmatrix} \varpi_0(\lambda) \\ \varpi_1(\lambda) \end{pmatrix}$$

Griffiths Transversality

On a CY there exists the phenomenon of Griffiths transversality:

$$\Omega \in H^{n,0}(X)$$

$$\partial_z \Omega \in H^{n,0}(X) \oplus H^{n-1,1}(X)$$

$$\partial_z^2 \Omega \in H^{n,0}(X) \oplus H^{n-1,1}(X) \oplus H^{n-2,2}(X)$$

$$\vdots$$

$$\partial_z^n \Omega \in H^{n,0}(X) \oplus \ldots \oplus H^{0,n}(X)$$

Griffiths Transversality

On a CY there exists the phenomenon of Griffiths transversality:

$$\Omega \in H^{n,0}(X)$$

$$\partial_z \Omega \in H^{n,0}(X) \oplus H^{n-1,1}(X)$$

$$\partial_z^2 \Omega \in H^{n,0}(X) \oplus H^{n-1,1}(X) \oplus H^{n-2,2}(X)$$

$$\vdots$$

$$\partial_z^n \Omega \in H^{n,0}(X) \oplus \ldots \oplus H^{0,n}(X)$$

Consideration of type forbids many integrals:

$$\int_X \Omega \wedge \partial_z^k \Omega = \Pi^T \Sigma \partial_z^k \Pi = \begin{cases} 0, & k < n \\ C_n, & k = n \end{cases}$$

The rational function C_n is called the Yukawa Coupling.

Griffiths Transversality

On a CY there exists the phenomenon of Griffiths transversality:

$$\Omega \in H^{n,0}(X)$$

$$\partial_z \Omega \in H^{n,0}(X) \oplus H^{n-1,1}(X)$$

$$\partial_z^2 \Omega \in H^{n,0}(X) \oplus H^{n-1,1}(X) \oplus H^{n-2,2}(X)$$

$$\vdots$$

$$\partial_z^n \Omega \in H^{n,0}(X) \oplus \ldots \oplus H^{0,n}(X)$$

Consideration of type forbids many integrals:

$$\int_X \Omega \wedge \partial_z^k \Omega = \Pi^T \Sigma \partial_z^k \Pi = \begin{cases} 0, & k < n \\ C_n, & k = n \end{cases}$$

The rational function C_n is called the Yukawa Coupling.

From this we can define a whole matrix of **quadratic relations between the periods**:

$$\mathbf{Z}(z) = \mathbf{W}(z) \Sigma \mathbf{W}(z)^T$$
 with the Wronskian $\mathbf{W}(z)_{i,j} = \left\{ \partial_z^i \varpi_j \right\}$ [2]

For n=1,2 these relations are known:

$$\underline{n=1}$$
 Legendre relations

$$\begin{vmatrix} K(\lambda) & K(1-\lambda) \\ K'(\lambda) & K'(1-\lambda) \end{vmatrix} = -\frac{\pi}{4} \frac{1}{(1-\lambda)\lambda}$$

$$n=2$$
 K3 is a symmetric square

$$\{\varpi_0, \varpi_1, \varpi_2\} = \{f_1^2, f_1 f_2, f_2^2\}$$

$$\mathcal{L}^{(3)} \varpi_i = 0$$

$$\mathcal{L}^{(2)} f_i = 0$$

[Bogner]

Kähler Potential

On a CY there exists a natural real, positiv and monodromy invariant object namely the exponential of the Kähler potential:

$$i^{n^2} \int_X \Omega \wedge \bar{\Omega} = i^{n^2} \Pi^{\dagger} \Sigma \Pi = e^{-K(z,\bar{z})}$$

Monodromy invariance follows from:

$$\Pi^{\dagger} \Sigma \Pi \longrightarrow (M_{\gamma_i} \Pi)^{\dagger} \Sigma M_{\gamma_i} \Pi = \Pi^{\dagger} M_{\gamma_i}^{\dagger} \Sigma M_{\gamma_i} \Pi = \Pi^{\dagger} \Sigma \Pi$$
 if $M_{\gamma_i}^{\dagger} = M_{\gamma_i}^T$

- ullet So if the periods in an integer basis are known the Kähler potential is easily constructed. Σ follows from Griffiths transversality.
 - The hard part is always to construct an integer basis of solutions.

Kähler Potential

On a CY there exists a natural real, positiv and monodromy invariant object namely the exponential of the Kähler potential:

$$i^{n^2} \int_X \Omega \wedge \bar{\Omega} = i^{n^2} \Pi^{\dagger} \Sigma \Pi = e^{-K(z,\bar{z})}$$

Monodromy invariance follows from:

$$\Pi^{\dagger} \Sigma \Pi \longrightarrow (M_{\gamma_i} \Pi)^{\dagger} \Sigma M_{\gamma_i} \Pi = \Pi^{\dagger} M_{\gamma_i}^{\dagger} \Sigma M_{\gamma_i} \Pi = \Pi^{\dagger} \Sigma \Pi$$
 if $M_{\gamma_i}^{\dagger} = M_{\gamma_i}^T$

- ullet So if the periods in an integer basis are known the Kähler potential is easily constructed. Σ follows from Griffiths transversality.
 - The hard part is always to construct an integer basis of solutions.
- This object will be very important in Franziska Porkert's talk!

Only two Hodge numbers for a CY three-fold are undetermined:

• These two Hodge numbers describe the **complex structure** and **Kähler deformations** of a CY:

$$h^{n-1,1} = \dim(\mathcal{M}_{cs})$$

and
$$h^{1,1} = \dim(\mathcal{M}_{\mathrm{Ks}})$$

Only two Hodge numbers for a CY three-fold are undetermined:

These two Hodge numbers describe the complex structure and Kähler deformations of a CY:

$$h^{n-1,1} = \dim(\mathcal{M}_{cs})$$

and
$$h^{1,1} = \dim(\mathcal{M}_{\mathrm{Ks}})$$

Mirror symmetry exchanges these two deformation spaces. This means that CYs come generically in mirror pairs (M, W) such that:

$$h^{n-1,1}(M) = h^{1,1}(W)$$
 and $h^{1,1}(M) = h^{n-1,1}(W)$

$$h^{1,1}(M) = h^{n-1,1}(W)$$

Only two Hodge numbers for a CY three-fold are undetermined:

These two Hodge numbers describe the complex structure and Kähler deformations of a CY:

$$h^{n-1,1} = \dim(\mathcal{M}_{cs})$$

and
$$h^{1,1} = \dim(\mathcal{M}_{\mathrm{Ks}})$$

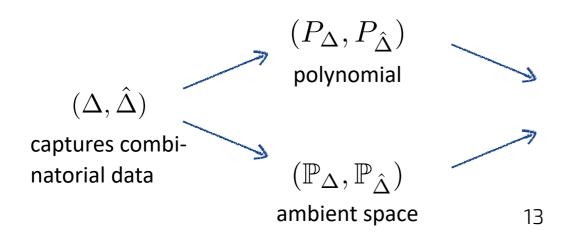
Mirror symmetry exchanges these two deformation spaces. This means that CYs come generically in mirror pairs (M, W) such that:

$$h^{n-1,1}(M) = h^{1,1}(W)$$
 and $h^{1,1}(M) = h^{n-1,1}(W)$

$$h^{1,1}(M) = h^{n-1,1}(W)$$

 \bullet One very general construction of mirror pairs (M,W) is given by **Batyrev's mirror construction**:

[Batyrev] [Batyrev-Borison]



$$(M, W) = (\{P_{\Delta} = 0\} \subset \mathbb{P}_{\hat{\Delta}}, \{P_{\hat{\Delta}} = 0\} \subset \mathbb{P}_{\Delta})$$

What do we learn from Mirror Symmetry?

What do we learn from Mirror Symmetry?

"Some objects are simpler to compute on the mirror CY. Via mirror symmetry one can relate them to the original CY."

What do we learn from Mirror Symmetry?

"Some objects are simpler to compute on the mirror CY. Via mirror symmetry one can relate them to the original CY."

- ullet Via the $\hat{\Gamma}$ -class one can construct an integer basis of periods:
 - ullet On the mirror CY W an integer basis is given asymptotically through a **topological integral**:

$$\Pi_{\mathcal{G}}(t) = \int_{W} e^{\omega t} \hat{\Gamma}(TW) \operatorname{ch}(\mathcal{G}) + \mathcal{O}(e^{-t})$$

 \odot Using the **mirror map** this gives the asymptotics of an integral basis on M:

$$t(z) = rac{arpi_1}{arpi_0}$$
 and $\Pi_{\mathcal{G}}(t(z))$

What do we learn from Mirror Symmetry?

"Some objects are simpler to compute on the mirror CY. Via mirror symmetry one can relate them to the original CY."

- ullet Via the $\hat{\Gamma}$ -class one can construct an integer basis of periods:
 - ullet On the mirror CY W an integer basis is given asymptotically through a **topological integral**:

$$\Pi_{\mathcal{G}}(t) = \int_{W} e^{\omega t} \hat{\Gamma}(TW) \operatorname{ch}(\mathcal{G}) + \mathcal{O}(e^{-t})$$

 \odot Using the **mirror map** this gives the asymptotics of an integral basis on M:

$$t(z) = rac{arpi_1}{arpi_0}$$
 and $\Pi_{\mathcal{G}}(t(z))$

- Mirror symmetry permits an interpretation of the exponential of the Kähler potential as quantum volume of the mirror CY W:
 - ullet The mirror map gives a Kähler form on W:

$$t(z) \longrightarrow \omega_W \coloneqq \operatorname{Im}(t)$$
, $\operatorname{Vol}_{\operatorname{cl}}(W) = \int_W \frac{\omega_W^n}{n!}$

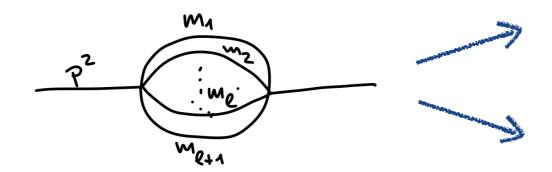
• The exp. of the Kähler potential is the natural positive and monodromy invariant object that has the classical volume as leading term:

$$e^{-K} = i^{n^2} \Pi^{\dagger} \Sigma \Pi = |\Pi_0|^2 \text{Vol}_q(W)$$

 $\sim |\Pi_0|^2 \text{Vol}_{cl}(W)$

One of the simplest families of Feynman integrals:

Banana integrals



Function Space

Which functions show up in banana integrals?



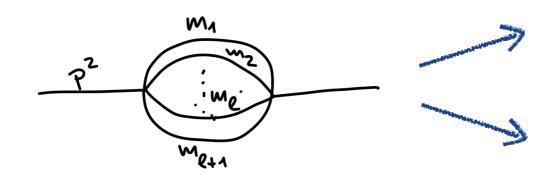
Calabi-Yau

Boundary Conditions

How do we have to combine them?

One of the simplest families of Feynman integrals:

Banana integrals



Function Space

Which functions show up in banana integrals?

Calabi-Yau

Boundary Conditions

How do we have to combine them?

Symanzik approach:

Graph polynomials:

$$\mathcal{U}(\underline{x}) = \left(\prod_{i=1}^{l+1} x_i\right) \left(\sum_{i=1}^{l+1} \frac{1}{x_i}\right)$$

$$\mathcal{F}(p^2, \underline{m}^2; \underline{x}) = \left(-p^2 + \left(\sum_{i=1}^{l+1} \frac{1}{x_i}\right) \left(\sum_{i=1}^{l+1} m_i^2 x_i\right)\right) \left(\prod_{i=1}^{l+1} x_i\right)$$

$$(x_1 : \dots : x_{l+1}) \in \mathbb{P}^l$$

$$I_l(p^2, \underline{m}^2, D) = \int_{\sigma_l} \frac{\mathcal{U}^{l+1-\frac{l+1}{2}D}}{\mathcal{F}^{l+1-\frac{l}{2}D}} \mu_l$$

In **two dimensions** banana integrals are particularly **simple**.

Hypersurface Calabi-Yau

• Using the second Symanzik polynomial we can associate a Calabi-Yau variety to the banana integrals

$$\mathcal{F}(p^2, \underline{m}^2; \underline{x})$$

Newton Polytope

Hypersurface Calabi-Yau

• Using the second Symanzik polynomial we can associate a Calabi-Yau variety to the banana integrals

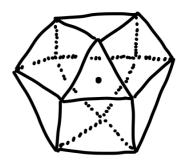
$$\mathcal{F}(p^2,\underline{m}^2;\underline{x})$$

Newton Polytope

[4]

Graph:

Polyhedron:



• From the Batyrev mirror construction we get pairs of Calabi-Yau varieties:

$$M_{l-1} = \{ P_{\Delta_l} = 0 \subset \mathbb{P}_{\Delta_l^*} \}$$

$$W_{l-1} = \{ P_{\Delta_l^*} = 0 \subset \mathbb{P}_{\Delta_l} \}$$

Hypersurface Calabi-Yau

• Using the second Symanzik polynomial we can associate a Calabi-Yau variety to the banana integrals

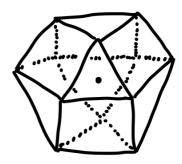
$$\mathcal{F}(p^2, \underline{m}^2; \underline{x})$$

Newton Polytope

[4]

Graph:

Polyhedron:



• From the Batyrev mirror construction we get pairs of Calabi-Yau varieties:

$$M_{l-1} = \{ P_{\Delta_l} = 0 \subset \mathbb{P}_{\Delta_l^{\star}} \}$$

$$W_{l-1} = \{ P_{\Delta_l^*} = 0 \subset \mathbb{P}_{\Delta_l} \}$$

• Unfortunately these CYs have far too many parameters:

Complex moduli:
$$\#(\{z_i\}) = h^{l-2,1} = l^2$$

VS.

Physical parameters: $\#(p^2, \underline{m}^2) - 1 = l + 1$

Compete Intersection CY

• Better Approach is to analyze the "torus period" carefully:

$$I_l^{\max} = \int_{T^l} \frac{1}{\mathcal{F}} \ \mu_l = \dots = (2\pi i)^{l+1} \sum_{n=0}^{\infty} \sum_{|k|=n} \binom{n}{k_1, \dots, k_{l+1}}^2 \prod_{i=1}^{l+1} z_i^{k_i}$$

Compete Intersection CY

Better Approach is to analyze the "torus period" carefully:

$$I_l^{\max} = \int_{T^l} \frac{1}{\mathcal{F}} \ \mu_l = \dots = (2\pi i)^{l+1} \sum_{n=0}^{\infty} \sum_{|k|=n} \binom{n}{k_1, \dots, k_{l+1}}^2 \prod_{i=1}^{l+1} z_i^{k_i}$$

• There exists a nice **complete intersection CY** defined by the following constraints:

[Kerr]

[3]

$$P_{1} = w_{2}^{(1)} \cdots w_{2}^{(l+1)} \left(1 - m_{1}^{2} \frac{w_{1}^{(1)}}{w_{2}^{(1)}} - \dots - m_{l+1}^{2} \frac{w_{1}^{(l+1)}}{w_{2}^{(l+1)}} \right)$$

$$P_{2} = w_{1}^{(1)} \cdots w_{1}^{(l+1)} \left(-p^{2} + \frac{w_{2}^{(1)}}{w_{1}^{(1)}} + \dots + m_{l+1}^{2} \frac{w_{2}^{(l+1)}}{w_{1}^{(l+1)}} \right)$$

$$(w_{1}^{(i)} : w_{2}^{(i)}) \in \mathbb{P}_{(i)}^{1}, \quad M_{l-1}^{\text{CI}} = \left\{ P_{1} = P_{2} = 0 \subset F_{l} \subset \underset{i=1}{\overset{l+1}{\sum}} P_{(i)}^{1} \right\}$$

ullet Correct number of parameters: $z_i = rac{m_i^2}{p^2}$ for $i=1,\ldots,l+1$

Compete Intersection CY

Better Approach is to analyze the "torus period" carefully:

$$I_l^{\max} = \int_{T^l} \frac{1}{\mathcal{F}} \ \mu_l = \dots = (2\pi i)^{l+1} \sum_{n=0}^{\infty} \sum_{|k|=n} \binom{n}{k_1, \dots, k_{l+1}}^2 \prod_{i=1}^{l+1} z_i^{k_i}$$

There exists a nice complete intersection CY defined by the following constraints:

[Kerr]

[3]

$$P_{1} = w_{2}^{(1)} \cdots w_{2}^{(l+1)} \left(1 - m_{1}^{2} \frac{w_{1}^{(1)}}{w_{2}^{(1)}} - \dots - m_{l+1}^{2} \frac{w_{1}^{(l+1)}}{w_{2}^{(l+1)}} \right)$$

$$P_{2} = w_{1}^{(1)} \cdots w_{1}^{(l+1)} \left(-p^{2} + \frac{w_{2}^{(1)}}{w_{1}^{(1)}} + \dots + m_{l+1}^{2} \frac{w_{2}^{(l+1)}}{w_{1}^{(l+1)}} \right)$$

$$(w_{1}^{(i)} : w_{2}^{(i)}) \in \mathbb{P}_{(i)}^{1}, \quad M_{l-1}^{\text{CI}} = \left\{ P_{1} = P_{2} = 0 \subset F_{l} \subset \underset{i=1}{\times} P_{(i)}^{1} \right\}$$

$$i=1$$

- ullet Correct number of parameters: $z_i = rac{m_i^2}{p^2}$ for $i=1,\ldots,l+1$
- \odot The periods follow from a **GKZ system** defined through ℓ -vectors:

Periods of the Calabi-Yau:
$$\Pi_k = \int_{\Gamma_k} \Omega(z)$$
 with $\Gamma_k \in H_{l-1}(M_{l-1})$

$$\mathcal{D}$$
-module: $\mathcal{D}_r \; \Pi_k = 0 \quad \text{for} \; r = 1, \dots, \text{rank}(\{\mathcal{D}\})$

• We have still to deal with simplex integration domain:

[3,4]

$$\partial \sigma_l \neq 0$$

$$\partial \sigma_l \neq 0$$
 which means $\sigma_l \notin H_{l-1}(M_{l-1})$

• We have still to deal with simplex integration domain:

$$\partial \sigma_l \neq 0$$

$$\partial \sigma_l \neq 0$$
 which means $\sigma_l \notin H_{l-1}(M_{l-1})$

Banana integral is in truth a relative Calabi-Yau period integral.

• We have still to deal with simplex integration domain:

$$\partial \sigma_l \neq 0$$
 which means $\sigma_l \notin H_{l-1}(M_{l-1})$

- Banana integral is in truth a **relative Calabi-Yau period integral**.
- We need an extension to include inhomogeneities from boundaries terms:

$$I^{
m max}$$
 introduce boundary on integration domain

Inhomogeneous diff. eqs.: $\mathcal{D}_r I(\underline{z}) = q_r(\underline{z}, \log(\underline{z}))$

• We have still to deal with simplex integration domain:

$$\partial \sigma_l \neq 0$$
 which means $\sigma_l \notin H_{l-1}(M_{l-1})$

- Banana integral is in truth a relative Calabi-Yau period integral.
- We need an extension to include inhomogeneities from boundaries terms:

$$I^{
m max}$$
 introduce boundary on integration domain

- Inhomogeneous diff. eqs.: $\mathcal{D}_r I(\underline{z}) = q_r(\underline{z}, \log(\underline{z}))$
- Full Feynman integral is linear combination of basis solutions $\{\varpi_i\}$ which are the **Calabi-Yau** periods plus additional special solutions of the inhomogeneous \mathcal{D} -module:

$$I(\underline{z}) = \sum_{i} \lambda_{i} \ \varpi_{i}(\underline{z})$$

• We have still to deal with simplex integration domain:

$$\partial \sigma_l \neq 0$$
 which means $\sigma_l \notin H_{l-1}(M_{l-1})$

- Banana integral is in truth a relative Calabi-Yau period integral.
- We need an extension to include inhomogeneities from boundaries terms:

$$I^{
m max}$$
 introduce boundary on integration domain

- Inhomogeneous diff. eqs.: $\mathcal{D}_r I(\underline{z}) = q_r(\underline{z}, \log(\underline{z}))$
- Full Feynman integral is linear combination of basis solutions $\{\varpi_i\}$ which are the **Calabi-Yau** periods plus additional special solutions of the inhomogeneous \mathcal{D} -module:

$$I(\underline{z}) = \sum_{i} \lambda_i \ \varpi_i(\underline{z})$$

For simplicity we now consider the one-parameter equal-mass case.

• The additional special solution can be interpreted as iterated Calabi-Yau period:

$$\mathcal{L}_l I_l(z) = -(l+1)!z$$

Using variation of parameters/constants we find:

ation of parameters/constants we find:
$$I_l(z) \sim \underline{\Pi}_l(z)^T \int_0^z \mathrm{d}z' \, \mathbf{W}_l(z\prime)^{-1} \, \underline{\mathrm{Inhom}}_l(z')$$

$$\sim \underline{\Pi}_l(z)^T \mathbf{\Sigma}_l \int_0^z \frac{\mathrm{d}z'}{z'^2} \, \underline{\Pi}_l(z')$$

use **quadratic relations** from Griffiths transversality

The additional special solution can be interpreted as iterated Calabi-Yau period:

$$\mathcal{L}_l I_l(z) = -(l+1)!z$$

Using variation of parameters/constants we find:

[2]

$$I_l(z) \sim \underline{\Pi}_l(z)^T \int_0^z \mathrm{d}z' \, \mathbf{W}_l(z')^{-1} \, \underline{\mathrm{Inhom}}_l(z')$$
 use **quadratic relations** from Griffiths transversality $\sim \underline{\Pi}_l(z)^T \mathbf{\Sigma}_l \int_0^z \frac{\mathrm{d}z'}{z'^2} \, \underline{\Pi}_l(z')$

Function space iterated CY period integrals integrals of M_{l-1}

Iterated CY period integrals as generalization of elliptic polylogarithms?

The additional special solution can be interpreted as iterated Calabi-Yau period:

$$\mathcal{L}_l I_l(z) = -(l+1)!z$$

Using variation of parameters/constants we find:

[2]

ation of parameters/constants we find:
$$I_l(z) \sim \underline{\Pi}_l(z)^T \int_0^z \mathrm{d}z' \, \mathbf{W}_l(z\prime)^{-1} \, \underline{\mathrm{Inhom}}_l(z') \qquad \qquad \text{use } \mathbf{quadratic relations} \\ \sim \underline{\Pi}_l(z)^T \mathbf{\Sigma}_l \int_0^z \frac{\mathrm{d}z'}{z'^2} \, \underline{\Pi}_l(z') \qquad \qquad \text{from Griffiths transversality}$$

iterated CY period **Function space** integrals of M_{l-1} banana integrals

Iterated CY period integrals as generalization of elliptic polylogarithms?

The coefficients λ_i follow from the $\hat{\Gamma}$ -class:

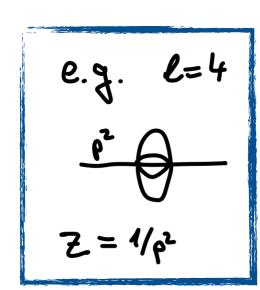
[Iritani]

$$\operatorname{Im}(\lambda): \operatorname{Im}(I(T)) = \int_{W_{l-1}} e^{\omega T} \widehat{\Gamma}(TW_{l-1}) + \mathcal{O}(e^T)$$

$$\operatorname{Re}(\lambda): \operatorname{Re}(I(T)) = \int_{F_l} e^{\omega T} \frac{\Gamma(1-c_1)}{\Gamma(1+c_1)} \cos(\pi c_1) + \mathcal{O}(e^T)$$

Analytic Structure of the Banana Integrals

Equal Mass Case:



1) PF equation:

$$\mathcal{L}_4 = 1 - 5z + (-4 + 28z)\theta + (6 - 63z + 26z^2 - 225z^3)\theta^2 + (-4 + 70z - 450z^3)\theta^3 \\ + (1 - z)(1 - 9z)(1 - 25z)\theta^4 \\ \mathcal{L}_4I_4(z) = -5!z$$
 [Almquist, Enckefort, van Straten and Zudilin]

2) Frobenius basis:

$$\varpi_k = \sum_{j=0}^k \binom{k}{j} \log(z)^j \, \Sigma_{k-j} \quad \text{for } k = 1, \dots, 4-1$$

$$\varpi_l = (-1)^{l+1} (l+1) \sum_{j=0}^l \binom{l}{j} \log(z)^j \, \Sigma_{l-j}$$

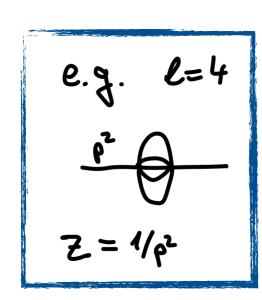
$$\varpi_0 = z + 5z^2 + 45z^3 + 545z^4 + 7885z^5 + \cdots
\Sigma_1 = 8z^2 + 100z^3 + \frac{4148}{3}z^4 + \frac{64 \cdot 198}{3}z^5 + \cdots
\Sigma_2 = 2z^2 + \frac{197}{2}z^3 + \frac{33 \cdot 637}{18}z^4 + \frac{2 \cdot 402 \cdot 477}{72}z^5 + \cdots
\Sigma_3 = -12z^2 - \frac{267}{2}z^3 - \frac{19 \cdot 295}{18}z^4 - \frac{933 \cdot 155}{144}z^5 + \cdots
\Sigma_4 = 1830z^3 + \frac{112 \cdot 720}{3}z^4 + \frac{47 \cdot 200 \cdot 115}{72}z^5 + \cdots$$

3) Linear combination from $\hat{\Gamma}$ -conjecture:

$$I_4(z) = (-450\zeta(4) - 80\zeta(3)i\pi)\varpi_0 + (80\zeta(3) - 120\zeta(2)i\pi)\varpi_1 + 180\zeta(2)\varpi_2 + 20i\pi\varpi_3 + \varpi_4$$

Analytic Structure of the Banana Integrals

Equal Mass Case:



1) PF equation:

$$\mathcal{L}_4 = 1 - 5z + (-4 + 28z)\theta + (6 - 63z + 26z^2 - 225z^3)\theta^2 + (-4 + 70z - 450z^3)\theta^3 \\ + (1 - z)(1 - 9z)(1 - 25z)\theta^4 \\ \mathcal{L}_4I_4(z) = -5!z$$
 [Almquist, Enckefort, van Straten and Zudilin]

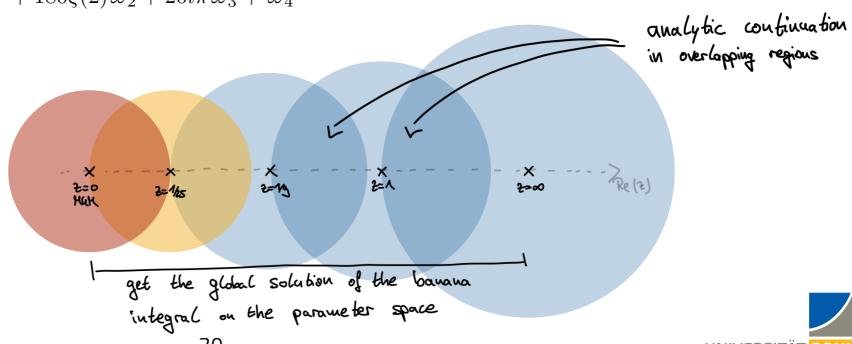
Frobenius basis:

$$\varpi_k = \sum_{j=0}^k \binom{k}{j} \log(z)^j \, \Sigma_{k-j} \quad \text{for } k = 1, \dots, 4-1$$
$$\varpi_l = (-1)^{l+1} (l+1) \sum_{j=0}^l \binom{l}{j} \log(z)^j \, \Sigma_{l-j}$$

$$\varpi_0 = z + 5z^2 + 45z^3 + 545z^4 + 7885z^5 + \cdots
\Sigma_1 = 8z^2 + 100z^3 + \frac{4148}{3}z^4 + \frac{64 \cdot 198}{3}z^5 + \cdots
\Sigma_2 = 2z^2 + \frac{197}{2}z^3 + \frac{33 \cdot 637}{18}z^4 + \frac{2 \cdot 402 \cdot 477}{72}z^5 + \cdots
\Sigma_3 = -12z^2 - \frac{267}{2}z^3 - \frac{19 \cdot 295}{18}z^4 - \frac{933 \cdot 155}{144}z^5 + \cdots
\Sigma_4 = 1830z^3 + \frac{112 \cdot 720}{3}z^4 + \frac{47 \cdot 200 \cdot 115}{72}z^5 + \cdots$$

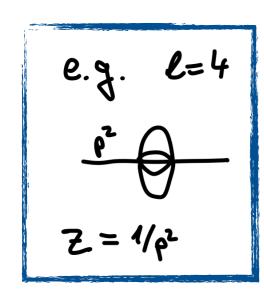
- Linear combination from $\hat{\Gamma}$ -conjecture:
- Analytic structure:

$$I_4(z) = (-450\zeta(4) - 80\zeta(3)i\pi)\varpi_0 + (80\zeta(3) - 120\zeta(2)i\pi)\varpi_1 + 180\zeta(2)\varpi_2 + 20i\pi\varpi_3 + \varpi_4$$



Analytic Structure of the Banana Integrals

Equal Mass Case:



1) PF equation:

$$\mathcal{L}_4 = 1 - 5z + (-4 + 28z)\theta + (6 - 63z + 26z^2 - 225z^3)\theta^2 + (-4 + 70z - 450z^3)\theta^3 \\ + (1 - z)(1 - 9z)(1 - 25z)\theta^4 \\ \mathcal{L}_4I_4(z) = -5!z$$
 AESZ 34 [Almquist, Enckefort, van Straten and Zudilin]

2) Frobenius basis:

$$\varpi_k = \sum_{j=0}^k \binom{k}{j} \log(z)^j \, \Sigma_{k-j} \quad \text{for } k = 1, \dots, 4-1$$

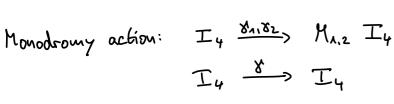
$$\varpi_l = (-1)^{l+1} (l+1) \sum_{j=0}^l \binom{l}{j} \log(z)^j \, \Sigma_{l-j}$$

$$\varpi_0 = z + 5z^2 + 45z^3 + 545z^4 + 7885z^5 + \cdots
\Sigma_1 = 8z^2 + 100z^3 + \frac{4148}{3}z^4 + \frac{64}{3}z^5 + \cdots
\Sigma_2 = 2z^2 + \frac{197}{2}z^3 + \frac{33}{18}\frac{637}{2}z^4 + \frac{2}{72}\frac{402}{72}z^5 + \cdots
\Sigma_3 = -12z^2 - \frac{267}{2}z^3 - \frac{19}{18}\frac{295}{2}z^4 - \frac{933}{144}z^5 + \cdots
\Sigma_4 = 1830z^3 + \frac{112}{3}\frac{720}{2}z^4 + \frac{47}{72}\frac{200}{2}\frac{115}{2}z^5 + \cdots$$

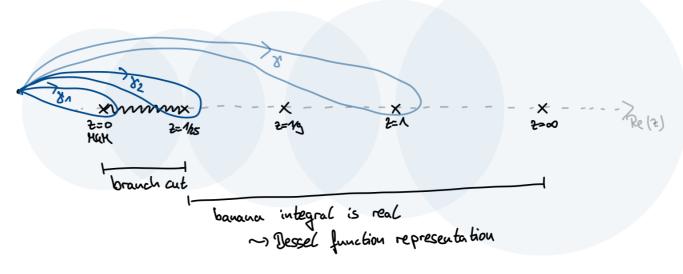
3) Linear combination from $\hat{\Gamma}$ -conjecture:

$$I_4(z) = (-450\zeta(4) - 80\zeta(3)i\pi)\varpi_0 + (80\zeta(3) - 120\zeta(2)i\pi)\varpi_1 + 180\zeta(2)\varpi_2 + 20i\pi\varpi_3 + \varpi_4$$

4) Analytic structure:



as predicted by the optical theorem



The Ice Cone Family

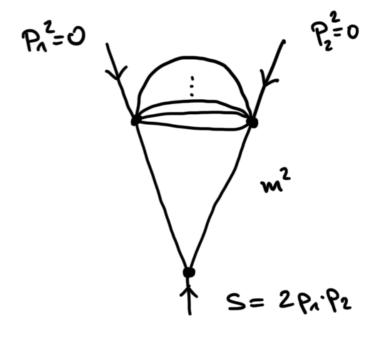
 Consider the following one-parameter family of ice cone graphs in two dimensions:

external parameters: p_1 and p_2 with $p_1^2 = p_2^2 = 0$

so we have only $s=2p_1\cdot p_2$

internal masses: all equal to m

In truth, only **one parameter** given by the ratio s/m^2 .



The Ice Cone Family

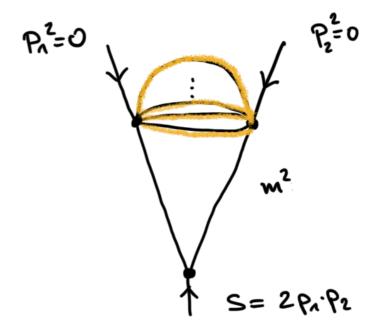
 Consider the following one-parameter family of ice cone graphs in two dimensions:

external parameters: p_1 and p_2 with $p_1^2 = p_2^2 = 0$

so we have only $s=2p_1\cdot p_2$

internal masses: all equal to m

 $lacksymbol{\longrightarrow}$ In truth, only **one parameter** given by the ratio s/m^2 .



- Naively, we expect that the banana integrals play a prominent role for ice cone integrals since they explicitly appear in their diagrams.
 - How is the function space for ice cone integrals related to the banana function space?

The Ice Cone Family

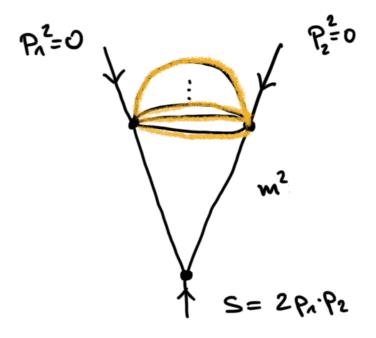
 Consider the following one-parameter family of ice cone graphs in two dimensions:

external parameters: p_1 and p_2 with $p_1^2 = p_2^2 = 0$

so we have only $s=2p_1\cdot p_2$

internal masses: all equal to m

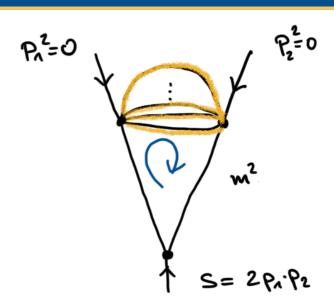
In truth, only **one parameter** given by the ratio s/m^2 .



- Naively, we expect that the banana integrals play a prominent role for ice cone integrals since they explicitly appear in their diagrams.
 - How is the function space for ice cone integrals related to the banana function space?
- Our strategy to compute ice cone integrals has three steps:
 - i) Find a good basis of master integrals such that the GM connection is simple.
 - ii) Solve the GM differential equation in terms of banana integrals.
 - iii) Use monodromy considerations to obtain the correct linear combination.

• Consider the following representation of the ice cone:

$$I_{\text{ice}}^{(l)} = \int \frac{\mathrm{d}^d k}{(k^2 - m^2)((k + p_1 + p_2)^2 - m^2)} I_{\text{ban}}^{(l-1)}((k + p_2)^2)$$

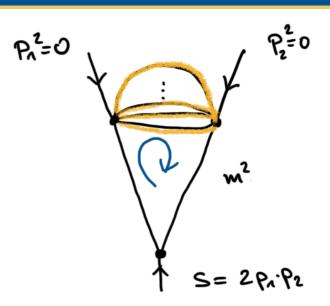


• Consider the following representation of the ice cone:

$$I_{\text{ice}}^{(l)} = \int \frac{\mathrm{d}^d k}{(k^2 - m^2)((k + p_1 + p_2)^2 - m^2)} I_{\text{ban}}^{(l-1)}((k + p_2)^2)$$

First, we analyze the maximal cuts in two dimensions. We consider the Baikov representation:

$$I_{\text{ice, cut}}^{(l)} = \int_{\text{cut in } u} \frac{x \, du}{(x+u)(1+xu)} I_{\text{ban,cut}}^{(l-1)}(u)$$



$$\frac{s}{m^2} = \frac{(1+x)^2}{x}$$

Landau variable

• Consider the following representation of the ice cone:

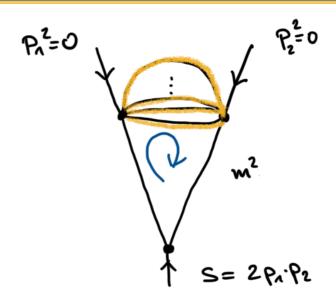
$$I_{\text{ice}}^{(l)} = \int \frac{\mathrm{d}^d k}{(k^2 - m^2)((k + p_1 + p_2)^2 - m^2)} I_{\text{ban}}^{(l-1)}((k + p_2)^2)$$

First, we analyze the maximal cuts in two dimensions. We consider the Baikov representation:

$$I_{\text{ice, cut}}^{(l)} = \int_{\text{cut in } u} \frac{x \, du}{(x+u)(1+xu)} I_{\text{ban,cut}}^{(l-1)}(u)$$

have two choose two different residues

CY periods



$$\frac{s}{m^2} = \frac{(1+x)^2}{x}$$

Landau variable

• Consider the following representation of the ice cone:

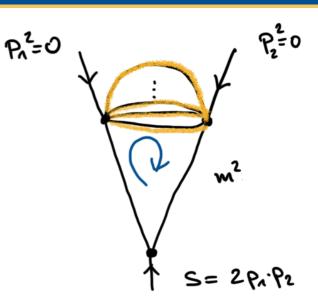
$$I_{\text{ice}}^{(l)} = \int \frac{\mathrm{d}^d k}{(k^2 - m^2)((k + p_1 + p_2)^2 - m^2)} I_{\text{ban}}^{(l-1)}((k + p_2)^2)$$

First, we analyze the maximal cuts in two dimensions. We consider the Baikov representation:

$$I_{\text{ice, cut}}^{(l)} = \int_{\text{cut in } u} \frac{x \, du}{(x+u)(1+xu)} I_{\text{ban,cut}}^{(l-1)}(u)$$

have two choose two different residues

CY periods



$$\frac{s}{m^2} = \frac{(1+x)^2}{x}$$

Landau variable

We see now that two copies of the cut banana integrals appear in the cuts of ice cone:

$$\left\{I_{\mathrm{ban, \, cut}}^{(l)}(-x), I_{\mathrm{ban, \, cut}}^{(l)}(-1/x)\right\} \subset \left\{I_{\mathrm{ice, \, cut}}^{(l)}\right\}$$

• Consider the following representation of the ice cone:

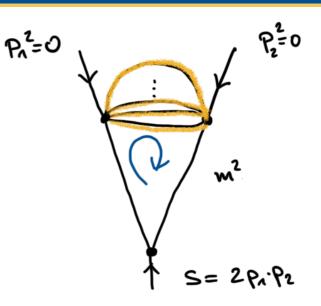
$$I_{\text{ice}}^{(l)} = \int \frac{\mathrm{d}^d k}{(k^2 - m^2)((k + p_1 + p_2)^2 - m^2)} I_{\text{ban}}^{(l-1)}((k + p_2)^2)$$

First, we analyze the maximal cuts in two dimensions. We consider the Baikov representation:

$$I_{\text{ice, cut}}^{(l)} = \int_{\text{cut, in } u} \frac{x \, du}{(x+u)(1+xu)} I_{\text{ban,cut}}^{(l-1)}(u)$$

have two choose two different residues

CY periods



$$\frac{s}{m^2} = \frac{(1+x)^2}{x}$$

Landau variable

We see now that two copies of the cut banana integrals appear in the cuts of ice cone:

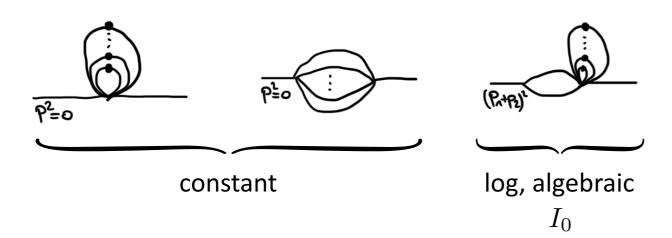
$$\left\{I_{\mathrm{ban,\;cut}}^{(l)}(-x),I_{\mathrm{ban,\;cut}}^{(l)}(-1/x)\right\}\subset\left\{I_{\mathrm{ice,\;cut}}^{(l)}\right\}$$

A good basis of master integrals is now obtained if these two residues really decouple.

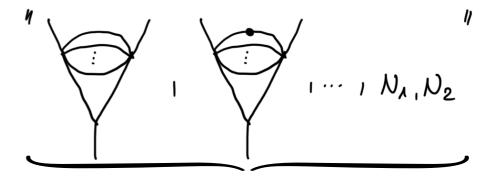
Master Integrals and Gauss-Manin Connection

• We found that a good basis is given by:

trivial master integrals:



non-trivial master integrals:

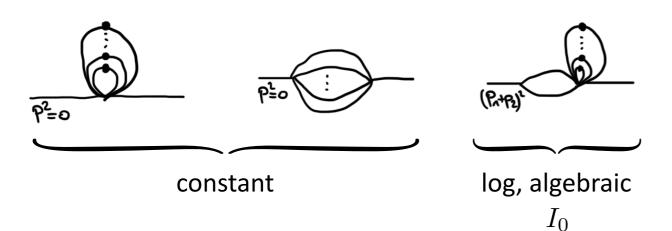


2l-1 transcendental master integrals

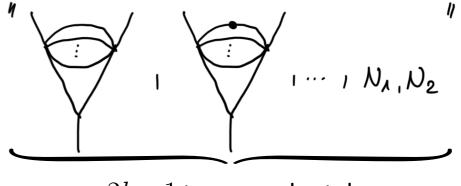
Master Integrals and Gauss-Manin Connection

• We found that a good basis is given by:

trivial master integrals:



non-trivial master integrals:



2l-1 transcendental master integrals

• After a simple rotation in the space of non-trivial master integrals the GM connection for these integrals splits into three pieces:

$$d\begin{pmatrix} I_1 \\ \vdots \\ I_{l-1} \end{pmatrix} = GM_{ban}^{(l-1)}(-x)\begin{pmatrix} I_1 \\ \vdots \\ I_{l-1} \end{pmatrix} + \begin{pmatrix} 0 \\ \vdots \\ \alpha(x)I_0 \end{pmatrix} ,$$

$$d\begin{pmatrix} I_l \\ \vdots \\ I_{2(l-1)} \end{pmatrix} = GM_{ban}^{(l-1)}(-1/x) \begin{pmatrix} I_l \\ \vdots \\ I_{2(l-1)} \end{pmatrix} + \begin{pmatrix} 0 \\ \vdots \\ \beta(x)I_0 \end{pmatrix}$$

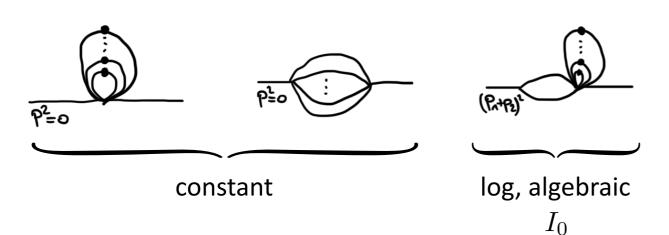
$$I_{2l-1} = \gamma(x)I_1 + \delta(x)I_l$$

$$\alpha(x), \beta(x), \gamma(x), \delta(x)$$
 are rational functions known for any loop order.

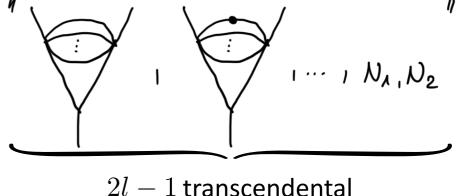
Master Integrals and Gauss-Manin Connection

• We found that a good basis is given by:

trivial master integrals:



non-trivial master integrals:



2l-1 transcendenta master integrals

• After a simple rotation in the space of non-trivial master integrals the GM connection for these integrals splits into three pieces:

$$d\begin{pmatrix} I_1 \\ \vdots \\ I_{l-1} \end{pmatrix} = GM_{ban}^{(l-1)}(-x) \begin{pmatrix} I_1 \\ \vdots \\ I_{l-1} \end{pmatrix} + \begin{pmatrix} 0 \\ \vdots \\ \alpha(x)I_0 \end{pmatrix} ,$$

$$d\begin{pmatrix} I_l \\ \vdots \\ I_{2(l-1)} \end{pmatrix} = GM_{ban}^{(l-1)}(-1/x) \begin{pmatrix} I_l \\ \vdots \\ I_{2(l-1)} \end{pmatrix} + \begin{pmatrix} 0 \\ \vdots \\ \beta(x)I_0 \end{pmatrix}$$

$$I_{2l-1} = \gamma(x)I_1 + \delta(x)I_l$$

$$\alpha(x), \beta(x), \gamma(x), \delta(x)$$
 are rational functions known for any loop order.

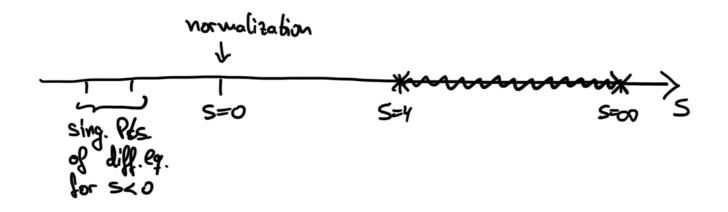
The function space of ice cone integrals is given by one-fold iterated CY period integrals.

Linear Combination and Monodromy

- We still have to combine these function to obtain the ice cone integral.
- For s=0 the ice cone integrals get proportional to the banana integral:

$$I_{\mathrm{ice}}^{(l)}(0) = -\frac{1}{l+1}I_{\mathrm{ban}}^{(l)}(0)$$
 normalization

The ice cone integrals have a branch cut from s=4 until infinity:

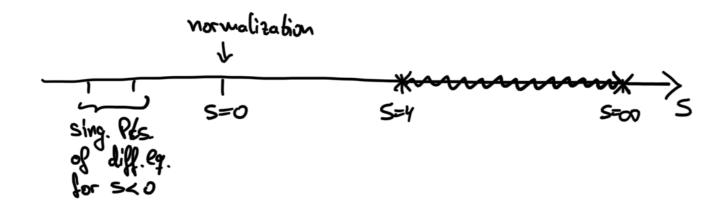


Linear Combination and Monodromy

- We still have to combine these function to obtain the ice cone integral.
- For s=0 the ice cone integrals get proportional to the banana integral:

$$I_{\text{ice}}^{(l)}(0) = -\frac{1}{l+1}I_{\text{ban}}^{(l)}(0)$$
 normalization

ullet The ice cone integrals have a branch cut from s=4 until infinity:



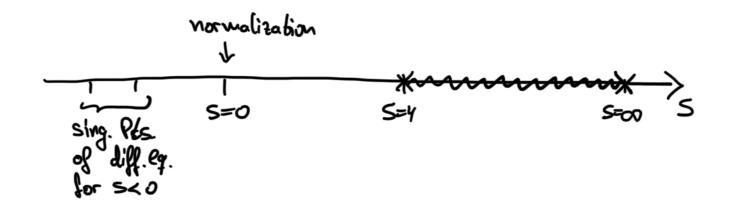
Using the **monodromy properties** of the iterated CY periods and the **normalization** we could fix the linear combination.

Linear Combination and Monodromy

- We still have to combine these function to obtain the ice cone integral.
- For s=0 the ice cone integrals get proportional to the banana integral:

$$I_{\text{ice}}^{(l)}(0) = -\frac{1}{l+1}I_{\text{ban}}^{(l)}(0)$$
 normalization

ullet The ice cone integrals have a branch cut from s=4 until infinity:



Using the **monodromy properties** of the iterated CY periods and the **normalization** we could fix the linear combination.

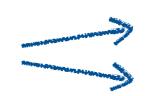
• We could even construct a basis of solutions such that all monodromies are integral. The ice cone integral itself was a member of this basis. The intersection form in this basis was the one related to the banana integrals inside the ice cone.

What is the meaning/interpretation of such an integral basis?

Conclusions

- Unterstanding CY geometries is essential for understanding higher loop Feynman integrals.
- Many concepts from the world of CYs have a direct interpretation and profit for (some) Feynman integrals:

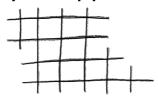
• CY geometries give a function space and simultaneously boundary conditions for Feynman integrals:



Iterated CY period integrals

Monodromy properties

So far CY techniques could successfully be applied on three different families of Feynman graphs:



Conclusions

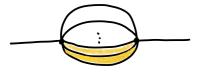
- Unterstanding CY geometries is essential for understanding higher loop Feynman integrals.
- Many concepts from the world of CYs have a direct interpretation and profit for (some) Feynman integrals:

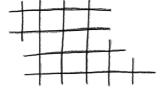
 CY geometries give a function space and simultaneously boundary conditions for Feynman integrals:

Iterated CY period integrals

Monodromy properties

So far CY techniques could successfully be applied on three different families of Feynman graphs:





Further Questions:

- How useful is the function space of iterated CY period integrals for Feynman integrals?
 What is a proper definition of it?
- Which other graphs can be solved using CY techniques? What is the best starting point?

Thank you for your attention

