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DISCLAIMER

Try and set the stage of the many interesting developments of the last year(s)

Just my personal account, clearly biassed by having been educated as (and being still)
a particle physicist...



FEYNMAN INTEGRALS IN QUANTUM FIELD THEORY
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Feynman integrals are essential ingredients for physical predictions in QFT

Building blocks for
Scattering Amplitudes é{((
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FROM AMPLITUDES TO INTEGRALS
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FROM AMPLITUDES TO INTEGRALS
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Tensor integrals
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FROM AMPLITUDES TO INTEGRALS

P

Tensor integrals Scalar Feynman Integrals
tensor decomposition
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SCALAR FEYNMAN INTEGRALS

From tensor reduction, huge number of scalar integrals (gg — gg @ 3 loops ~ 107 integrals!)
Standard Approach: divide et impera
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Integration by parts identities — master integrals

EE— i — [Chetyrkin, Tkachov ’81] & many others: most
— recently finite fields,

/ \ intersection theory etc
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Very complicated rational
functions, hundreds of
MBs for complicated
processes:

Algebraic Complexity



SCALAR FEYNMAN INTEGRALS

From tensor reduction, huge number of scalar integrals (gg — gg @ 3 loops ~ 107 integrals!)

Standard Approach: divide et impera

Coefficients (process-
dependent)

Very complicated rational
functions, hundreds of
MBs for complicated
processes:

Algebraic Complexity

Process-independent building
blocks: Master Integrals

Involved special
functions with
complicated mathematical
properties:

Analytic complexity



MASTER INTEGRALS: anaumic compreximy
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MASTER INTEGRALS: anaumic compLexiry

/OO ds’ 1
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Branch-cut structure dictated by causality & unitarity — multivalued functions!



ANALYTIC CALCULATIONS

Highly non-trivial job to make general statements on analyticity properties of the S-matrix

- effort in the ‘60s to use analyticity properties to make non-perturbative statements:

Landau Equations, Unitarity cuts,
Dispersion relations etc

- techniques saw resurgence in the past decades, applied to perturbative calculations!

“New” technique: differential equations
inspired by these investigations!

Goal: compute Feynman (master) integrals analytically



WHAT DOES IT MEAN TO BE ANALYTIC?
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In which sense do we call this an analytic result?




WHAT DOES IT MEAN TO BE ANALYTIC?

1 | Vs — 4m?2 + V'S
~ n
\/8(s — 4m?) Vs —4m? — /s
In which sense do we call this an analytic result? — -




WHAT DOES IT MEAN TO BE ANALYTIC?

oA~ T (FE 4”””“>
\/8(s — 4m?) Vs —4m?2 — /s

In which sense do we call this an analytic result?

B




WHAT DOES IT MEAN TO BE ANALYTIC?




WHAT DOES IT MEAN TO BE ANALYTIC?




WHY IS THIS USEFUL?

One might wonder why this is useful... from the practical point of view of the practitioner particle
physicist, what we need at the end of a day is a number (a “cross section’)

In fact, there are many very powerful (semi-) numerical methods that have been developed

1. Sector decomposition
2. Numerical sol of diff. equations

3. etc etc



WHY IS THIS USEFUL?

One might wonder why this is useful... from the practical point of view of the practitioner particle
physicist, what we need at the end of a day is a number (a “cross section’)

In fact, there are many very powerful (semi-) numerical methods that have been developed

1. Sector decomposition
2. Numerical sol of diff. equations

3. etc etc

We analytic people like to claim, analytic calculations give you that, and much more...

of course, a chance to obtain more control over (numerical!) cancellations, and therefore precision
and speed

more importantly (from my point of view), we get a glimpse at more general properties of
amplitudes and get a chance to consider the question: “what structures appear in pQFT?”

A general statement, can help up to compute amplitudes

( possibly even “without computing them” —> Bootstrap... etc)



WHERE IT ALL BEGAN: THE “DiscoveRY oF SPECIAL FUNCTIONS IN PARTICLE PHYSICS”

The “most famous calculation” in pQFT: the g-2 of the electron

20 =0 (2) ran(®) +en() ve) van(2) v
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The “most famous calculation” in pQFT: the g-2 of the electron

20 =0 (2) ran(®) +en() ve) van(2) v

s (s s

O, = A = +0.50000000...
Cy = AAA = —(0.328478965...

Oy = QA\A — 1+1.181241456...

O, — = —1.912245764...

lots of Feynman diagrams }
Cs = = +6.737(159)

Impressive numerical
calculations by Kinoshita et al



WHERE IT ALL BEGAN: THE “DiscoveRY oF SPECIAL FUNCTIONS IN PARTICLE PHYSICS”

The “most famous calculation” in pQFT: the g-2 of the electron

20 =0 (2) ran(®) +en() ve) van(2) v

s (s s

Ci = A = +0.50000000...
Cy = AAA = —(0.328478965...

Cs = QAA = +1.181241456...

0, — = —1.912245764...
As numbers, they don’t say much
(except that the perturbative series seems to

Cs = = +6.737(159) converge nicely once multiplied by 1/137 :-))

lots of Feynman diagrams



WHERE IT ALL BEGAN: THE “DiscoveRY oF SPECIAL FUNCTIONS IN PARTICLE PHYSICS”

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

The “most famous calculation” in pQFT: the g-2 of the electron

20 =0 (2) ran(®) +en() ve) van(2) v

s s

Ch = _ 1 ,
2 [Schwinger *48]

197 1 1 3
CyH = — =4 22 Z221p94 2 [Petermann, Sommerfield ’57]
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[Laporta, Remiddi ’97]

But if we look at analytic results, some sort of pattern seems to emerge:

rational numbers, Riemann zeta values, ..., in general multiple polylogarithms evaluated at special (rational) points



SPECIAL FUNCTIONS IN PARTICLE PHYSICS: mutmipLe porvLocariaMs

The physicists approach (most of the times :-)): from specific to general

g-2 @ 3 loops one of many calculations in pQFT exhibiting clear iterated patterns
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The physicists approach (most of the times :-)): from specific to general

g-2 @ 3 loops one of many calculations in pQFT exhibiting clear iterated patterns

Harmonic Sums Harmonic Polylogarithms
n 1 ' ,
Smjiegp() = Z Z-_th---,jp(z) H(my; / dr’ f(a;x") H(my,_1;2")
i=1
1 w
H(Oy: z) = aln x
In(1
[ wt ) nli+e)
1
0; = —
o 7 7 fosm) = =,
3 2 1
= —g6t — 3G In(2) + G In%(2) — o6 f(lz) = —
2 . 1
—|—41n( ) L14(1/2)—|——1n ( )+4L15 (1/2) _1. — )
15 f( 333) 1+
[Vermaseren ’98; Bliimlein et al ’98 ...] [Remiddi, Vermaseren *99]

Technology developed to perform integrals in g-2, deep inelastic scattering, Drell Yan integrals etc



SPECIAL FUNCTIONS IN PARTICLE PHYSICS: mutmipLe porvLocariaMs

HPLs and Harmonic Sums found immediate applications in numerous problems in particle physics

The natural instinct for generalisation lead physicists to (re-)discover multiple polylogarithms
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HPLs and Harmonic Sums found immediate applications in numerous problems in particle physics

The natural instinct for generalisation lead physicists to (re-)discover multiple polylogarithms

Toodt
G(c1,C2, ..., Cn, ) z/ .
0o 1 —¢C

/f’f dt, /tl dt; /tn—l dt
0 tl—Cl 0 tQ—Cgm 0 tn—Cn

To study their algebraic and analytic properties, and use them to devise algorithms for their
numerical evaluation [Vollinga, Weinzierl *04]

G(co,y .y Cpyty)

Connection to “pure math”: properties of multiple polylogarithms can be derived starting from

their Hopf Algebr a - The symbol map [Goncharov, Spradlin, Volovich ’10; Duhr, Gangl, Rhodes ’11]

Coaction and coproduct [Duhr ’12]
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HPLs and Harmonic Sums found immediate applications in numerous problems in particle physics

The natural instinct for generalisation lead physicists to (re-)discover multiple polylogarithms

Toodt
G(c1,C2, ..., Cn, ) z/ !
0o t1—C1

/f’f dt, /tl dt; /tn—l dt
0 tl—Cl 0 tQ—Cgm 0 tn—Cn

To study their algebraic and analytic properties, and use them to devise algorithms for their
numerical evaluation [Vollinga, Weinzierl *04]

G(co,y .y Cpyty)

Connection to “pure math”: properties of multiple polylogarithms can be derived starting from

their Hopf Algebr a - The symbol map [Goncharov, Spradlin, Volovich ’10; Duhr, Gangl, Rhodes ’11]

Coaction and coproduct [Duhr ’12]

This was only the beginning ... just discovering the entrance of the rabbit hole!



HYPERLOGARITHMS: RarionaL FUNCTIONS ON THE RIEMANN SPHERE

In fact, multiply polylogarithms had been known for more than a century already to mathematicians

1840 E.E. Kummer, Uber die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen
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In fact, multiply polylogarithms had been known for more than a century already to mathematicians

1840 E.E. Kummer, Uber die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen

l

Modern point of view: Iterated integrations of rational functions on the Riemann sphere (genus 0)

Point “at co”

P(z) =apz"+..+1
Q(z) =bpzm+...+1

Origin “0”
A rational function has no branch cuts

But it has poles



HYPERLOGARITHMS: RarionaL FUNCTIONS ON THE RIEMANN SPHERE

Given any rational function R(x), by factorising poles and partial fractioning we get

/de(x):/dx%w{/dxx" | /(x‘jxc)k}

/ dex 1 1 L
(x—c)f  k—1(x—c)k1"’

d .
/dm = log (x — ¢) P 7{ C = om
Ye

T — C xr — C

Residue non zero — multivalued function

Modern point of view: the algebra generated by MPLs on the field of rational functions with a set
of singularities on the Riemann sphere is closed under differentiation and integration

[Goncharov; Brown; ...]



ONE STEP FURTHER: THE SuNRiSE INTEGRAL AND THE “ELLIPTIC WORLD"

Realising profound connection with old and new mathematics very appealing “conceptually”

How useful could this be to go beyond?
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Electron self-energy in QED @ 2 loops [first computation attempted in 1961 by A. Sabry]
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ONE STEP FURTHER: HE SuNRisE INTEGRAL AND THE “ELLIPTIC WORLD"

Electron self-energy in QED @ 2 loops [first computation attempted in 1961 by A. Sabry]

R

/\ B 1 K 16m>+/s
. (=ifirer)

\ N (3m — V/s)(Vs +m)?

v (Bm = /s5)(V/s +m)
It’s imaginary part “contains” an elliptic integral -




ONE STEP FURTHER: e sunrise INTEGRAL AND THE “ELLIPTIC WORLD"

Some history and early attempts to understand the sunrise

1961 1990 1995 2005 2009

| | |

Laporta, Remiddi
(differential equations)

Sabry Broadhurst
(dispersion relations)
Pozzorini, Remiddi

(numerical diff equations)

\ 4
Bauberger, Berends, Bohm, Buza

Bauberger, Bohm

(one-fold integral representation,
hypergeometric and Lauricella functions) v

Caffo, Czyz, Gunia, Remiddi

(numerical diff equations different masses)

From a practical point of view, the problem of calculating the sunrise graph was “solved”



ONE STEP FURTHER: e sunrise INTEGRAL AND THE “ELLIPTIC WORLD"
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General understanding still missing, and number of examples recognised to involve
elliptic integrals was growing

p1

mi
m Z,
p AN
ms3

b2

Electron propagator top quark corrections ew form factor

> Em m m
m m m

Higgs production Bhabha scattering in QED tt(+X) production in QCD




NEW DEVELOPEMENTS: hE ceoMETRY 0F THE SUNRISE GRAPH

New hints towards a more general point of view from maths and string theory

2007-2011 2012-2013 2014-2015 2016-2017
Adams, Weinzierl Adams, Bogner, Weinzierl
Remiddi, Tancredi (ELi functions for the
(2nd order diff equation sunrise graph)

for sunrise) Broedel, Matthes, Schlotterer

(Elliptic multiple zeta
values in string theory)

v
v
Remiddi, Tancredi
Block, Vanhove (Iterated structure of
(Sunrise as elliptic d-log) sunrise and kite integral)
v Henn Primo, Tancredi

Frellesvig, Papadopoulos
Bosma, Sogaard, Zhang

Levin, Racin : ‘
evin, Racinet (canonical dlog integrals)

Brown, Levin

(mathematical foundations of (cuts and homogeneous differential

elliptic multiple polylogs) equation beyond mpls)
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New hints towards a more general point of view from maths and string theory

2007-2011 2012-2013 2014-2015 2016-2017 2017-2018
Adams, Weinzierl Adams, Bogner, Weinzierl v

Remiddi, Tancredi
(2nd order diff equation

for sunrise)

\4

Block, Vanhove
(Sunrise as elliptic d-log)

\4

Henn

Levin, Racin : ‘
evin, Racinet (canonical dlog integrals)

Brown, Levin

(mathematical foundations of

elliptic multiple polylogs) <

(ELi functions for the
sunrise graph)

Broedel, Matthes, Schlotterer

(Elliptic multiple zeta
values in string theory)

A

Broedel, Penante, Duhr, Dulat, Tancredi

(connection of different languages
- definition of eMPLs with
logarithmic singularities)

v

Remiddi, Tancredi

(Iterated structure of
sunrise and kite integral)

Primo, Tancredi
Frellesvig, Papadopoulos
Bosma, Sogaard, Zhang

(cuts and homogeneous differential
equation beyond mpls)




CHANGING THE GEOMETRY: rrom senus 0 7o GENUS 1
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[Drawings by C. Teleman, Riemann Surfaces]



CHANGING THE GEOMETRY: rrom senus 0 7o GENUS 1

Some definitions. Take a completely general elliptic curve:

y* = (z —a1)(z — az)(z — a3)(z — as)
We define the two periods as

“d “2 d
w1:2(:4/ §:2K()\), w2:204/ 5:2@}{(1—)\),
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Some definitions. Take a completely general elliptic curve:

y* = (z —a1)(z — az)(z — a3)(z — as)
We define the two periods as
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CHANGING THE GEOMETRY: rrom senus 0 7o GENUS 1

Dual description of the same problem

Elliptic curve as algebraic equation Genus one complex surface - Torus

y? = (x —a1)(z — az)(z — ag)(z — ag)

—— -~ —
= MU
/ \
4 3
‘
} \ g
- >
o~ \‘,;

- /\
/
]
v
v |

Move between the two using Abel’s Map cy [T dt

Or its inverse (kappa-function) Wi Jay y(?)



ELLIPTIC MULTIPLE POLYLOGARITHMS
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ELLIPTIC MULTIPLE POLYLOGARITHMS
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ELLIPTIC MULTIPLE POLYLOGARITHMS
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ELLIPTIC MULTIPLE POLYLOGARITHMS
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ELLIPTIC MULTIPLE POLYLOGARITHMS
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* 1
G(cy, ..., Cp;x) = / dt r(c1,t)G(ca,...,cr;t), 7r(c,t) = ; ceC
0

€T
E(M T ) = / AL, (cr,t,@) E4(72 = T 1, @)
0
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~ 1
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1 C4 Y 2 6
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w1 Y
— yC — C4
U_q(c,x,a) = + Z4(c,a) —
1( ) ) ) y(x L C) 4( ) ) y ?
Ui(oo,z,a) = —Zy(x,d) ¢4 7 Transcendental integration kernels
s 1 Mimic MPLs, only simple poles,

U_i(oc0,x,0) = — — — |a1 + 2¢4 G4(@)] , logarithmic singularities of
y ¥ scattering amplitudes




WE KIND OF UNDERSTAND EMPLS. ..

Many interesting problems solved in terms of eMPLs (kite, form factors, many more)
[See Melih’s talk]

Are we done, then?



BEYOND EMPLS: towaros caay vau EoMETRIES

eMPLs are not enough, (not even at 2 loops, at least naively...)

Multiple elliptic curves K3 and Calabi Yau Geometries

p2 - --# 5 p3
p2 éé m3 §§ p2

bP1 - - P4
3
[Block, Kerr, Vanhove 2017] [Primo, Tancredi 2017]
[Adams, Ekta, Weinzierl 2018] [Bourjaily, He, McLeod, von Hippel, Wilhelm 2018]
[Miiller, Weinzierl 2022 ] [Bourjaily, McLeod, Vergu, Volk, von Hippel, Wilhelm 2019]

[Brodel, Duhr, Dulat, Marzucca, Penante, Tancredi 2019]
[Bonisch, Duhr, Fischback, Klemm, Nega 2021]

We will here a lot about these exciting advancements in this workshop...

See seminars by Matt, Franziska, Christoph...



THE MISSING LINK: canonicaL?) biFrerenTiAL EuaTIONS

Henn’s canonical differential equations — paradigm change for MPLs Feynman Integrals
df =eAf with A=) Adlogg,
l

Integrals with unit leading singularities — logarithmic singularities only!

Natural concept of (uniform) transcendental weight inherited from algebra of MPLs

What about Feynman integrals with elliptic (or more general kernels?)
is there a concept of transcendental weight?
Uniform weight & purity?  [Brodel, Duhr, Dulat, Penante, Tancredi 2018]

if so, how is uniform weight connected to structure of differential equations (e dep...)?



THE MISSING LINK: canonicaL?) biFrerenTiAL EuaTIONS

Recently progress in finding epsilon-factorised differential equations for some problems

Sunrise graph & modular forms  [Adams, Weinzierl 2016]

3 loop Banana graph [PSgel, Wang, Weinzierl 2022]

[See talk by Hjalte for more general considerations]



THE MISSING LINK: (canonicaL? piFFERENTIAL EauATIONS

Recently progress in finding epsilon-factorised differential equations for some problems

Sunrise graph & modular forms  [Adams, Weinzierl 2016]

3 loop Banana graph [PSgel, Wang, Weinzierl 2022]

[See talk by Hjalte for more general considerations]

Special case: univariate problems based on 1 single elliptic curve (sunrise, 3 loop banana, ...)
can sometimes be expressed as iterated integrals over modular forms

~ “k+1 _ | |
D% 5 2y, T) Z/ dw g™ (w — 2;7)T (2 7 2w, 7) with zp = 4 T3
0

can be written as iterated ints of Eisenstein series of I'(/V)

n n _ (n1) (nk) . .
]( ?"11 ];[11 : 7“]]: JX: 77_) — ] hN11r1, hN:,rk,sk7 T) h(k) ( ) Z 627”(506—7“5)/]\7
N,r,s T)= — m
:/ dr’ hg\hlm 81 T/>[(77}22];]22“?£%7T) (o, B)€Z? (Ol‘|‘67_)
' (o, 8)7#(0,0)



THE MISSING LINK: canonicaL?) biFrerenTiAL EuaTIONS

In those cases, all properties of these integrals are understood at a similar level as standard

MPLs: series (q-)expansions, numerical evaluation, numerical evaluation
[Duhr, Tancredi 2019]

It is also clearer that there is only 1 natural variable, 7, and it is natural to study
differential equations in 7



THE MISSING LINK: canonicaL?) biFrerenTiAL EuaTIONS

In those cases, all properties of these integrals are understood at a similar level as standard

MPLs: series (q-)expansions, numerical evaluation, numerical evaluation
[Duhr, Tancredi 2019]

It is also clearer that there is only 1 natural variable, 7, and it is natural to study
differential equations in 7

Already “which differential equations” is not an obvious question for a more general eMPL
which depends on many variables
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t(‘a’) determines the shape of the elliptic curve
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It is also clearer that there is only 1 natural variable, 7, and it is natural to study
differential equations in 7

Already “which differential equations” is not an obvious question for a more general eMPL
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t(‘a’) determines the shape of the elliptic curve

There is an extra, different dependence on how we move
along the curve and on punctures



THE MISSING LINK: canonicaL?) biFrerenTiAL EuaTIONS

What can we say in general?
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What can we say in general?

Hint: Maximal cuts, leading singularities and independent integration contours

[Primo, Tancredi 2016, 2017]
[Bosma, Sogaard, Zhang 2017]
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Ti(€;s) =(1+2¢)(1 + 36)(m2)_2/1,1,1,1,0,0,0,0,0 ,
To(e;s) =(1 4+ 2€)(m°) " h.1.1.1.0.0.0.0.0 ,

Z5(€;5) =h21.1,0,0,0,0,0 ;



THE MISSING LINK: (canonicaL? piFFERENTIAL EauATIONS

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

What can we say in general?

Hint: Maximal cuts, leading singularities and independent integration contours

[Primo, Tancredi 2016, 2017]
[Bosma, Sogaard, Zhang 2017]

J 71 (€; x) 71 (€; x) 71 (€; x) 0
o To(e;x) | =B(x) | Za(€; x) | +eD(x) | Za(€;x) | + O1
Zs(€; x) Zs(€; x) Z3(€; x) ~ 3@x—T)

Define a “solution matrix” from the maximal cuts evaluated along independent integration contours:

Cutcl (Il (X)) Cutc2 (Il (X)) Cutc3 (Il (X))
G(x) = | Cute,(Z2(x)) Cute,(Za(x))  Cute;(Z2(x))
Cute, (Zs(x)) Cute,(Z3(x))  Cute;(Zs(x))

( Pairing integrand - contour, see intersection theory etc )
See also talk by Hjalte !
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What can we say in general?

Hint: Maximal cuts, leading singularities and independent integration contours

[Primo, Tancredi 2016, 2017]
[Bosma, Sogaard, Zhang 2017]

Tr(x) Mi(x)
Then the new basis of master integrals To(x) | = G(x) | Ma(x)
Z5(x) Ms(x)

By construction has diagonal matrix of “unit leading singularities” (on the max cut!)

Cute, (My(xz)) =1, Cute,(Mi(z)) =0, Cute,(Mi(z)) =0,
Cute, (Ma(x)) =0, Cute,(Ma(z)) =1, Cute,(Ma(z)) =0,
Cute, (M3(x)) =0, Cute,(M3(x)) =0, Cute,(Ms(x)) =1

( Pairing integrand - contour, see intersection theory etc )
See also talk by Hjalte !
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Il (X) Ml (X)
Basis built using this recipe Io(x) | = G(x) | Ma2(x)
Z5(x) Ms(x)

Fulfils by construction e-factorised differential equations, if the basis we started from only
had linear dependence on €

df = Bf+ €A f rotating out B as above, becomes df' = ¢ GT!AG S’
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Il (X) Ml (X)
Basis built using this recipe Io(x) | = G(x) | Ma2(x)
Z5(x) Ms(x)

Fulfils by construction e-factorised differential equations, if the basis we started from only

had linear dependence on €

df = Bf+ €A f rotating out B as above, becomes df' = ¢ GT!AG S’

BUT Notice:

This is true whatever is in the matrix A... in the MPLs case this rotation works in the same
way, but if done starting from “any A”, then G™'AG will in general not be in dlog form! — In
general more information is needed on singularities of the integrals!

Moreover, to the best of my knowledge, it is not even obvious that a basis linear in € exists in
general beyond 2 or 3 loops! At least, many cases where I don’t know how to find one :-)



OPEN QUESTIONS: rrom SpECIAL FUNCTIONS BACK TO FEYNMAN INTEGRALS!

From this perspective, a set of questions that I find particularly interesting:

Is there a natural generalisation of d log forms for CYs?

What “form” are the differential equations for those integrals expected to have?

Can we always find differential equations with linear dependence in € when general CY
geometries are involved? And if so, how restrictive is this requirement?

If that is possible, which criterion Feynman integrals/integrands have to satisfy?



OPEN QUESTIONS: rrom SpECIAL FUNCTIONS BACK TO FEYNMAN INTEGRALS!

How do we move forward?

From experience with MPLs, many things have to come into place at the same time
Collect as much data as possible (compute more integrals! :-))

Understanding of mathematical properties of new functions, iterated integrals over
CY periods and rational functions See Christoph’s talk

Generalisation of symbol calculus
y [Brodel, Duhr, Dulat, Penante, Tancredi 2018]

[Wilhem, Zhang 2022]
[Forum, von Hippel 2022]  See Chi’s talk

Connection to leading singularities...
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From experience with MPLs, many things have to come into place at the same time
Collect as much data as possible (compute more integrals! :-))

Understanding of mathematical properties of new functions, iterated integrals over
CY periods and rational functions See Christoph’s talk

Generalisation of symbol calculus
y [Brodel, Duhr, Dulat, Penante, Tancredi 2018]

[Wilhem, Zhang 2022]
[Forum, von Hippel 2022]  See Chi’s talk

Connection to leading singularities...

I think it’s fair to say that we are witnessing advances in all these directions

[t is very exciting!



THE END (OF THIS INVITATION)

Thank you very much for your attention

and looking forward to learn about many of these things during this week!



