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FIG. 2: Diagrams relevant for Cases I (a), II (b), III (c), IV (d).

B. Case II

In the second case, the interaction Lagrangian is now given by

Lint = λLX
µȲLγµµL + λRX

µȲRγµµR +H.c. . (13)

This gives a contribution to aµ through the diagram seen in Fig. 2 (b). We find
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1 Introduction

The E989 experiment at Fermilab [1], which has recently measured the anomalous magnetic mo-
ment of the muon aµ to the highest precision [2], confirms the larger-than-predicted measurement
of the E821 experiment at Brookhaven [3] and could at last indicate the existence of beyond-
the-Standard-Model (BSM) physics outside the neutrino and dark sectors. A combination of the
two measurements gives the average

aaverageµ = (116 592 061± 41) · 10
�11. (1)

This should be compared to the Standard Model (SM) prediction of

aSMµ = (116 591 810± 43) · 10
�11 , (2)

as reported in the white paper by the global theory initiative [4], implying a discrepancy of

�aµ = (251± 59) · 10
�11. (3)

Of course, further experimental and theoretical investigations must carefully examine possible
sources of uncertainty. For example: the recent lattice-QCD calculation of the hadronic vacuum
polarization contribution to �aµ [5] can shift the SM prediction much closer to the experimental
result, essentially eliminating the discrepancy. However, this would simultaneously introduce
tensions elsewhere [6–8]. Here we will use Eq. (2) as our SM prediction for aSMµ .

The anomalous magnetic moment of the electron is measured with even higher accuracy [9]:

aexpe = (1 159 652 180.73± 0.28) · 10�12. (4)

In this case, the error of the SM prediction is dominated by the extraction of the fine structure
constant ↵em from experiments that measure the recoil of alkali atoms. The two most recent
extractions of ae from Cesium [10] and Rubidium [11] differ by more than 5�, and lead to

�aCs
e = aexpe � aSM,Cs

e = � (0.88± 0.36) · 10�12 ,

�aRb
e = aexpe � aSM,Rb

e = (0.48± 0.30) · 10�12 . (5)

This indicates a �2.4� (+1.6�) tension with the SM that is not too significant in comparison to
the muon case. For the ⌧ lepton, the existing bounds on the anomalous magnetic moment [12],

�0.052 < a⌧ < 0.013 , e+e� ! e+e�⌧+⌧� [13] ,
�0.007 < a⌧ < 0.005 , e+e� ! ⌧+⌧� [14] , (6)

are still one order of magnitude away from the SM prediction of a⌧ = (117 721± 5) · 10
�8 [15].

While at the moment a⌧ is not very sensitive to BSM physics, the limit in Eq. (6) will be improved
at Belle-II and at the Large Hadron Collider (LHC) [16–19].

The muonic discrepancy in particular has lead to an overwhelming amount of theoretical
work looking for suitable explanations. For a recent overview, see Ref. [20]. Most models involve
adding new fields and interactions to the SM that go on to generate novel loop contributions
to aµ and ae. Under the assumption that new fields are heavy1, motivated by the absence of

1We note that exceptions exist, for instance in the form of light dark photons [21].
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as reported in the white paper by the global theory initiative [4], implying a discrepancy of

�aµ = (251± 59) · 10
�11. (3)

Of course, further experimental and theoretical investigations must carefully examine possible
sources of uncertainty. For example: the recent lattice-QCD calculation of the hadronic vacuum
polarization contribution to �aµ [5] can shift the SM prediction much closer to the experimental
result, essentially eliminating the discrepancy. However, this would simultaneously introduce
tensions elsewhere [6–8]. Here we will use Eq. (2) as our SM prediction for aSMµ .

The anomalous magnetic moment of the electron is measured with even higher accuracy [9]:

aexpe = (1 159 652 180.73± 0.28) · 10�12. (4)

In this case, the error of the SM prediction is dominated by the extraction of the fine structure
constant ↵em from experiments that measure the recoil of alkali atoms. The two most recent
extractions of ae from Cesium [10] and Rubidium [11] differ by more than 5�, and lead to

�aCs
e = aexpe � aSM,Cs

e = � (0.88± 0.36) · 10�12 ,

�aRb
e = aexpe � aSM,Rb

e = (0.48± 0.30) · 10�12 . (5)

This indicates a �2.4� (+1.6�) tension with the SM that is not too significant in comparison to
the muon case. For the ⌧ lepton, the existing bounds on the anomalous magnetic moment [12],

�0.052 < a⌧ < 0.013 , e+e� ! e+e�⌧+⌧� [13] ,
�0.007 < a⌧ < 0.005 , e+e� ! ⌧+⌧� [14] , (6)

are still one order of magnitude away from the SM prediction of a⌧ = (117 721± 5) · 10
�8 [15].

While at the moment a⌧ is not very sensitive to BSM physics, the limit in Eq. (6) will be improved
at Belle-II and at the Large Hadron Collider (LHC) [16–19].

The muonic discrepancy in particular has lead to an overwhelming amount of theoretical
work looking for suitable explanations. For a recent overview, see Ref. [20]. Most models involve
adding new fields and interactions to the SM that go on to generate novel loop contributions
to aµ and ae. Under the assumption that new fields are heavy1, motivated by the absence of

1We note that exceptions exist, for instance in the form of light dark photons [21].
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National Laboratory (BNL) [3] (adjusted according to the latest value of µµ/µp as in Ref. [4]) and the new

world average [2] are

a
FNAL

µ = (116 592 040 ± 54) ⇥ 10�11
, (1)

a
BNL

µ = (116 592 089 ± 63) ⇥ 10�11
, (2)

a
2021

µ = (116 592 061 ± 41) ⇥ 10�11
. (3)

The FNAL measurement is fully compatible with the previous best measurement and has a smaller uncertainty.

Compared to the BNL result, the new world average a
2021
µ has a slightly decreased central value and a 30%

reduced statistics-dominated uncertainty. In parallel to the FNAL measurement, a worldwide theory initiative

provided the White Paper [4] with the best estimate for the central theory prediction in the Standard Model

(SM). Its value and uncertainty are

a
SM

µ = (116 591 810 ± 43) ⇥ 10�11
. (4)

This SM prediction is based on up-to-date predictions of QED [5, 6], electroweak [7, 8], hadronic vacuum

polarization [9–15] and hadronic light-by-light contributions [16–30]. For further discussion of recent progress we

refer to Ref. [4].1 The experimental measurements show the following deviations from the updated theoretical

SM prediction:

�a
FNAL

µ = (23.0 ± 6.9) ⇥ 10�10
, (5)

�a
BNL

µ = (27.9 ± 7.6) ⇥ 10�10
, (6)

�a
2021

µ = (25.1 ± 5.9) ⇥ 10�10
. (7)

In each case the uncertainties are combined by summing them in quadrature. In the last line �a
2021
µ is the

new, updated deviation based on the experimental world average and the SM White Paper result. The long

standing discrepancy between the BNL measurement and the SM theory prediction is confirmed and sharpened.

Its significance is increased from 3.7� to to 4.2� by the combination with FNAL data.

This improvement has a significant impact on our understanding of BSM physics as it strengthens a major

constraint on a variety of otherwise plausible SM extensions. In this paper we provide a comprehensive overview

of this impact the FNAL measurement has on BSM physics. We examine the impact in minimal 1-, 2- and 3-field

extensions of the SM, and in the well-motivated Minimal Supersymmetric Standard Model (MSSM). Within this

theoretical framework we provide a thorough overview of the impact the FNAL measurement has and highlight

promising scenarios that can explain it. In our investigation we use state-of-the-art aµ calculations. For the

simple SM extensions we use FlexibleSUSY [43, 44], which includes the universal leading logarithmic two-loop

QED contributions in addition to the full one-loop calculation. For the MSSM we use GM2Calc [45], which

implements a dedicated high-precision MSSM calculation including two-loop and higher-order contributions

based on the on-shell scheme.

Reviews and general discussions of BSM contributions to aµ have been given in Refs. [25,46–51]. Previously

the deviation from BNL has been studied extensively in the literature. There was intensive activity proposing

1The White Paper also contains an extensive discussion of promising progress of lattice QCD calculations for the hadronic vacuum
polarization. The lattice world average evaluated in Ref. [4], based on [31–39], is compatible with the data-based result [9–15], has
a higher central value and larger uncertainty. More recent lattice results are obtained in Refs. [40, 41]. Scrutiny of these results is
ongoing (see e.g. Ref. [42]) and further progress can be expected.
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Why do we believe that there is New Physics(NP)?

Nomurapresented in his  lecture (fist day of the school)  reasons for physics beyond SM

• Neutrino masses & mixing matrix

• Why θ ̄ ≲ 2 × 10−10? (strong CP problem)

• Why mweak ≪ mGUT? (gauge hierarchy problem) 

• Dark maOer & dark energy

• Origin of the baryon number

Gravity …

On experimental side LHC did not find any new parTcle.

Current experimental results are in  agreement with the SM expectaTons.  

However, in flavor physics, there are deviaTons of the measured from the predicted observables.

B anomalies 

Flavour puzzle:

why Masses of fundamental fermions 

are so different? 
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B meson anomalies

  

Lepton Flavor Universality (LFU)

● Several discrepancies have been observed in b-hadron decays:      
                                                                                                             

● If confirmed with more data, they will indicate the existence of New Physics 
at the O(TeV) scale.

[LHCb, B-factories]

[LEP, τ-decays]

● Well-tested property of the SM gauge sector, which is broken by Yukawas:

1

See also:
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NP explaining both B anomalies 

B ! K(⇤)µ+µ�

LNP =
1

(⇤D)2
2 c̄L�µbL⌧̄ �

µ⌫L LNP =
1

(⇤K)2
s̄L�µbLµ̄L�

µµL

⇤D ' 3TeV ⇤K ' 30TeV

1

(⇤K)2
=

CK

⇤2
CK ' 0.01

suppression factor 7

NP in FCNC                                                
has to be suppressed   

Rexp
D(⇤) > RSM

D(⇤) Rexp
K(⇤) < RSM

K(⇤)

⇤D ' ⇤K ⌘ ⇤



• ae - test of QED

• aμ - important contributions from QED, QCD weak gauge sector

(If P and CP symmetries hold)

Muon anomalous magneCc moment



Leff = �e aµ
4ml

µ̄(x)�↵� µ(x)F↵�

Muon anomalous magne,c moment in SM is finite 

aµ = F2(0)

- can be calculated unambiguously in renormalizble QFT;
- no counter-term to absorb UV divegences;



New Physics explana0on of Δ aμ

The weak interac0on contribu0on is  aμ
weak =1.54 ×10 -9 

Assump0on �aµ ' aNP
µ

C ' 1

Leff =
cd

⇤2
NP

L̄�µ⌫ lR H F
µ⌫

⇤NP ⇠ 80TeV⇤NP ⇠ 1.9TeV

aNP
µ ' C

mµ mt

⇤2
NP

aNP
µ ' C

m2
µ

⇤2
NP

1 Introduction

The E989 experiment at Fermilab [1], which has recently measured the anomalous magnetic mo-
ment of the muon aµ to the highest precision [2], confirms the larger-than-predicted measurement
of the E821 experiment at Brookhaven [3] and could at last indicate the existence of beyond-
the-Standard-Model (BSM) physics outside the neutrino and dark sectors. A combination of the
two measurements gives the average

aaverageµ = (116 592 061± 41) · 10
�11. (1)

This should be compared to the Standard Model (SM) prediction of

aSMµ = (116 591 810± 43) · 10
�11 , (2)

as reported in the white paper by the global theory initiative [4], implying a discrepancy of

�aµ = (251± 59) · 10
�11. (3)

Of course, further experimental and theoretical investigations must carefully examine possible
sources of uncertainty. For example: the recent lattice-QCD calculation of the hadronic vacuum
polarization contribution to �aµ [5] can shift the SM prediction much closer to the experimental
result, essentially eliminating the discrepancy. However, this would simultaneously introduce
tensions elsewhere [6–8]. Here we will use Eq. (2) as our SM prediction for aSMµ .

The anomalous magnetic moment of the electron is measured with even higher accuracy [9]:

aexpe = (1 159 652 180.73± 0.28) · 10�12. (4)

In this case, the error of the SM prediction is dominated by the extraction of the fine structure
constant ↵em from experiments that measure the recoil of alkali atoms. The two most recent
extractions of ae from Cesium [10] and Rubidium [11] differ by more than 5�, and lead to

�aCs
e = aexpe � aSM,Cs

e = � (0.88± 0.36) · 10�12 ,

�aRb
e = aexpe � aSM,Rb

e = (0.48± 0.30) · 10�12 . (5)

This indicates a �2.4� (+1.6�) tension with the SM that is not too significant in comparison to
the muon case. For the ⌧ lepton, the existing bounds on the anomalous magnetic moment [12],

�0.052 < a⌧ < 0.013 , e+e� ! e+e�⌧+⌧� [13] ,
�0.007 < a⌧ < 0.005 , e+e� ! ⌧+⌧� [14] , (6)

are still one order of magnitude away from the SM prediction of a⌧ = (117 721± 5) · 10
�8 [15].

While at the moment a⌧ is not very sensitive to BSM physics, the limit in Eq. (6) will be improved
at Belle-II and at the Large Hadron Collider (LHC) [16–19].

The muonic discrepancy in particular has lead to an overwhelming amount of theoretical
work looking for suitable explanations. For a recent overview, see Ref. [20]. Most models involve
adding new fields and interactions to the SM that go on to generate novel loop contributions
to aµ and ae. Under the assumption that new fields are heavy1, motivated by the absence of

1We note that exceptions exist, for instance in the form of light dark photons [21].

1

NP effects huge!

al~ (ml / MNP)2  
Muon aμ 44000 more sensi0ve than electron ae  on MNP

Interes0ng



How to approach Physics Beyond SM?

• find which new par7cles and their couplings to SM fermions can explain the difference, and then 
try to construct a new theory that can contain it!

• take your favorite model of NP and check which par7cles and couplings can explain the difference! 

In both cases: SM results for all measured quan77es should not be spoiled!
But

Check contribu7ons to  all exis7ng measurements!



Possibili'es for NP

NP par'cles

- SM fermions + new boson
- new fermions + SM bosons
- new fermions + new bosons

simplicity:  only one new par'cle!

Increase significant for the large mass in the loop!

For a recent review on NP in g-2: Peter Athrona, Csaba Balazs, Douglas HJ Jacob Wojciech Kotlarski, Dominik St ̈ockinger, Hyejung St ̈ockinger-Kim 
2104.03691



Model Spin SU(3)C ⇥ SU(2)L ⇥ U(1)Y Result for �a
BNL
µ , �a

2021
µ

1 0 (1,1, 1) Excluded: �aµ < 0
2 0 (1,1, 2) Excluded: �aµ < 0
3 0 (1,2,�1/2) Updated in Sec. 3.2
4 0 (1,3,�1) Excluded: �aµ < 0
5 0 (3,1, 1/3) Updated Sec. 3.3.
6 0 (3,1, 4/3) Excluded: LHC searches
7 0 (3,3, 1/3) Excluded: LHC searches
8 0 (3,2, 7/6) Updated Sec. 3.3.
9 0 (3,2, 1/6) Excluded: LHC searches
10 1/2 (1,1, 0) Excluded: �aµ < 0
11 1/2 (1,1,�1) Excluded: �aµ too small
12 1/2 (1,2,�1/2) Excluded: LEP lepton mixing
13 1/2 (1,2,�3/2) Excluded: �aµ < 0
14 1/2 (1,3, 0) Excluded: �aµ < 0
15 1/2 (1,3,�1) Excluded: �aµ < 0
16 1 (1,1, 0) Special cases viable
17 1 (1,2,�3/2) UV completion problems
18 1 (1,3, 0) Excluded: LHC searches
19 1 (3,1,�2/3) UV completion problems
20 1 (3,1,�5/3) Excluded: LHC searches
21 1 (3,2,�5/6) UV completion problems
22 1 (3,2, 1/6) Excluded: �aµ < 0
23 1 (3,3,�2/3) Excluded: proton decay

Table 1: Summary of known results for gauge invariant single field extensions with one-loop contributions to the anoma-
lous magnetic moment of the muon. These results are rather exhaustive due to systematic investigations and classifications
in Ref. [366,368–370]. Note however that while we present the results based on representations of SM gauge and Lorentz
symmetries, the references make assumptions that can be important to the conclusions and are di↵erent in each paper.
Thus the conclusions summarised in this table should be interpreted with care. For more information on models 1-2, 3-4,
5-9, 10-12, 13, 14-18 and 19-23 see references [370,418–420], [366,370], [124,370], [152,366,370], [370], [152,366,369,370,421]
and [369], respectively. We use color highlighting to give a visual indication of the status of the model, namely green for
viable explanations, red for excluded and purple for vector extensions excluded on the basis of their UV completions.

8

New weak scalar doublet (H0, H-)

Scalar leptoquarks 

New neutral  gauge boson 

Single new fermion
can not explain  Δa!

ParAcles that can explain Δa!

See 2104.03691

Vector leptoquarks 



Doršner, SF, Greljo, 
Kamenik , Košnik,  1603.04993

LQ=(SU(3)c, SU(2)L)Y

Q=I3+Y

no proton decay
at tree level 

Spin 0

Spin 1

Single scalar LQ  (with coupling to !) 
cannot solve simultaneously  
both anomalies!

Scalar LQ                            simpler UV compleRon;

Popular scenario: Leptoquarks as a resoluRon of B anomalies:

LQl

q

Only R2 and S1 might explain  (g-2)μ (both chiraliRes are required with the enhancement factor
mt/mμ) Muller 1801.0338.

14

or LQ=(SU(3)c, SU(2)L, Y)

Vector LQ U1 as (a gauge boson) can explein both B anomalies but cannot explain (g-2)μ (Isidori’s group)  



Generic features and issues in 2HDMs

Charged Higgs possible as explanation of b ! c⌧⌫ data. . .
However, typically expect �R(D⇤) < �R(D)

Generic feature: Relative influence larger in leptonic decays!

• No problem in b ! c⌧⌫ since Bc ! ⌧⌫ won’t be measured
• Large charm coupling required for R(D⇤)
Embedding b ! c⌧⌫ into a viable model complicated!
Dd ,s ! ⌧, µ⌫ kill typical flavour structures with CSL,R ⇠ m

Only fine-tuned models survive all (semi-)leptonic constraints

b ! s`` very complicated to explain with scalar NP
2HDM alone tends to predict b ! s`` to be QCD-related

bb̄ ! (H,A) ! ⌧+⌧� poses a severe constraint [Faroughy+’16, Admir’s talk]

2HDMs strongly prefer a smaller value for R(D⇤)!
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Constraints from flavor observables

Becirevic et al.,   1806.05689, 1608.07583,  1608.08501, Alonso et al., 1611.06676,…
RadiaAve constraints  Feruglio et al.,1606.00524;

B ! K(⇤)⌫⌫̄

B0
s � B̄0

s

⌧ ! µ�

⌧ ! K(⇡)µ(e)

K ! µeFor example, if g/2 <∼ g2 <∼ g, one can have λ >∼ Ud
L32

>∼ λ2. In addition, we can
now combine Eqs. (13) and (21). Since C9 is an O(1) number, this implies that
an O(10−1) value for |U l

L32| is still allowed. A more precise measurement of both
RK and B+ → K+νν̄ will put stricter bounds on both the down-type and lepton
mixing-matrix elements.

Finally, the neutral-current part of O(2)
NP also contributes to the decays t → cℓ+ℓ−,

t → cℓ+ℓ′− and t → cνν̄. The branching ratios for these decays are negligible in the
SM, so any observation would be a clear sign of NP. For decays to charged leptons,
the most promising is t → cτ+τ−. In the mass basis, the contributing NP operator is

G
[

Uu∗

L32 U
u
L33 |U ℓ

L33|2 (c̄LγµtL)(τ̄LγµτL) + h.c.
]

, (22)

which gives a partial width of

g42|Uu
L32|2 |Uu

L33|2 |U ℓ
L33|4

16Λ4
NP

m5
t

48π3
. (23)

Taking g2 ∼ g, |Uu
L33| ≃ |U ℓ

L33| ≃ 1, |Uu
L32| ≃ λ, and ΛNP = 800 GeV, this gives

Γ(t → cτ+τ−) = 1× 10−7 GeV . (24)

The full width of the t quark is 2 GeV, so this corresponds to a branching ratio of
5 × 10−8. This is much larger than the SM branching ratio (O(10−16)), but is still
tiny. The branching ratio for t → cνν̄ takes the same value, while those for all other
t → cℓ+ℓ− and t → cℓ+ℓ′− decays are considerably smaller. Thus, while the branching
ratios for these decays can be enormously enhanced compared to the SM, they are
still probably unmeasurable. (This point is also noted in Ref. [11].)

Another process involving t quarks that could potentially reveal the presence of
NP with LFV is pp → tt̄, followed by the radiation of a τ±µ∓ pair. At the LHC
with a 13 TeV center-of-mass energy, gluon fusion dominates the production of tt̄
pairs. We use MadGraph 5 [21] to calculate the cross section for gg → tt̄τ±µ∓,
taking g2 ∼ g. We find σtt̄τµ ≈ 0.4|U ℓ

L32|2 fb. By contrast, the SM cross section for tt̄
pair production is σtt̄ ≈ 450 pb, so that σtt̄τµ/σtt̄ ≈ 10−6|U ℓ

L32|2, which is extremely
small. With a luminosity of 100 fb−1 /year at the 13 TeV LHC [22], we therefore
expect about 40 events/year for gg → tt̄τ±µ∓ if |U ℓ

L32| ∼ 1, or about two events/year
if |U ℓ

L32| ∼ λ. Thus, even though the final-state signal is striking, pp → tt̄τ±µ∓ is
probably unobservable.

Turning to the charged-current interactions, these contribute to both b and t
semileptonic decays. Even with the enhancement from NP, the decay t → bτ ν̄τ will
still be difficult to observe, as it is swamped by the two-body decay t → bW . On
the other hand, the decay b → cτ ν̄i (i = τ, µ, e) is particularly interesting, since
it contributes to the decay B̄ → D(∗)+τ−ν̄τ and the R(D(∗)) puzzle [Eq. (2)], and
provides a aource of lepton flavor non-universality in such decays.
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(g � 2)µ

µ ! e�

Z ! bb̄

Constraints from LFV

B ! Dµ⌫µ

⌧ ! µµµ

K ! ⇡µ⌫µ

K ! µ⌫µ B ! Kµe

R
K
e/µ is most sensitive to |ysµ| since the product y⇤bµysµ must be small as dictated by b ! sµµ

sector and comes with an additional CKM suppression. The agreement of experiment [60]
with the SM prediction [62] in the ⌧/µ exhibits a ⇠ 2� tension:

R
K(exp)
⌧/µ = 467.0±6.7, R

K(SM)
⌧/µ =

m
3
K(m2

⌧ �m
2
K)2

2m⌧m
2
µ(m

2
K �m2

µ)
2
(1+�R⌧/K) = 480.3±1.0, (4.6)

where the dominant error of the experimental ratio is due to the ⌧ lifetime uncertainty,
whereas on the theory side it is the radiative correction �R⌧/K = (0.90± 0.22)% [63] which
is the source of uncertainty. The constraint is expressed as:

R
K(exp)
⌧/µ

R
K(SM)
⌧/µ

�1 =
v
2

2m2
S3

Re
⇥
|ysµ|2 � |ys⌧ |2 + (Vub/Vus)(y

⇤
bµysµ � y

⇤
b⌧ys⌧ )

⇤
= (�2.8±1.4)⇥10�2

.

(4.7)

4.1.3 Leptonic decays: W ! ⌧ ⌫̄, ⌧ ! `⌫̄⌫

The SM tree-level vertex ⌧̄ ⌫W is rescaled due to penguin-like contribution of both S3 and
R̃2. As we integrate out S3 and R̃2 at the weak scale the W vertex with ⌧ leptons reads
�gp
2
⌫̄⌧ /WPL⌧(1 + �

(⌧)
W ), where

�
(⌧)
W =

Nc

288⇡2

⇥
(2x+ 6x log x� 6x⇡i) (|yb⌧ |2 + |ys⌧ |2) + x̃ (|ỹs⌧ |2 + |ỹb⌧ |2)

⇤
,

x =
m

2
W

m
2
S3

, x̃ =
m

2
W

m
2
R̃2

.

(4.8)

Free color index in the loops graphs results in the Nc = 3 factor in front. We have neglected
the quark masses in the above calculation and presented only the leading terms in x and
x̃. The contribution of S3 with mass of 1TeV shifts the W ! ⌧⌫ decay width relatively by
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Constraints from LHC
(high pT )

LHC constraints U1 = (3, 1, 2/3)

• LQ pair-production via QCD: [CMS-PAS-EXO-17-003]

mS & 1.6 TeV

[conservative choice; qµ final state]

• Di-lepton tails at high-pT: [ATLAS. 1707.02424,1709.07242]

[Angelescu, Becirevic, Faroughy, OS. ’18]

[see also Faroughy et al. ’15]
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Figure 1: The chirality-enhanced one-loop contributions to muon dipoles (/ mq/mµ) due
to a presence of scalar S that couples to both left- and right-chiral muons, where S is either
R2 or S1 and q 2 {u, c, t}.

In this work we investigate the viability of those scenarios where the one-loop contribu-
tions towards the anomalous magnetic moment of muon are induced through the mixing
of two scalar LQs of the same electric charge via the SM Higgs field, where the LQs in
question need to couple to the muons of opposite chiralities. We accordingly study the ex-
isting constraints on the parameter space of this particular mechanism due to electroweak
precision measurements, relevant flavor observables, and the current LHC analyses.

The paper is organized as follows. In Sec. 2, we describe single LQ contributions to
(g � 2)µ to set the notation. In Sec. 3, we classify those pairs of scalar LQs that can mix
via the SM Higgs field and subsequently generate chirality-enhanced contributions towards
(g � 2)µ. We find three possible LQ pairs – S1 &S3, eS1 &S3, and eR2 &R2 – that might
generate large enough contributions towards (g � 2)µ through the mixing with the SM
Higgs field. We proceed to discuss electroweak precision constraints on the LQ mixing and
discuss relevant di↵erences between the three scenarios, if any. We then confront, in Sec. 4,
the S1 &S3 scenario with (g� 2)µ and various phenomenological constraints to investigate

its viability. The ability of the eS1 &S3 and eR2 &R2 scenarios to address (g� 2)µ is briefly
discussed in Secs. 5 and 6, respectively. We summarize our findings in Sec. 7.

2 Single LQ contributions to (g � 2)µ

The most general formulae for the interactions of the generic scalar LQ S of the definite
fermion number F = 3B + L with the quark-charged lepton (q-`) pairs, in the mass
eigenstate basis, are [12]
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one could also include SU(3)C ⇥ SU(2)L ⇥ U(1)Y gauge invariant renormalizable operators, S1Q3L2 and S1tb

but unless these diquark couplings are severely suppressed or forbidden, they will give rise to rapid proton

decay when combined with the leptoquark operators we consider here [436, 437]. R2 does not admit such

renormalizable operators [436] though there remain dangerous dimension 5 operators that would need to be

forbidden or suppressed [437]. Since we are focused on aµ we again simplify things by assuming all parameters

are real, but note that if we were to consider complex phases then electric dipole moments would also be of

interest, see e.g. Ref. [438].

Constraints on the masses of scalar leptoquarks with second and third generation couplings to the SM

leptons and quarks respectively can be directly applied from 13 TeV CMS [439,440] results, dependent on how

strong they couple to those fermions. Given the above Lagrangians, one can see that the scalar leptoquark

singlet S1 can decay to either a top quark and muon or bottom quark and neutrino, while the upper and lower

components of the scalar leptoquark doublet decay as R
u

2
to a top quark and muon and R

d

2
to either a top

quark and neutrino or a bottom quark and muon. Thus for the leptoquark S1 given in Eqs. (18), the branching

fraction �S1
= Br(S1 ! tµ), is given by:

�S1
=

�
2

QL
+ �

2
tµ

2�2

QL
+ �

2
tµ

. (20)

For scalar leptoquark singlet S1 the most stringent LHC limits when coupling to third generation quarks and

second generation leptons are dependent on �S1
[439]. Thus we can calculate �S1

using selected values of the

couplings between S1 and the fermions, and interpolate between them to find the limits on the mass given in

Ref. [439]. Now for R2 in Eq. (19), limits can be placed on the upper component of the doublet, Ru

2
, which

decays solely to tµ. In this case the mass limits from Ref. [439] are applied where the branching ratio for Ru

2
to

decay to tµ is taken to be �Ru

2
= 1.

Further constraints can be placed on leptoquarks from the e↵ective coupling of a Z boson to leptons. The

experimentally measured e↵ective couplings of the Z boson to a pair of muons are given as g
µµ

L
= �0.2689 ±

0.0011, gµµ
R

= 0.2323 ± 0.0013 [416,441] in the case of left- and right-handed couplings. The contribution from

a scalar leptoquark with couplings to any flavour of the SM fermions to the e↵ective couplings between Z and

muon, �g
µµ

L,R
, is given by Eqs. (22,23) in Ref. [442] for the leptoquarks S1 and R2 respectively. Points with

left-right e↵ective couplings more than 2� away from the measured values are treated as constrained.

Likewise, the e↵ective coupling of the Z boson to any two neutrinos has been measured as the observed

number of light neutrino species N⌫ = 2.9840 ± 0.0082 [441]. The BSM contributions from a scalar leptoquark

to this are given by [442]:

N⌫ =
X

i,j=e,µ,⌧
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g
SM

⌫L

|
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|
2

⌘
, (21)

where g
SM

⌫L
are the SM couplings, and �g

ij

⌫L,R
are the BSM couplings between the Z boson and the neutrinos

given again in Eqs. (22,23) from Ref. [442].

Due to the large masses of the leptoquarks considered for this model, it is reasonable to consider fine-tuning

in the mass of the muon. With large BSM masses and sizeable couplings to the SM, contributions to the muon

can be generated as detailed in Sec. 2. The specific constraint considered in this paper for when the contribution

to the muon mass is considered not “fine-tuned” is

1

2
<

m
MS
µ

mµ

< 2, (22)
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How to achieve LQ couplings with quarks and leptons having both chiralities?

LQs can mix when they have the same charge.

Mixing formalism

Maximal mixing 

LQ pairs Mixing field(s) (g � 2)µ ⌫-mass

S1 &S3 H H u –

eS1 &S3 H H d –

eR2 &R2 H H d –

eR2 &S1 H – d

eR2 &S3 H – d

Table 2: Scalar LQ pairs that can, through the mixing with the SM Higgs field, generate
either the one-loop contributions towards (g�2)µ or neutrino mass. It is indicated whether
the chirality-enhanced contributions are proportional to the up-type (u) or down-type (d)
quark masses.

There are, clearly, three possible LQ pairs that might generate large enough contribu-
tions towards (g � 2)µ through the mixing with the SM Higgs field. These combinations

are S1 &S3, eS1 &S3, and eR2 &R2, where, in all three instances, at least one of the LQ
multiplets is chiral in nature. More importantly, at least one of the two LQ multiplets
that mix carries non-trivial SU(2)L assignment. The LQ mixing mechanism can thus in-
duce mass splitting between the states belonging to the same LQ multiplet that, in turn,
might generate substantial oblique corrections that could be in conflict with the existing
electroweak precision measurements.

3.2 Mixing formalism

To describe the most prominent features of the LQ mixing we assume existence of two
scalars S(Q)

a and S
(Q)
b , of the same electric charge Q, but from two di↵erent multiplets Sa

and Sb that might have non-trivial weak isospins ISa and I
Sb . We thus expect, on general

grounds, to have 2(ISa + I
Sb + 1) mass eigenstates with or without mixing. The mass

squared matrix for the mixed states reads

M
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⌦
⌦ m

2
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◆
, (8)

where mSa and mSb
denote the common masses of all Sa and Sb components prior to the

mixing and ⌦ stands for the mixing term arising from the interactions of Sa and Sb with
the Higgs boson that we discuss later in concrete scenarios. The matrix in Eq. (8) can be
brought into diagonal form with a simple field redefinition
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The physical masses squared for the mixed states are

m
2

S
(Q)
±

=
m

2
Sa

+m
2
Sb

2
±

1

2

q
(m2

Sa
�m

2
Sb
)2 + 4⌦2 . (11)

where for simplicity we assume that mSb
� mSa . There are additional 2ISa (2ISb) mass

eigenstates in multiplet Sa (Sb) with masses mSa (mSb
) besides the two mass eigenstates

S
(Q)
± .
The LQs mix maximally, according to Eq. (10), for mSa = mSb

⌘ mS with ✓ = ⇡/4.
In this particular case, if we take the limit when |⌦| ⌧ m

2
S, it is convenient to define the

parameter

�m
(Q)
S = m

S
(Q)
+

�mS ⇡ mS �m
S
(Q)
�

, (12)

which is directly related to the strength of the LQ mixing. Note that |⌦|/m2
S is indeed a

small parameter due to the actual form of ⌦ in our set-up and the current limits from LHC
on LQ masses as we explicitly show below.

The preceding expressions can now be straightforwardly applied to the three LQ com-
binations listed in Table 1.

• S1 &S3: The interactions of S3 = Sa and S1 = Sb with the Higgs boson H read

L
S1 &S3
mix = ⇠H

†(~⌧ · ~S3)HS
⇤
1 + h.c. , (13)

where ⇠ is a dimensionless coupling that, after electroweak symmetry breaking, in-
duces a mixing between the Q = 1/3 states S

(1/3)
3 and S1 ⌘ S

(1/3)
1 . The mass

eigenstates of the Q = 1/3 fields are then described by Eq. (9) for S
(Q)
a = S

(1/3)
3 ,

S
(Q)
b = S

(1/3)
1 , and ⌦ = �⇠ v

2
/2. Since the weak isospins of LQ multiplets S1 and S3

are I
S1 = 0 and I

S3 = 1, respectively, this scenario has four mass eigenstates that
are m

S
(1/3)
±

and mS3 ⌘ m
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Example: S1 = (3̄,1, 1/3) & S3 = (3̄,3, 1/3) (g � 2)µ

LS1 = y
ij

R
u
C

Ri
eRj S1 + h.c. ,

LS3 = y
ij

L
Q

C

i
i⌧2(~⌧ · ~S3)Lj + h.c. ,

These states can mix via the SM Higgs:

Lmix � ⇠H †(~⌧ · ~S3)HS
⇤
1 + h.c. =) M

2
S (1/3) =

 
m

2
S3

�
⇠v2

2

�
⇠v2

2 m
2
S1

!

Mass eigenstates:

 
S
(1/3)
+

S
(1/3)
�

!
=

✓
cos ✓ sin ✓
� sin ✓ cos ✓

◆ 
S
(1/3)
3

S
(1/3)
1

!
.

) Both mass-eigenstates have couplings with u
C

L
eL and u

C

R
eR.

Olcyr Sumensari (INFN and Univ. Padova) LQ mixing for (g � 2)µ 13 / 27

e.g.

Doršner, SF, Sumensari, 1910,03877
Doršner, SF, Saad, 2006.11624
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LQ pairs Mixing field(s) (g � 2)µ ⌫-mass

S1 &S3 H H u –

eS1 &S3 H H d –

eR2 &R2 H H d –

eR2 &S1 H – d

eR2 &S3 H – d

Table 2: Scalar LQ pairs that can, through the mixing with the SM Higgs field, generate
either the one-loop contributions towards (g�2)µ or neutrino mass. It is indicated whether
the chirality-enhanced contributions are proportional to the up-type (u) or down-type (d)
quark masses.
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multiplets is chiral in nature. More importantly, at least one of the two LQ multiplets
that mix carries non-trivial SU(2)L assignment. The LQ mixing mechanism can thus in-
duce mass splitting between the states belonging to the same LQ multiplet that, in turn,
might generate substantial oblique corrections that could be in conflict with the existing
electroweak precision measurements.

3.2 Mixing formalism

To describe the most prominent features of the LQ mixing we assume existence of two
scalars S(Q)

a and S
(Q)
b , of the same electric charge Q, but from two di↵erent multiplets Sa

and Sb that might have non-trivial weak isospins ISa and I
Sb . We thus expect, on general
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, (8)

where mSa and mSb
denote the common masses of all Sa and Sb components prior to the

mixing and ⌦ stands for the mixing term arising from the interactions of Sa and Sb with
the Higgs boson that we discuss later in concrete scenarios. The matrix in Eq. (8) can be
brought into diagonal form with a simple field redefinition
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fact that the IS3
3 = +1 component of S3 mixes with eS1, while in the S1 &S3 case the

mixing is between the I
S3
3 = 0 component of S3 and S1. The LEP constraint, in the

eS1 &S3 case, is thus slightly weaker. Namely, in the maximal-mixing scenario, we
find h

�m
(4/3)
S

i
eS1 &S3

. 50GeV . (20)

• eR2 &R2: Lastly, we discuss electroweak constraints for the eR2 &R2 scenario. In
this case, we find that the operator introduced in Eq. (15) induces the following
contribution to �T ,
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, whilem
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are described by Eq. (11) with

the appropriate replacements. In the maximal mixing case, i.e., formR2 = m eR2
⌘ mS,

we define �m
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By reinterpreting LEP data, we then find that the mass splitting is constrained to
h
�m

(2/3)
S

i
eR2 &R2

. 50GeV , (23)

similarly to the eS1 &S3 scenario.

With these ingredients at hands, we will now discuss the contributions to (g � 2)µ in each
of the potentially viable scenarios.

4 (g � 2)µ via S1&S3

4.1 Setup

The S1 &S3 scenario is the only scenario for which top quark runs in the (g � 2)µ loops
and it is thus the most promising one of the three. The relevant interactions of S1 and S3

with the SM fermions are given by

LS1 = y
ij
R u

C
RieRj S1 + h.c. , (24)

LS3 = y
ij
L Q

C
i i⌧2(~⌧ · ~S3)Lj + h.c. , (25)

where yR and yL are Yukawa coupling matrices and i and j are flavor indices for quarks
and leptons, respectively. We omit B number violating couplings of both S1 and S3 as
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⌘ mS,
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(2/3)
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S
(2/3)
+

�mS, so that

�T eR2 &R2
=

Nc
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S
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By reinterpreting LEP data, we then find that the mass splitting is constrained to
h
�m

(2/3)
S

i
eR2 &R2

. 50GeV , (23)

similarly to the eS1 &S3 scenario.

With these ingredients at hands, we will now discuss the contributions to (g � 2)µ in each
of the potentially viable scenarios.

4 (g � 2)µ via S1&S3

4.1 Setup

The S1 &S3 scenario is the only scenario for which top quark runs in the (g � 2)µ loops
and it is thus the most promising one of the three. The relevant interactions of S1 and S3

with the SM fermions are given by

LS1 = y
ij
R u

C
RieRj S1 + h.c. , (24)

LS3 = y
ij
L Q

C
i i⌧2(~⌧ · ~S3)Lj + h.c. , (25)

where yR and yL are Yukawa coupling matrices and i and j are flavor indices for quarks
and leptons, respectively. We omit B number violating couplings of both S1 and S3 as

8

Example: S1 = (3̄,1, 1/3) & S3 = (3̄,3, 1/3) (g � 2)µ

LS1 = y
ij

R
u
C

Ri
eRj S1 + h.c. ,

LS3 = y
ij

L
Q

C

i
i⌧2(~⌧ · ~S3)Lj + h.c. ,

These states can mix via the SM Higgs:

Lmix � ⇠H †(~⌧ · ~S3)HS
⇤
1 + h.c. =) M

2
S (1/3) =

 
m

2
S3

�
⇠v2

2

�
⇠v2

2 m
2
S1

!

Mass eigenstates:

 
S
(1/3)
+

S
(1/3)
�

!
=

✓
cos ✓ sin ✓
� sin ✓ cos ✓

◆ 
S
(1/3)
3

S
(1/3)
1

!
.

) Both mass-eigenstates have couplings with u
C

L
eL and u

C

R
eR.
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Four mass eigenstates mS = m(4/3)
S3

= m(�2/3)
S3

mS± = m(1/3)
S±

�aµ / mµ mt

m2
S

�mS

mS
ybµR ytµL

Example: S1 = (3̄,1, 1/3) & S3 = (3̄,3, 1/3) (g � 2)µ

• Chirality-enhanced contribution:

µL µRqRqL

mq
S± S±

µL µRqRqL

mqS 0 S
S

�aµ /
m

2
µ

m
2
S

(. . . ) +mµmt y
bµ
L y

tµ ⇤
R

"
G1/3(x

+
t )

m
2
S+

�
G1/3(x

�
t )

m
2
S�

#

with x
±
t = m

2
t /m

2
S±

.

• For maximal mixing (✓ = ⇡/4), this contribution reads

�aµ /
mµmt

m
2
S

�mS

mS

y
bµ
R

y
tµ
L

) Crucial: How do we fix �mS?
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top quark 
in the loop



Oblique correc,ons and mass spli3ng between S±

T parameter
Example: S1 = (3̄,1, 1/3) & S3 = (3̄,3, 1/3) EWPT

T -parameter:

�T = �
Nc

4⇡c2w s
2
w

1

m
2
Z

"
cos2 ✓F (mS3 ,mS�) + sin2 ✓F (mS3 ,mS+)

#
,

with F (m,m) = 0.

Expanding on �mS for maximal mixing (✓ = ⇡/4):

�T =
Nc

3⇡c2w s
2
w

�m2
S

m
2
Z

+ . . .

�T
exp = 0.05(12) ) |�mS | . 40 GeV [Gfitter. ’12]
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Expansion in ! mS for maximal mixing ("=#/4) 
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�T exp = 0.05(12) implies |�mS |  40GeV



Addi$onal constraints

Z ! ll&Z ! ⌫⌫̄
Yukawas and flavor Z ! `` and Z ! ⌫⌫̄

LQs modify the Z -couplings to leptons at one-loop:

�LZ

e↵ =
g

cos ✓W

X

i ,j

¯̀
i�

µ
h
g
ij

`L
PL + g

ij

`R
PR

i
`j Zµ

g
ij

`L(R)
= �ij g

SM
`L(R)

+ �g ij`L(R)

) Complete one-loop computation: [Arnan, Becirevic, Mescia, OS. ’19]
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LHC constraints 
LHC constraints U1 = (3, 1, 2/3)

• LQ pair-production via QCD: [CMS-PAS-EXO-17-003]

mS & 1.6 TeV

[conservative choice; qµ final state]

• Di-lepton tails at high-pT: [ATLAS. 1707.02424,1709.07242]

[Angelescu, Becirevic, Faroughy, OS. ’18]

[see also Faroughy et al. ’15]
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Produc0on at LHC 

LHC constraints U1 = (3, 1, 2/3)

• LQ pair-production via QCD: [CMS-PAS-EXO-17-003]

mS & 1.6 TeV

[conservative choice; qµ final state]

• Di-lepton tails at high-pT: [ATLAS. 1707.02424,1709.07242]

[Angelescu, Becirevic, Faroughy, OS. ’18]

[see also Faroughy et al. ’15]
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mS � 1.6TeV
LHC constraints U1 = (3, 1, 2/3)

• LQ pair-production via QCD: [CMS-PAS-EXO-17-003]

mS & 1.6 TeV

[conservative choice; qµ final state]

• Di-lepton tails at high-pT: [ATLAS. 1707.02424,1709.07242]

[Angelescu, Becirevic, Faroughy, OS. ’18]

[see also Faroughy et al. ’15]
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Angelescu, Becirevic, Faroughy and Sumensary, 2018

Faroughy, Greljo and Kamenik, 2015



Combining everything S1 = (3̄,1, 1/3) & S3 = (3̄,3, 1/3)

Z→ℓℓ

(g-2)μ

mS1,3 = 1.5 TeV

pp→μμ

S1 & S3

-2 -1 0 1 2
-2

-1

0

1

2

yR
tμ

y Lb
μ

Benchmark:

• Maximal mixing (✓ = ⇡/4).

• �mS = 40 GeV (EWPT).
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Maximal mixing or not? S1 = (3̄,1, 1/3) & S3 = (3̄,3, 1/3)

) It does not change much...
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Yukawa couplings should be perturba5ve  

(
p
4⇡)

mS < 15TeV



b quark in the loop 
Other possibilities - I R2 = (3,2, 7/6) & eR2 = (3,2, 1/6)

• Yukawa choice:

LeR2
= �y

ij

L
dRi

eR2i⌧2Lj + h.c. ,

LR2 = y
ij

R
Q ieRjR2 + h.c. .

with y
L

bµ 6= 0 and y
R

bµ 6= 0.

• Mixing with SM Higgs: see also [Kosnik. ’12]

L
eR2 &R2
mix = �⇠

�
R

†
2H

��eRT

2 i⌧2H
�
+ h.c. .

) Mixing of Q = 2/3 components of doublets.

) EWPT gives �mS . 50 GeV for maximal mixing.

) Diquark couplings forbidden by gauge invariance.

Olcyr Sumensari (INFN and Univ. Padova) LQ mixing for (g � 2)µ 23 / 27

! b coupling contribute only!

Other possibilities - I R2 = (3,2, 7/6) & eR2 = (3,2, 1/6)
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) Diquark couplings forbidden by gauge invariance.
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R2 = (3, 2, 7/6)& R̃2 = (3, 2, 1/6)

R2& R̃2

Mixing of
considered by Košnik,2012 

2/3 charge  states mixes

T parameter allows mass spliDng  ≤ 50 GeV 
(Keith and Ma, 1997; FroggaN et al, 1992)
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S3 = (3̄, 3, 4/3)& S̃1 = (3, 1, 4/3)
Other possibilities - II eS1 = (3̄,1, 4/3) & S3 = (3̄,3, 1/3)

• Yukawa choice:

LeS1
= y

ij

R
d̄
C

Ri eRj
eS1 + h.c. ,

LS3 = y
ij

L
Q̄

C

i i⌧2(~⌧ · ~S3)Lj + h.c. ,

with y
L

bµ 6= 0 and y
R

bµ 6= 0.

• Mixing with SM Higgs:

L
eS1 &S3
mix = ⇠HT

i⌧2(~⌧ · ~S3)H eS ⇤
1 + h.c. ,

) Mixing of Q = 4/3 components of doublets.

) EWPT gives �mS . 50 GeV for maximal mixing.

) Entirely new scenario!

Olcyr Sumensari (INFN and Univ. Padova) LQ mixing for (g � 2)µ 25 / 27

Other possibilities - II eS1 = (3̄,1, 4/3) & S3 = (3̄,3, 1/3)

• Yukawa choice:

LeS1
= y

ij

R
d̄
C

Ri eRj
eS1 + h.c. ,

LS3 = y
ij

L
Q̄

C

i i⌧2(~⌧ · ~S3)Lj + h.c. ,

with y
L

bµ 6= 0 and y
R

bµ 6= 0.

• Mixing with SM Higgs:

L
eS1 &S3
mix = ⇠HT

i⌧2(~⌧ · ~S3)H eS ⇤
1 + h.c. ,

) Mixing of Q = 4/3 components of doublets.

) EWPT gives �mS . 50 GeV for maximal mixing.

) Entirely new scenario!

Olcyr Sumensari (INFN and Univ. Padova) LQ mixing for (g � 2)µ 25 / 27

Other possibilities - II eS1 = (3̄,1, 4/3) & S3 = (3̄,3, 1/3)

• Yukawa choice:

LeS1
= y

ij

R
d̄
C

Ri eRj
eS1 + h.c. ,

LS3 = y
ij

L
Q̄

C

i i⌧2(~⌧ · ~S3)Lj + h.c. ,

with y
L

bµ 6= 0 and y
R

bµ 6= 0.

• Mixing with SM Higgs:

L
eS1 &S3
mix = ⇠HT

i⌧2(~⌧ · ~S3)H eS ⇤
1 + h.c. ,

) Mixing of Q = 4/3 components of doublets.

) EWPT gives �mS . 50 GeV for maximal mixing.

) Entirely new scenario!

Olcyr Sumensari (INFN and Univ. Padova) LQ mixing for (g � 2)µ 25 / 27

Z���

(g-2)�

mS
˜

1
= 1.6 TeV

mS3
= 1.6 TeV

� = 4�

pp���

36 fb-1

300 fb-1

S
˜

1 & S3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

yR
b �

y Lb
�

Z���

(g-2)�

mS
˜

1
= 3 TeV

mS3
= 1.6 TeV

� = 4�

pp���36 fb-1

300 fb-1

S
˜

1 & S3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

yR
b �

y Lb
�



• 2 scalar LQ’s can contribute to fermion masses (depends on the model);

• GUT models with two light LQs possible to construct;

• Neutrino masses can be generated radiatevely with the two scalar  LQs in the loop;

• Both B-meson anomalies can be explained by S3& R2, S3& S1 .

How to build theory  with two scalar LQs with masses in TeV region?



Two SU(2)L doublets !1 and !2  , with two vevs v1 and v2

Global SU(2) 

Figure 5. Left: Induced shift in the tau anomalous magnetic moment from �c2,⌧ as function of
the NP scale ⇤. The horizontal lines show the upper bounds from LEP and CLIC, see Eq. (4.7).
Right: Induced shift in Higgs to two taus decay from �c1,⌧ as function of the NP scale ⇤. The
horizontal solid line shows present bounds from measurements at LHC, while dashed and dotted
lines show projections from HL-LHC and FCC respectively.

Similar to the muon case, projected bounds are considered from HL-LHC [38] and FCC [39]
and can be translated to our notation as

HL� LHC : |
2
⌧ � 1| < 0.023 , FCC : |

2
⌧ � 1| < 4.5⇥ 10

�3
. (4.9)

The results are shown in the right plot in Fig. 5. We observe that the C1,⌧ (⇤) = 1 scenario
could be probed up to ⇤ ⇠ 10TeV already at the HL-LHC, while the other scenarios would
require the FCC to be probed experimentally to the same degree, with C2,⌧ case being most
elusive.

5 Flavor specific 2HDM

Based on the results of the EFT analysis, it is interesting to consider UV completions that
generate one of the operators, e.g. O4,` , above the EW scale already at the tree level, while
others are EW loop induced. In this section we consider a minimal Two Higgs-Doublet
Model (2HDM) extension of the SM5, where we restrict the interactions of the new heavy
scalars to only one charged lepton flavor (the muon), as well as to one up-like quark flavor
(the top).

5.1 Model description

We introduce two SU(2)L doublets, '1 and '2, with hypercharge +1 and vacuum expec-
tation values (vevs) v1 and v2, respectively. This sector can be rotated via a global SU(2)

transformation in order to make '1 to act as the SM Higgs [23]. We have
 
�1

�2

!
=

 
cos� sin�

� sin� cos�

! 
'1

'2

!
, tan� =

v2

v1
. (5.1)

5
For reviews of the topic, see e.g. Refs. [24, 47, 48].
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In this basis, named the Higgs basis, �2 has no vev while �1 acquires a vev v =

p
v
2
1 + v

2
2.

To simplify our discussion, we take from the start v2 = 0 and v1 = v; this corresponds to
the case sin� = 0 and cos� = 1.

In the Higgs basis we can decompose the doublets as

�1 =

 
G

+

v+⇢1+iG0p
2

!
, �2 =

 
H

+

⇢2+i⌘p
2

!
. (5.2)

where ⇢1,2 and ⌘ are the neutral scalar and pseudoscalar components respectively and H
+

is the charged degree of freedom. This global transformation has the advantage of clearly
isolating the Goldstone bosons G

± and G
0 in the decomposition, which will be eaten to

give mass to W
± and Z

0.
The scalar fields ⇢1,2 can be additionally related with the physical Higgs field and a

heavy neutral scalar by an orthogonal transformation. Here we assume that the scalar
potential is CP conserving, thus the pseudoscalar components do not mix with the scalar
one. The CP-even mass eigenstates can be then obtained by a second rotation of the two
scalar components  

h

H
0

!
=

 
cos↵ sin↵

� sin↵ cos↵

! 
⇢1

⇢2

!
, (5.3)

where we can assume 0  ↵  ⇡ and mh < mH without loss of generality. The angle ↵

describes the amount of mixing between the two scalar mass eigenstates. For simplicity, we
take the limit ↵ ! 0, which correspond to the heavy Higgs completely decoupling from the
light counterpart and from the SM gauge bosons. Thus, h is the SM Higgs.

Finally, the 2HDM Lagrangian is

L = Lkin + LY + V (�1,�2) , (5.4)

where Lkin is the kinetic part for the two Higgs doublets, LY the Yukawa Lagrangian and
V (�1,�2) the scalar potential.

Firstly, the kinetic terms are

Lkin = Dµ�
†
1D

µ
�1 + @µ�

†
2@

µ
�2 , (5.5)

where we already imposed the decoupling limit ↵ ! 0. The interaction of the light Higgs
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In the decoupling limit, all the mixing terms in the potential are taken to be zero, so
m12 = �3 = �4 = �5 = 0. Moreover, m1 = mh = 125 GeV and the quartic is v2 = �m

2
1/�1.
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For simplicity, we neglect the quartic coupling of the heavy Higgs, that is �2 = 0.
Finally, the Yukawa terms are
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RH singlet. Here we have already assumed that �2 only couples to RH up-quarks and
leptons, while �1 also couples to RH down-quarks. Finally, we take Y
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where the elements of the �1 Yukawa matrices are written in the fermion mass basis using
the tree-level matching condition as Y

f

ii
= mf

p
2/v, and ⌫l denotes the l-flavored neutrino

field. With a small abuse of notation, now t and di represent the top-quark and down-
type quark (Dirac) fields in their mass basis, respectively, and Vij denote the CKM matrix
elements.

5.2 Phenomenology: full 2HDM vs SMEFT

Here we describe the effect of the 2HDM on the two physical observables of interest, the
muon anomalous magnetic moment and the signal strength of h ! µ

+
µ
� decay. In the

full 2HDM calculation, these contributions consist of unresummed but finite loop diagram
calculations. In order to compare them with the SMEFT result, we need to match the
full theory to SMEFT at the UV matching scale ⇤. In the following we take ⇤ = mH

without loss of generality. The tree level exchanges of neutral and charged heavy Higgs
then generate the scalar four-fermion operator O4,` in Eq. (2.3) with the Wilson coefficient

Ĉ4,` =
y
0
ty

0
`

m
2
H

. (5.10)

The latter is taken as the initial condition for the RGE in Appendix A. The subsequent
running of the Wilson coefficients to the weak scale and matching to the low energy ob-
servables, as described in Section 3, yields the desired result. The full 2HDM and SMEFT
results are shown in Fig. 6 and Fig. 7 for aµ and h ! µ

+
µ
� respectively.
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Figure 1: One-loop contribution to �aµ in two-Higgs-doublet models.

the aligned model there is a lot more freedom to independently enhance or suppress any contribution

through the alignment parameters &f . We shall see next, that for somewhat large values of these

parameters, there are new Barr-Zee contributions that have never been taken into account, and can

bring quite sizeable contributions to (g � 2)µ.

4 Two-loop contribution

The Barr-Zee type contributions with an internal photon, i.e., Fig. 2, diagrams (1) and (2), have

been extensively analysed within the 2HDM and also in minimal super-symmetry (MSSM) framework

[6, 7, 31–42]. Diagram (3) from Fig. 2 is also of the Barr-Zee type and could, in principle bring

important contributions. Given that the coupling to a pair of gauge bosons of the recently discovered

scalar particle is close to the SM prediction [43], one expects the contributions from the remaining

scalars to be somewhat suppressed (by a factor Ri1). However, we shall see that this statement is not

correct, and that this contribution is quite sizeable.

Similar contributions to the ones shown in Fig. 2, but with the internal photon replaced by a Z

boson have been also analysed in the literature [33]. These contributions have a relative suppression

factor of order 10�2. This factor is in part due to the vectorial couplings of Z to leptons, which

are the only ones that survive for both scalar and pseudo-scalar bosons [33], and in part from the Z

propagator which introduces a new mass scale MZ . Therefore we will ignore these contributions in

our present analysis.

This is, pretty much, the summary of all the mechanisms that are usually considered in the

literature. However, there is no reason a priori to discard other similar Barr-Zee contributions with

a charged Higgs H± substituting the neutral scalars '0
i
, and a W boson substituting the internal

photon1. These diagrams are illustrated in Fig. 3. On one hand, one expects a relative suppression

1Similar contributions, however, with sfermionic loops within the MSSM framework have been previously analysed

in [57].
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factor with respect to the contributions of the diagrams from Fig. 2 due to the propagator of the

W boson (note that in this case we don’t have the additional suppression factor due to the gauge

boson couplings to leptons, as in the Z case). On the other hand, one must also expect to be able

to re-enhance these contributions with the &f (or tan�) parameters, and therefore, obtain sizeable

contributions at least in some regions of the parameter space.

In this analysis we shall calculate the contribution from these new diagrams and demonstrate,

that in fact, all of these new sets can bring rather sizeable contributions to the anomalous magnetic
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moment of the muon in a quite large region of the parameter space. For completeness we shall also

present the classical two-loop results in terms of the most generic Higgs potential and in terms of the

generic Yukawa texture of the A2HDM.

Before moving on to the next section and presenting the analysis, there are a couple of related

cases that are worth discussing. They are shown in Fig. 4, where the grey circles stand for the same

loop contributions as in Fig. 3 (excluding the fermionic loops for diagram (B) which is just a pure

SM contribution). The contribution from the first case (A), will have a relative suppression factor

m2
µ/M

2
W

with respect to the contributions of diagrams from Fig. 3 so we can safely discard it. The

contribution coming from the second set, Fig. 4 (B), does not have this suppression factor, thus we

can expect, at least in principle, a rather sizeable e↵ect. Details of the the full calculation of this last

set of diagrams, together with other technical details are given in appendix A. Roughly one obtains a

contribution of O(10�11) which is rather small and we shall not include it in this analysis.

Next we move on to the analysis of the set of diagrams shown in Fig. 3 which is the main goal of

our paper.

4.1 Gauge invariant e↵ective vertices

The calculation of the two-loop Barr-Zee type diagrams can be separated in two parts. We will first

calculate the '0
i
� �� and H+

� �W+ one-loop e↵ective vertices and obtain analytical and rather

simple expressions. With these expressions, the calculation of the second loop becomes quite trivial.

The e↵ective vertices can be written in a generic gauge-invariant transverse form:

i�µ⌫ = i (gµ⌫k · q � kµq⌫)S + i ✏µ⌫↵� k↵ q� S̃ , (9)
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Figure 13: Total �aµ contribution as a function of &l for di↵erent coupling and mass configurations.

MA = 50 (upper green curve). Similar to the previous case, but this time for negative values of &l, in

the right panel we have chosen the following parameter configuration: cos ↵̃ = 0.9, &u = 0.8, &d = 2,

Mh = 125 GeV, �hH+H� = 0, �hH+H� = 5 and MH = MH± = 250 GeV and MA = 40 GeV (upper

green curve) or MH = MH± = 350 GeV and MA = 50 GeV (lower orange curve). As expected, from

the analysis of the various �a(i)µ individual contributions, one obtains a significant contribution for

low masses of the scalars (especially for low MA) and large couplings. We can also observe that in

some cases we do not need the maximum allowed value of |&l| in order to reach the two-sigma region

of �aexpµ ; a value around |&l| ⇠ 30 might just be enough.

6 Conclusions

It is a common belief that only a restrained number of diagrams, namely (1) and (2) from Fig. 2,

can significantly contribute to �aµ in 2HDMs and in most of the previous analyses [6, 7, 31–37], a

CP-odd scalar in the low-mass range is enough to explain, or reduce, the discrepancy between theory

and experiment. In this work we have shown that the extra degrees of freedom of the A2HDM given

by the &f parameters, can also explain this discrepancy in some region of the parameter space, and if

not, they can significantly reduce it in most cases. We have also seen that the W loop contribution

associated with a heavy scalar H (diagram (3) from Fig. 2) can bring important contributions even

if it has a global suppression factor R21. This contribution is positive for negative values of &l. The

most interesting case is, however, the fermionic loop contribution (diagrams (4) from Fig. 3) with the

dominant part given by the top-quark. The last two diagrams (5) and (6) are also interesting, as

they can sum up to an O(10%) of the total contribution. Also, we have seen that not all of these

new contributions can be made simultaneously positive, however the total �aµ is positive for most
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Dark photon and dark Z explana0ons 

addi0onal gauge field Zd with (1,1,0) quantum numbers that arises from some 
addi0onal U(1)d gauge symmetry 

M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002 [0811.1030]

created through WIMPs. For other investigations of the vector model with kinetic mixing,
covering different phenomenological aspects and different parameter range, see e.g. recent
works [11].

Leaving the WIMP physics aside, the purpose of this note is to investigate the phe-
nomenology of MeV-to-GeV scale mediators, keeping both κ and mV as free parameters.
In Sections 2 and 3 we will address the constraints coming from the anomalous magnetic
moments of electron and muon, as well as other precision QED tests, and the signatures of
secluded U(1)′ in the decays of strange particle. We reach our conclusions in Section 4.

2 QED tests of secluded U(1)

Since we are going to investigate the MeV-scale phenomenology of V -bosons, only their
mixing with photons is relevant. Retaining the photon part of F Y

µν , redefining κ to absorb
the dependence on θW , assuming the breaking of U(1)′, and using the equations of motion,
we arrive at the following effective Lagrangian,

Leff = −
1

4
V 2

µν +
1

2
m2

V V 2
µ + κVν∂µFµν + Lh′ + ...

= −
1

4
V 2

µν +
1

2
m2

V V 2
µ + κeJµVµ + Lh′ + ..., (3)

where in the second line the divergence of the photon field strength is traded for the oper-
ator of the electromagnetic current. The Lh′ term represents the Lagrangian of the Higgs′

particle. As evident from (3), the production or decay of V -bosons occur via the inter-
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V , the V -exchange is analogous to the photon
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the momenta much smaller than mV , the exchange of V -boson introduces an additional
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=
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V ) for the integral in (4).

Currently, the precision measurement of (g − 2)e [12] surpasses the sensitivity of all
other QED measurements, and is used for the extraction of the fine structure constant [13].

2

V- Dark Photon 
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covering different phenomenological aspects and different parameter range, see e.g. recent
works [11].

Leaving the WIMP physics aside, the purpose of this note is to investigate the phe-
nomenology of MeV-to-GeV scale mediators, keeping both κ and mV as free parameters.
In Sections 2 and 3 we will address the constraints coming from the anomalous magnetic
moments of electron and muon, as well as other precision QED tests, and the signatures of
secluded U(1)′ in the decays of strange particle. We reach our conclusions in Section 4.

2 QED tests of secluded U(1)

Since we are going to investigate the MeV-scale phenomenology of V -bosons, only their
mixing with photons is relevant. Retaining the photon part of F Y

µν , redefining κ to absorb
the dependence on θW , assuming the breaking of U(1)′, and using the equations of motion,
we arrive at the following effective Lagrangian,

Leff = −
1

4
V 2

µν +
1

2
m2

V V 2
µ + κVν∂µFµν + Lh′ + ...

= −
1

4
V 2

µν +
1

2
m2

V V 2
µ + κeJµVµ + Lh′ + ..., (3)

where in the second line the divergence of the photon field strength is traded for the oper-
ator of the electromagnetic current. The Lh′ term represents the Lagrangian of the Higgs′

particle. As evident from (3), the production or decay of V -bosons occur via the inter-
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the momenta much smaller than mV , the exchange of V -boson introduces an additional
current-current contact interaction, that mimics the contribution of particle’s charge radius
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=
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Figure 1: Combination of g − 2 and α measurement constraints on mV − κ2 parameter space. The dark
grey color indicate the excluded region. The light grey band is where the consistency of theoretical and
experimental values of (g − 2)µ improves to 2σ or less. The grey line inside this band indicate 0σ relative
to experimental value, ı.e. a positive shift of 3 × 10−9 to ath

µ .

Therefore, Eq. (4) can be re-interpreted as an effective shift of the coupling constant by

∆α = 2πaV
e ; ∆α−1 = −2πaV

e /α2, (5)

and the precision test of the model comes from the next most precise determination of α.
Currently, these are atomic physics results with Cs and Rb [14]. These determinations are
very weekly affected by the additional V boson, compared to (g−2)e. Adopting the results
of [14], we require that the relative shift of ∆α does not exceed 15 ppb, which results in
the following constraints on the parameters of our model:

κ2 × F (m2
e/m

2
V ) < 15 × 10−9 =⇒ κ2 ×

(

100 MeV

mV

)2

< 1. × 10−3, (6)

where we also made a relatively safe assumption that mV ≫ me. In practice one has to
require mV >∼ 4 MeV in order to satisfy constraints imposed by primordial nucleosynthesis
(BBN) [15]. If mV is chosen right at the boundary of the BBN constraint, Eq. (6) requires
κ2 to be less than 10−6, while of course the constraint weakens considerably for larger values
of mV .

Another important constraint comes from the measurement of the muon magnetic
anomaly. The application of this constraint is not straightforward due to the necessity
to deal with hadronic uncertainty in extracting theoretical prediction for aµ. The deter-
mination based on e+e− annihilation to hadrons points to a +302(88)× 10−11 deficit (see,

3

The dark photon scenario assumes that the known quarks and leptons have no U(1)d charge 
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Kine%c mixing induces an interac%on between the SM fermions and the dark photon

Mass mixing

• by the various  experimental results from A1 in Mainz (radiative dark photon production in fixed-target electron 
scattering with decays into e+e− pairs), 

• BaBar (pair production in e+e− collision with subsequent decay into e+e− or μ+μ− pairs), 
• NA48/2 at CERN (π0 decay modes via dark photon and subsequent decay into e+e− -pair), 
• from dark matter production via dark photon from NA46 at the CERN. 

A pure dark photon models cannot accommodate significant contribu%ons to aμ.

Models with a general Higgs sector have both kine%c mixing of the SM B-field and Zd and the mass mixing 
of the SM Z-field and Zd.

• the leading contribu%on to aμ is propor%onal to the kine%c mixing parameter ε,
• the region relevant for significant ∆aμ has first been found to be                                 

with dark photon masses in the range between 1 MeV … 500 MeV,
• the electron anomalous magne%c moment result reduces the mass range to 

20 MeV · · · 500 MeV. 

The remaining range is excluded
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diverges as the center-of-mass energy increases, in conflict with unitarity. Only adding in a coupling of Y ν
L,R to the

Z does not fix this since the Z has a chiral coupling to leptons while the photon’s is vector-like. This is the same
problem faced when calculating σ (e+e− → W ν+W ν−). The solution there is to include t-channel neutrino exchange
in addition to s-channel photon and Z exchange. We consider the case where the solution to the unitarity problem in
vector Y pair production is similar; we assume that there are fermions, NL and NR, which are electrically neutral that
are exchanged in the t-channel. This is the case if, for example, Y ν

R is a heavy charged gauge boson associated with
a broken SU(2)R and NR is a right-handed neutrino. A similar situation occurs in little Higgs models with T-Parity
where we can consider Y ν

L as a T-odd vector boson and NL as a T-odd neutrino. NL or NR could also be thought
of as the singlet in an interaction of the form of that in Eq. 5 with the muon replaced by the electron. In any one
of these scenarios, the requirement that the production cross section eventually vanishes as the center-of-mass energy
grows implies some relationships between the couplings of Y ν

L,R to the Z and to eL,R − NL,R. The cross sections

σ
(

e+e− → Y ν+
L Y ν−

L

)

and σ
(

e+e− → Y ν+
R Y ν−

R

)

are calculated in Sec. A 3 and are shown for different masses of NL

and NR in Figs. 1 (c) and (d). Since we do not assume anything about the coupling of Y ν
L,R to quarks, the stringent

limits on heavy charged vector bosons from hadron colliders are ignored.
In Fig. 1, it is seen that the Y +Y − production cross section is greater than 0.08 pb for mY ∼> 89 GeV in each of

these cases. If Y is long-lived on detector time scales (mX could be larger than mY or λ ∼< 10−8) then tracks would
have been seen in the electromagnetic calorimeters in the LEP experiments as long as the center-of-mass energy was
above Y threshold. We consider this scenario to be ruled out.
The situation is complicated if there are neutrinos with masses above mZ/2 that are part of an SU(2)L doublet

with YL or if lepton family violating decays compete with Y → Xµ. However, searches for acoplanar e+e− or τ+τ−

pairs and missing energy yield similar limits on the production cross section of selectrons and staus. Therefore, in
this work, we take a lower bound of mY ∼> 89 GeV.
If Y only receives SM contributions to its mass perturbativity could become an issue if mY ∼> 500 GeV. We do not

explore this issue in detail.

III. CONTRIBUTIONS TO aµ DUE TO INTERACTION OF THE MUON WITH A HIDDEN SECTOR

In this paper we investigate the consequences of the muon coupling to a standard model singlet, which we denote
by X , and to a particle charged under the standard model, which we call Y . There are four cases we consider based
on the intrinsic angular momenta of X and Y . The first case is a spin-0 X and a spin-1/2 Y . The second is a spin-1
X and a spin-1/2 Y . The third case is a spin-1/2 X and a spin-0 Y while the last is a spin-1/2 X and a spin-1 Y .
We present the contributions to aµ in each case below.

A. Case I

In the first case, the interaction Lagrangian is given by

Lint = λLXȲRµL + λRXȲLµR +H.c. . (7)

This contributes to the muon’s anomalous magnetic moment through the diagram seen in Fig. 2 (a). This contribution
is easily calculated to be

(∆aµ)1 =
1

16π2

∫ 1

0

dx
(1− x)2

[(

λ2
L + λ2

R

)

mµmY + 2λLλRxm2
µ

]

(1− x)m2
Y + xm2

X − x(1− x)m2
µ

. (8)

If mY ,mX ≫ mµ then we can approximate this expression as

(∆aµ)1 ≃
1

16π2

(

λ2
L + λ2

R

)

∫ 1

0

dx
(1− x)2 mµmY

(1− x)m2
Y + xm2

X

(9)

=
1

32π2

(

λ2
L + λ2

R

) mµ

mY
H1

(

m2
X

m2
Y

)

(10)

= 8.36× 10−7
(

λ2
L + λ2

R

)

(

400 GeV

mY

)

H1

(

m2
X

m2
Y

)

, (11)
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FIG. 2: Diagrams relevant for Cases I (a), II (b), III (c), IV (d).

B. Case II

In the second case, the interaction Lagrangian is now given by

Lint = λLX
µȲLγµµL + λRX

µȲRγµµR +H.c. . (13)

This gives a contribution to aµ through the diagram seen in Fig. 2 (b). We find

(∆aµ)2 =
1

8π2

∫ 1

0

dx
x (1− x)

[

4λLλRmµmY −
(

λ2
L + λ2

R

)

(1 + x)m2
µ

]

(1 − x)m2
Y + xm2

X − x(1 − x)m2
µ

(14)

+
1

16π2

m2
µ

m2
X

∫ 1

0

dx
(1− x)3

[

2λLλR (1− x)mµmY −
(

λ2
L + λ2

R

) (

m2
Y − xm2

µ

)]

(1− x)m2
Y + xm2

X − x(1 − x)m2
µ

(15)

6

If mY ,mX ≫ mµ,

(∆aµ)2 ≃
mµmY

2π2
λLλR

∫ 1

0

dx
x (1− x)

(1 − x)m2
Y + xm2

X

−
m2

µm
2
Y

16π2m2
X

(

λ2
L + λ2

R

)

∫ 1

0

dx
(1− x)3

(1− x)m2
Y + xm2

X

(16)

=
1

4π2
λLλR

(

mµ

mY

)

H2

(

m2
X

m2
Y

)

(17)

−
1

48π2

(

λ2
L + λ2

R

) m2
µ

m2
X

G2

(

m2
X

m2
Y

)

(18)

= 6.69× 10−6λLλR

(

400 GeV

mY

)

H2

(

m2
X

m2
Y

)

(19)

− 2.36× 10−5
(

λ2
L + λ2

R

)

(

1 GeV

mX

)2

H2

(

m2
X

m2
Y

)

, (20)

where

H2 (r) = 2

∫ 1

0

dx
x (1− x)

1 − (1− r) x
, (21)

G2 (r) = 3

∫ 1

0

dx
(1− x)3

1− (1− r) x
, (22)

This interaction is a generalization of the much-discussed case in which the photon kinetically mixes with a GeV
scale gauge boson. To obtain the contribution to the muon’s anomalous magnetic moment in this situation, we
identify Y with the muon and write λL = λR = ϵe where ϵ characterizes the strength of the kinetic mixing and e is
the strength of the muon’s electric charge. Then (as in [9]),

(∆aµ)2′ =
ϵ2αm2

µ

π

∫ 1

0

dx
x (1− x)2

(1− x)2m2
µ + xm2

X

(23)

If mX ≫ mµ we can approximate this as

(∆aµ)2′ ≃
ϵ2α

3π

(

mµ

mX

)2

(24)

= 8.65× 10−6ϵ2
(

1 GeV

mX

)2

, (25)

while if mX ≪ mµ,

(∆aµ)2′ ≃
ϵ2α

2π
(26)

= 1.16× 10−3ϵ2 . (27)

These expressions agree with those in Ref. [9].

C. Case III

X is now a fermion, while Y is a scalar. The interaction is given by

Lint = λLYLX̄µL + λRYRX̄µR +H.c. . (28)

Here, the subscript on Y labels the helicity of the muon to which it couples and nothing about its own helicity, just
as the subscripts that label sfermions in supersymmetry do. In Cases I and II, YL and YR were two-component Weyl

7

spinors married to form a Dirac fermion whose mass term breaks electroweak symmetry. Here, they are separate fields
that, in general, have different masses. The diagram shown in Fig. 2 (c) gives a contribution to aµ of

(∆aµ)3 =
λ2
L

16π2

∫ 1

0

dx
x (1− x)mµmX

(1 − x)m2
YL

+ xm2
X − x(1− x)m2

µ

+ (L → R) . (29)

If mY ,mX ≫ mµ then we can approximate this expression as

(∆aµ)3 ≃
mµmX

32π2

[

λ2
L

m2
YL

H2

(

m2
X

m2
YL

)

+
λ2
R

m2
YR

H2

(

m2
X

m2
YR

)]

(30)

= 2.09× 10−9

[

λ2
L

(

400 GeV

mYL

)2

H2

(

m2
X

m2
YL

)

+ λ2
R

(

400 GeV

mYR

)2

H2

(

m2
X

m2
YR

)

]

( mX

1 GeV

)

, (31)

where H2 is defined in Eq. 22.

D. Case IV

The last case we consider is a fermionic X and a spin-1 Y . The interaction is now

Lint = λLY
ν
L X̄γνµL + λRY

ν
RX̄γνµR +H.c. . (32)

As in Case III, the subscript on Y only labels the muon to which it couples. The relevant diagram is shown in Fig. 2
(d). In this case the contribution to aµ is

(∆aµ)4 =
λ2
L

8π2

∫ 1

0

dx
(1− x)2 (2− x)m2

µ

(1− x)m2
YL

+ xm2
X − x(1 − x)m2

µ

+O

(

m2
µ

m2
YL

)

+ (L → R) . (33)

If mY ,mX ≫ mµ then we can approximate this expression as

(∆aµ)4 ≃
λ2
L

8π2

m2
µ

m2
YL

∫ 1

0

dx
(1− x)2 (2− x)

1 − x+ x
(

m2
X/m2

YL

) + (L → R) (34)

= 7.36× 10−10

[

λ2
L

(

400 GeV

mYL

)2

H4

(

m2
X

m2
YL

)

+ λ2
R

(

400 GeV

mYR

)2

H4

(

m2
X

m2
YL

)

]

, (35)

where

H4 (r) =
6

5

∫ 1

0

dx
(1− x)2 (2− x)

1− (1− r) x
. (36)

IV. COMPARISON WITH EXPERIMENT

The deviation of the standard model and experimental values for aµ is

∆aµ = aExp
µ − aSMµ = (24.6± 8.0)× 10−10 . (37)

This discrepancy could be lessened if additional sources contribute to the muon’s anomalous magnetic moment, as in
the cases above. In Fig. 3 we plot the contribution to aµ in each of the four cases as functions of mX while fixing
λL = 0.1, λR = 0, and mY = 400 GeV in Cases I and II, and mYL

= 400 GeV in Cases III and IV. In Case II, we
have actually plotted − (∆aµ)2, since, for these parameter choices, it is negative. We see that the helicity flip along
the fermion line gives a factor of mX in Case III, which suppresses its contributions to aµ at small mX for fixed mYL

.
For smaller values of mX , Case II gives a larger contribution to aµ than in any of the other scenarios. We note that
the contributions to aµ for a fermionic X are generally smaller than for a bosonic X , given the same value of the
coupling.

5
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FIG. 2: Diagrams relevant for Cases I (a), II (b), III (c), IV (d).

B. Case II

In the second case, the interaction Lagrangian is now given by

Lint = λLX
µȲLγµµL + λRX

µȲRγµµR +H.c. . (13)

This gives a contribution to aµ through the diagram seen in Fig. 2 (b). We find

(∆aµ)2 =
1

8π2

∫ 1

0

dx
x (1− x)

[

4λLλRmµmY −
(

λ2
L + λ2

R

)

(1 + x)m2
µ

]

(1 − x)m2
Y + xm2

X − x(1 − x)m2
µ

(14)

+
1

16π2

m2
µ

m2
X

∫ 1

0

dx
(1− x)3

[

2λLλR (1− x)mµmY −
(

λ2
L + λ2

R

) (

m2
Y − xm2

µ

)]

(1− x)m2
Y + xm2

X − x(1 − x)m2
µ

(15)
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FIG. 3: Contributions to aµ as functions of mX for λL = 0.1, λR = 0, and mY = 400 GeV in Cases I (solid), II (dashed), III
(dotted) and IV (dot-dashed). Note that we have plotted − (∆aµ)2 in Case II (dashed) since it is negative for these choices
of λL,R. We use the full one loop expressions for (∆aµ)1 , . . . , (∆aµ)4. The light gray band shows values of ∆aµ for which the
discrepancy between the theoretical and experimental values of aµ (Eq. 37) is reduced to 1σ.

If any one of these scenarios describes the dominant contribution to the muon’s anomalous magnetic moment
beyond the standard model, we can ask what values of λL,R for a given mX and mY reduce the difference between
the experimental and theoretical values of aµ to less than 2σ. Fixing λR = 0 and mY = 400 GeV in Cases I and II,
and mYL

= 400 GeV in Cases III and IV, we plot such values of λL as functions of mX in Fig. 4. As we expect from
Fig. 3, λ is constrained to smaller values in Cases I and II than in III and IV. Also, we note that in Case III, the
contribution to aµ is proportional to mX , which suppresses it for low values of mX .
We also show the contribution to aµ as functions of mX with λ = ϵe = 0.06 in Case II with Y identified as the

muon in Fig. 5. Also shown are allowed values of ϵ as function of mX .
We note that a fermionicX (Cases III and IV) can be more strongly coupled to muons without violating experimental

constraints on aµ if its mass is much smaller than that of Y . If Y ’s are observed at the Tevatron or at the LHC, their
decay widths can be compared with their contribution to aµ to help determine their spin.

V. CONCLUSIONS

The experimental value of aµ and its value in the SM currently differ at the 3.1σ level. This could be a sign
of physics beyond the SM. Hidden sectors that couple to muons can provide an explanation of this deviation. In
particular, situations in which the muon is coupled to particles that are charged under both the SM and a hidden
symmetry group, G, and to particles only charged under G could give rise to a nonzero ∆aµ. These particles could
also be found in collider experiments and measurements of their spins and couplings could shed light on the possibility
that they contribute significantly to aµ.
The spins of the hidden or mixed particles that couple to the muon greatly affect the structure of their contributions

to aµ. In particular, when a fermionic SM singlet is coupled to the muon with a bosonic connector, the constraints on
the coupling strength from aµ are less severe for SM singlet masses less that about 100 GeV. In this way, it is easier
to “hide” a light fermionic SM singlet that couples to the muon than a bosonic one.
It is also worth considering whether couplings of the form of Eq. 5, in the case where X is a dark matter candidate,

could be responsible for the recent excesses seen in cosmic ray positrons seen by the PAMELA experiment [14].
Depending on the values of λL and λR, the dominant annihilation channel for X ’s could be XX → µ+µ− through
t-channel Y exchange. Dark matter decays into a pair of muons are seen to fit the positron data reasonably well
(modulo boost factors) [15], while the muons are kinematically constrained from producing baryons and so would not
violate experimental limits on the antiproton fraction of cosmic rays. Future work will study this in more detail.

Contribu)ons to aμ as func)ons of mX for λL = 0.1, λR = 0, and mY = 400 GeV in 

Cases I (solid), II (dashed), III (doEed) and IV (dot-dashed). 

Note that we have ploEed  -(∆aμ)2 in Case II (dashed) since it is nega)ve for these choices of λL,R. 

Full one loop expressions are used, 

The light gray band shows values of ∆aμ for which the discrepancy between the theore)cal and experimental values of aμ

is reduced to 1σ. 



SM× U(1)X

Par,cle content

• SM gauge bosons + new BX
μ;

• Two-Higgs doublet model;
• Three  gauge couplings: g, gY and gX;

• Fermions are doublets of SU(2)L; and there are SU(2)L singlets
• Y hypercharge 

• X hypercharge 

• Higgs doublets Φ0, ΦX and singlet s 

• right-handed SU(2)L singlets: �R, liR, uiR, diR;

• Y hypercharges:

YL = �1

2
; YQ =

1

6
; Yl = �1; Y� = 0; Yu =

2

3
; Yd = �1

3
; (2.3)

• X hypercharges:

XL = 0; XQ = 0; Xe2 = 1; X�R = �1; Xu2 = �1; Xd2 = 1 ; (2.4)

with the remaining RH fields uncharged.

• Higgs doublets �0, �X and singlet s:

Y0 = YX =
1

2
; X0 = 0; XX = �1; Ys = 0 Xs = 1 . (2.5)

Notice that the term �†
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and lepton doublets, respectively, while the rest denoted by uR, dR, eR refer to the charges
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How to build theory with hidden sector?
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Basic proper-es of the model

• Minimality: Introducing a minimal set of new degrees of freedom; 

• Non-Universality: Selected puzzles as a signal of favored flavors; 

• Standard Model features :

a) Fermions are accommodated within the same  representa-ons as in SM ;

b) Cancella-on of anomalies per genera-on;

• Low-Energy Phenomenology (1103.0721):

a) Interac-ons νe or νN not stronger than GF ;

b) Absence of fundamental electrically charged par-cles with mass  < 100 GeV;

c)  The model must have the possibility of a UV comple-on at or above the 

weak scale;

d)  The model must be consistent with a variety of tests from QED and par-cle 

physics in the MeV energy range. 
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Anomaly cancella-ons 

• U(1)3X

• U(1)Y U(1)2X

• U(1)2Y U(1)X

• SU(2)2U(1)X

• SU(3)2U(1)X

• grav2U(1)X
Our approach:

Ø anomalies are solved per genera-ons  as in SM 
Ø dark fermion is stable!

SM fermions + single DM fermion ( singlet of the 
SM gauge group), 
SM quarks and leptons  non-zero U(1)X charges 
the DM fermion  must have a vector-like U(1) X
coupling.
e.g. Ellis et al, 1704.03850, 1705.03447
Babu et al., 1705.01822,…
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Electroweak Lagrangian
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Gauge bosons mixing

Field redefini4on

the crossed terms vanishes and the mixing effect is converted into the covariant
deriva4ve
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g.b.

Now, both conditions combined imply

XLi = XLj , Xli = Xlj , (2.12)

hence breaking the (a) criterion. Naturally, in the U(1)X extensions one must introduce
a larger scalar sector, in comparison to the SM, due to the creation of the longitudinal
polarization for the massive Xµ boson. In summary, the Eq.(2.12) will state that any
version containing only one Higgs doublet is necessarily universal in the fermion families.

2.1 Kinetic mixing

Once ✏ is assumed to be a small parameter, it is convenient to translate its dependence
directly into the coupling constants, thus leaving the kinetic Lagrangian in a diagonal form.
The task can be achieved through the field redefinition

BY

µ ! BY

µ + ✏BX

µ , (2.13)

i.e., by rewriting Eq.(2.6a)

Lk.m. � �1

2
(BY

µ + ✏BX

µ )Ôµ⌫(BY

⌫ + ✏BX

⌫ )� 1

2
BX

µ Ôµ⌫BX

⌫ + ✏ BX

µ Ôµ⌫(BY

⌫ + ✏BX

⌫ ) , (2.14)

where Ôµ⌫ = @µ@⌫ � @2gµ⌫ . Up to order O(✏),

Lk.m. � �1

2
BY

µ Ôµ⌫BY

⌫ � 1

2
BX

µ Ôµ⌫BX

⌫ +O(✏2) , (2.15)

i.e. the crossed terms vanishes and the mixing effect is converted into a new term in the
covariant derivative:

Dµ ! Dµ = @µ � igWµ · ⌧ � igY B
Y

µ Y p � i(Y p + gXXp)BX

µ , (2.16)

where, up to first order, one may write ✏gY ⌘ .

2.2 Couplings and masses of gauge bosons

In the previous section we showed that the non-universal model must contain at least two
Higgs doublets, here denoted as �0 and �X , as a necessary condition to recover the correct
mass spectrum of the fermions. In addition, a singlet s is required to couple to the fermion
�R (or to generate the mixing between the second and the remaining generations of RH
neutrinos, see A.1) as well as to break a residual U(1) in the potential which could leave
the theory with a massless pseudo-Goldstone boson at tree-level [15].

The gauge boson masses are extracted from the kinetic piece of the scalar Lagrangian
once the scalars acquire a vacuum expectation value. In terms of ladder operators the
covariant derivatives can be written as4

Dµ�
p =


@µ � i

gp
2
(W+I+ +W�I�)� ig⌧3W

3
µ � igY Y

pBY

µ � i(Y p + gXXp)BX

µ

�
�p ,

(2.17)

Dµs = (@µ � igXXsBX

µ )s . (2.18)
4
Note that, in the basis of Eq.(2.13) and since Ys = 0, the kinetic term does not enter in the interactions

with the singlet scalar.
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µ Ôµ⌫(BY

⌫ + ✏BX

⌫ ) , (2.14)
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µ Ôµ⌫BX

⌫ +O(✏2) , (2.15)

i.e. the crossed terms vanishes and the mixing effect is converted into a new term in the
covariant derivative:

Dµ ! Dµ = @µ � igWµ · ⌧ � igY B
Y

µ Y p � i(Y p + gXXp)BX

µ , (2.16)

where, up to first order, one may write ✏gY ⌘ .

2.2 Couplings and masses of gauge bosons

In the previous section we showed that the non-universal model must contain at least two
Higgs doublets, here denoted as �0 and �X , as a necessary condition to recover the correct
mass spectrum of the fermions. In addition, a singlet s is required to couple to the fermion
�R (or to generate the mixing between the second and the remaining generations of RH
neutrinos, see A.1) as well as to break a residual U(1) in the potential which could leave
the theory with a massless pseudo-Goldstone boson at tree-level [15].

The gauge boson masses are extracted from the kinetic piece of the scalar Lagrangian
once the scalars acquire a vacuum expectation value. In terms of ladder operators the
covariant derivatives can be written as4

Dµ�
p =


@µ � i

gp
2
(W+I+ +W�I�)� ig⌧3W

3
µ � igY Y

pBY

µ � i(Y p + gXXp)BX

µ

�
�p ,

(2.17)

Dµs = (@µ � igXXsBX

µ )s . (2.18)
4
Note that, in the basis of Eq.(2.13) and since Ys = 0, the kinetic term does not enter in the interactions

with the singlet scalar.

– 6 –

Now, both conditions combined imply

XLi = XLj , Xli = Xlj , (2.12)

hence breaking the (a) criterion. Naturally, in the U(1)X extensions one must introduce
a larger scalar sector, in comparison to the SM, due to the creation of the longitudinal
polarization for the massive Xµ boson. In summary, the Eq.(2.12) will state that any
version containing only one Higgs doublet is necessarily universal in the fermion families.

2.1 Kinetic mixing

Once ✏ is assumed to be a small parameter, it is convenient to translate its dependence
directly into the coupling constants, thus leaving the kinetic Lagrangian in a diagonal form.
The task can be achieved through the field redefinition

BY

µ ! BY

µ + ✏BX

µ , (2.13)

i.e., by rewriting Eq.(2.6a)

Lk.m. � �1

2
(BY

µ + ✏BX
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µ )Ôµ⌫(BY

⌫ + ✏BX

⌫ )� 1

2
BX
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µ Ôµ⌫BY

⌫ � 1

2
BX
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• right-handed SU(2)L singlets: �R, liR, uiR, diR;

• Y hypercharges:

YL = �1

2
; YQ =

1

6
; Yl = �1; Y� = 0; Yu =

2

3
; Yd = �1

3
; (2.3)

• X hypercharges:

XL = 0; XQ = 0; Xe2 = 1; X�R = �1; Xu2 = �1; Xd2 = 1 ; (2.4)

with the remaining RH fields uncharged.

• Higgs doublets �0, �X and singlet s:

Y0 = YX =
1

2
; X0 = 0; XX = �1; Ys = 0 Xs = 1 . (2.5)

Notice that the term �†
0�Xs is allowed in the scalar potential.

• Electroweak Lagrangian is

L = �1

4
Wµ⌫ ·Wµ⌫ �

1

4
BY µ⌫BY

µ⌫ �
1

4
BXµ⌫BX

µ⌫ +
✏

2
BY µ⌫BX

µ⌫ + (2.6a)

+(Dµ�
0)†(Dµ�0) + (Dµ�

X)†(Dµ�X) + (Dµs)
†(Dµs)� V (�0,�X , s)(2.6b)

�
X

↵=1,2,3

0

@
X

�=1,3

L↵L�
0Y l

↵�
e�R + L↵L�

XY l

↵2e2R + h.c.

1

A (2.6c)

�
X

↵=1,2,3

X

�=1,3

⇣
Q↵L�

0Y D

↵�
d�R +Q↵L�̃

0Y U

↵�
u�R + h.c.

⌘
(2.6d)

�
X

↵=1,2,3

⇣
Q↵L�

XY D

↵2d2R +Q↵L�̃
XY U

↵2u2R + h.c.
⌘

(2.6e)

�Ys �L�Rs� Y ⇤
s �R�Ls

⇤ + (2.6f)

+i
X

↵=1,2,3


L↵L /DL↵L +Q↵L

/DQ↵L + (2.6g)

+l↵R /Dl↵R + d↵R /Dd↵R + u↵R /Du↵R

�
+ i�R

/D�R . (2.6h)

Anomalies A basic prerequisite of any ultraviolet complete gauge theory is that it is free
of triangle anomalies [17]. The following equations summarize how this criterion can be
achieved for arbitrary X charges within SM⌦U(1)X models. Again, Q and L denote quark
and lepton doublets, respectively, while the rest denoted by uR, dR, eR refer to the charges
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Once the relation Q = T3+Y to the electric charge matrix is preserved, it follows that

�0 =

 
'+
0

v0+H0+i�0p
2

!
, �X =

 
'+
X

vX+HX+i�Xp
2

!
, s =

vs +Hs + i�sp
2

. (2.19)

The charged currents are untouched and result for the W mass mW = gv

2 , with v2 ⌘ (v20 +

v2
X
). The neutral fields must mix and their mass matrix is extracted from the symmetric

expression
P3

i=1(aiW
3
µ + biBY

µ + ciBX
µ )2, whose determinant is zero (massless photon). In

the (W 3
µ , B

Y
µ , BX

µ ) basis it is given by

M0 =
v2

8

0

B@
g2 �ggY g(2gXc2

�
� )

�ggY g2
Y

�gY (2gXc2
�
� )

g(2gXc2
�
� ) �gY (2gXc2

�
� ) 4[g2

X

v̄
2

v2
� gXc2� ] + 2

1

CA , (2.20)

where
v2 ⌘ (v20 + v2X), v̄2 ⌘ (v2s + v2X), c2

�
=

v2
X

v2
. (2.21)

The above real symmetric matrix eigenvectors define an orthonormal basis and compose the
orthogonal matrix V which rotates the fields from the gauge to the mass basis. Although
the choice of parametrization for V is not physical, there are options which can make the
analysis simpler. Consider, for example, the choice made in terms of the three Euler angles
in the usual zxz rotations by the angles (�, ✓, ) (using notation sin↵ ⌘ s↵ and cos↵ ⌘ c↵)

V =

0

B@
c c� � c✓s�s c s� + c✓c�s s✓s 
�s c� � c✓s�c �s s� + c✓c�c c s✓

s✓s� �s✓c� c✓

1

CA . (2.22)

The angle ✓ introduces the mixing of BX
µ with the remaining gauge fields, i.e. ✓ is the angle

between the BX
µ and the z-plane where the W 3

µ � BY
µ mixing occurs. All three angles can

be written using the couplings, vev’s and scalar charges.
One can notice from Eq.(2.20) that the block (W 3

µ , B
Y
µ ) has a null determinant. This

substructure of M0 implies a zero entry in one eigenvector, which fixes one of the angles.
Therefore, by taking c = 0; s = �1 and applying a phase redefinition s� $ c�, c✓ $ s✓
we can parametrize V as

V =

0

B@
s✓c� �s✓s� �c✓
s� c� 0

c✓c� �c✓s� s✓

1

CA . (2.23)

The minimal coupling in the covariant derivative can be presented by

hg0|B0
µi ! hg0|V|V|B0

µi = hVg0|VB0
µi = hg|Bµi, (2.24)

where the vectors are defined as

Bµ ⌘ (Xµ, Aµ, Zµ)
| = VB0

µ, g ⌘ (gR, eQ, gZ)
| = Vg0 (2.25)

and
g0 ⌘ (g⌧3, gY Y, gXX + Y )| , B0

µ ⌘ (W 3
µ , B

Y

µ , BX

µ )| . (2.26)
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• ρ parameter
• (g-2)μ , (g-2)e

• K leptonic decays 
• parity non-conserving processes

Reproducing SM W and Z masses, 
parameter space  reduced to 

Based on F. Correia and SF , 1609.00860
and F. Correia and SF, 1905.03867, 1905.03872S

(Proton puzzle in the U(1)X

Parameter space:

Constraints

where U0 ⌘ V †
uL

YU

0 VuR and U
X

⌘ V †
uL

YU

X
VuR. Since there are no interactions among quarks

and the singlet s, the vertices can be written as

Lh � hjU |hi+ h.c. , (2.88)

with jU ⌘ (jU0 , j
U

X
, 0), h ⌘ (H0, HX , Hs) and jU

i
⌘ uL U

i
uR. Thus, in the mass basis,

Lh � hRhjU |hi+ h.c. . (2.89)

The matrix Rh rotates M2
h

according to Section 2.4. Finally,

Lh � [(Rh)11 j
U

0 +(Rh)12 j
U

X ]H+[(Rh)21 j
U

0 +(Rh)22 j
U

X ]H+[(Rh)31 j
U

0 +(Rh)32 j
U

X ]Hs+h.c. .

(2.90)
The same follows for down-quarks and charged leptons. For instance,

Lmass �
vp
2
[lL(Yl

0c� + Yl

Xs�)lR] + h.c. , (2.91)

The lepton vectors are rotated as lR ! VlRlR, lL ! VlLlL, such that V †
lL
(Yl

0c� +Yl

X
s�)VlR

defines their mass matrix.

2.6 Parameter space

The multi-dimensional free parameter space in models beyond the Standard Model is com-
monly larger than the simple gX ⇥mX planes. In order to avoid a redundant criterion for
fixing these planes, it is important to consider all relations emerging in the gauge sector
and connecting the remaining variables at tree level. The procedure is equivalent to the re-
duction of the dimension of a multi-variable set through some associated set of independent
equations. In fact, a natural relation encompasses coupling constants and energy scales
which, in general, may be directly fitted by the observable connected to it. In addition to
that, one can also permute some of the variables. Such a replacement does not reduce the
dimension of parameter space, but it might lead to a more convenient use of the model.
Let us consider the SM example, which is initially described by the P set

P := [g, gY , v]. (2.92)

After the W3 - B mixing, the angle parameterizing the eigenvectors can be used in place of
gY , i.e.

P := [g, gY , v] ! [g, sw, v]. (2.93)

In all vertexes, gY must be written as gY (g, sw) (in fact gY does not depend on v). Now,
from the Z pole mass one can perform a fit of the parameters which eliminates, for instance,
any dependence on v (i.e. v = v(g, sw)). Thus,

P
mZ! [g, sw]. (2.94)

Next, once the charged currents are coupled only through the g coupling, it can be related
to the Fermi constant GF at the low energy limit, i.e. P ! [g, sw]

GF! [sw]. Finally, from
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the requirement that the theory must reproduce the electromagnetic interactions one last
independent equation is given by

gsw = e, gY (g, sw)cw = e . (2.95)

Therefore, the gauge sector of the Standard Model is fully determined. We must note that
the W pole mass was not used in any of the steps presented above and it emerges as a
prediction of the model.

As mentioned before, the P set is defined by the variables entering in the New Physics
effective couplings and includes the mixing matrices. In our model, P is necessarily larger
than in the SM but it still allows a significant reduction. Initially, it follows that

P := [, g, gY , gX , vX , v0, vs,F] (2.96)

Similarly to the previous example, the constants g, gY are solved in terms of the remaining
elements. Since in the asymptotic limit mZ depends only on v it might be convenient to
preserve c� in the analysis. Finally, the vs breaking scale can be replaced by mX . We end
up with a five-dimensional parameter space, namely

P := [c� ,, gX ,mX ,F] . (2.97)

The kinetic mixing constant is independent and may be replaced by the new mixing angle
✓. Accordingly, there must be a region for  where the Z interactions are exactly described
as in the SM, i.e. where s✓ = 0.

3 Dark photons vs. Z 0 gauge bosons

The full set of dark gauge bosons Xµ can be divided into two subsets, namely the one
composed out of dark photons, here denoted by A0, coupled exclusively to vector currents.
The second subset comprises general Z 0 bosons whose couplings include axial-vector com-
ponents. In the following paragraphs we briefly summarize the current theoretical status
as well as the results of experimental searches for the effects of these fields [4].

Dark Boson Searches and Future Experiments From our study in the Section 2.3, a
general property of the vector and axial-vector couplings is that both contain universal and
non-universal parts. The LEP searches [23] can primarily test possible electron couplings
to dark fields by looking for recoil energy in a nucleus and therefore can be used to place
bounds on the universal part. On the other hand, experiments such as Mu3ee [24], devoted
to test LFV via the decay channel µ ! ee+e�, can place bounds on the flavor matrix6

of the particular model and will cover the range 10 MeV< mA0 < 80 MeV. The BaBar
collaboration has also performed A0 searches [3] and their results highly constrain dark
photons with mass above the di-muon threshold.

6
Matrix which summarizes the amount of non-universality and flavor violation in the model.
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Following the work of [16], a general fermion-Xµ vertex can be written as

L =
1

2

X

F

µ̄[xV �
⇢ + xA�

⇢�5]F X⇢. (3.43)

For simplicity, we do not include the suppressed flavor violating processes, i.e. F = µ. For
mF = mµ, the integral linked to the first diagram is given by

[aµ]a =
m2

µ

16⇡2

Z 1

0
dz

h
x2
V
[(z � z2)z] + x2

A
[(z � z2)(z � 4)� 2

m
2
µ

m
2
X
z3]

i

m2
µx

2 +m2
X
(1� x)

. (3.44)

As mentioned before, we work under the assumption of very large Higgs masses, where aµ
is dominated by [aµ]a. On the other hand, the above integral leads to a wrong negative sign
for a wide range of the c� parameter, and have to be compensated by additional contribu-
tions. Therefore, we assume that scalar masses are relatively large and compute the scalars
contributions to the moment function in the region where the asymptotic approximation
to the integrals is fairly valid, i.e. mh > 20mµ. The bounds on the Higgses couplings to Z
are coming from the LHC analyses, as already considered by the authors of Ref. [17]. The
Yukawa Lagrangian can be parametrized as

LY =
X

h,F

µ̄[CS + CP�5]F h. (3.45)

Both diagrams (c) and (d) can contribute to the muon anomalous magnetic moment. For
the diagram(c) we have to specify F = ⌫ or mF = 0. The coupling CP is in fact present
in our model for both neutral and charged scalars and, in the neutral case, it is purely
imaginary. For mF = m⌫ = 0 it follows that

[aµ]c =
m2

µ

8⇡2
(|C+

S
|2 + |C+

P
|2)

Z 1

0
dz

(z3 � z2)

m2
µz

2 +m2
h+(1� z)

(3.46)

and for neutral scalars in the diagram (d) F = µ, one gets

[aµ]d =
m2

µ

8⇡2

Z 1

0
dz

|C0
S
|2(2z2 � z3) + |C0

P
|2z3

m2
µz

2 +m2
h+(1� z)

, (3.47)

Figure 5: The diagrams contributing to the muon anomalous magnetic moment. The
second diagram is not generated in SM ⌦ U(1)X theories.
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is dominated by [aµ]a. On the other hand, the above integral leads to a wrong negative sign
for a wide range of the c� parameter, and have to be compensated by additional contribu-
tions. Therefore, we assume that scalar masses are relatively large and compute the scalars
contributions to the moment function in the region where the asymptotic approximation
to the integrals is fairly valid, i.e. mh > 20mµ. The bounds on the Higgses couplings to Z
are coming from the LHC analyses, as already considered by the authors of Ref. [17]. The
Yukawa Lagrangian can be parametrized as

LY =
X

h,F

µ̄[CS + CP�5]F h. (3.45)

Both diagrams (c) and (d) can contribute to the muon anomalous magnetic moment. For
the diagram(c) we have to specify F = ⌫ or mF = 0. The coupling CP is in fact present
in our model for both neutral and charged scalars and, in the neutral case, it is purely
imaginary. For mF = m⌫ = 0 it follows that

[aµ]c =
m2

µ

8⇡2
(|C+

S
|2 + |C+

P
|2)

Z 1

0
dz

(z3 � z2)

m2
µz

2 +m2
h+(1� z)

(3.46)

and for neutral scalars in the diagram (d) F = µ, one gets

[aµ]d =
m2

µ

8⇡2

Z 1

0
dz

|C0
S
|2(2z2 � z3) + |C0

P
|2z3

m2
µz

2 +m2
h+(1� z)

, (3.47)

Figure 5: The diagrams contributing to the muon anomalous magnetic moment. The
second diagram is not generated in SM ⌦ U(1)X theories.
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Contribution of axial coupling sign analysis leads to  

To explain observed difference

[aµ]a > 0

[aµ]a < 0

(a) (b)

Figure 3: The allowed region for the proton radius explanation, using the bound in
Eq.(3.24). Under the narrow-width approximation the vector Xµ decays into the missing
�̄�, ⌫̄⌫ pairs. Here mX = 3m� and F⌧⌧ = 0.

where

IV (m
2
X) =

Z 1

0
dz

z2(1� z)

[m2
l
z2 +m2

X
(1� z)]

mX�ml! 1

3m2
X

,

IA(m
2
X) =

Z 1

0
dz

z(1� z)(z � 4)�
⇣
2

m
2
l

m
2
X

⌘
z3

[m2
l
z2 +m2

X
(1� z)]

mX�ml! � 5

3m2
X

. (3.35)

Since the limit mX � me is valid in our analysis, we can set the bounding curve

f

✓
m2

e

m2
X

◆
⌘

✓
m2

e

m2
X

◆
1

6⇡↵
|(xeV )2 � 5(xeA)

2| < 0.5ppb (3.36)

Parameter Space As discussed in Part I, we have to find out how to fix a plane in a five-
dimensional parameter space assuming that the model can explain the selected experimental
discrepancies. If we insist to explain the proton charge radius puzzle, one has to require

sgngX = �sgn. (3.37)

In the examples depicted in Fig.3, it is evident how stringent are the bounds from (g� 2)e.
However, due to the interplay of the contributions coming from the vector and axial-vector
couplings, the curve can be minimized through the root equation

|(xeV )2 � 5(xeA)
2| = 0 (3.38)

with a fixed F, i.e. around the roots there is almost no effect from the dark boson X to the
fine structure constant. If Fee = 0 the solutions to Eq.(3.38) are

n 2

�7

5
,
3

2
, 3

�
c2
�
. (3.39)
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Standard Model Effec/ve Field Theory  (SMEFT) 

LHC: no observa/on of par/cles beyond the Standard Model (SM) 

New Physics (NP) is either very weakly coupled

Indica/on

or  there are new heavy particles with masses well above the electroweak scale 

The effects of NP on experiments at energies below the threshold of the new heavy par/cles can be described by 
an effec/ve field theory (EFT) that contains the SM par/cles only -SMEFT 

SMEFT enables  parametriza/on of  some high scale physics beyond the Standard 
Model using SM fields. 

�0

�3

⌫

N, N c
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GUT⇤NP
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WET

O(3)
�q , O�edq, O(1)

�equ, O(3)
�equ

OVL , OVR , OSL , OSR , OT

Energy

⇤EW

⇤QCD

Figure 5: Relevant scales for the study of the B anomalies. The dashed lines indicate the thresholds between
different EFTs.

4 Interpretation of results

In Sec. 3 we have described the global fit to the available data on b ! c⌧ ⌫̄⌧ transitions in terms of the Wilson
coefficients of an EFT framework defined at the b-quark mass scale. The EFT in this range is conventionally
called Weak Effective Theory (WET) and is composed of the five lightest quarks and the three generations
of leptons, and ruled by the SU(3)C ⌦ U(1)Q gauge symmetry. This is a valid approach assuming – as
strongly suggested by all available collider data – that no new degree of freedom exists coupling to this
channel with a mass around or lower than the b quark. However, ultimately the goal is to gain insight into
the high-energy structure of the theory. To that aim, renormalization-group techniques are used to relate the
coefficients extracted in our analysis to those relevant at the scale of the potential new high-energy degree(s)
of freedom. This process involves several scales and thresholds, see Fig. 5.

The relation to the coefficients at the electroweak scale is determined by QCD and are known [107–110].
Above the electroweak (EW) scale, the Lagrangian has not undergone spontaneous symmetry breaking and,
therefore, the fermionic fields should be expressed in terms of weak eigenstates rather than mass eigenstates.
Moreover, the top quark, the electroweak gauge bosons and the Higgs boson have to be considered as new
degrees of freedom in the theory. The relevant framework at this scale is the full SM, with the addition
of the effects of NP. For relatively low NP scales . 1 TeV, the relevant new degrees of freedom can be
included explicitly. However, the suggested absence of new degrees of freedom below ⇠ 1 TeV allows
us to parametrize any NP contribution in the framework of another effective theory. This can be the so-
called SMEFT under the conditions specified in Section 2, or a more general framework with a non-linear
representation for the Higgs, see, e.g., Ref. [111, 112].

In SMEFT, the effective lagrangian can be expanded in inverse powers of the NP scale, ⇤NP, i.e.,

LNP =
X

d=6

1

⇤d�4
NP

X

i

C(d)
i O(d)

i , (21)

built from a series of higher-dimensional operators in terms of the SM fields and invariant under the
SM gauge group SU(3)C ⌦ SU(2)L ⌦ U(1)Y [77]. A convenient complete and non-redundant basis of
dimension-six operators is the Warsaw basis [78]. In order to relate both EFTs, the matching between the
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“Warsaw” operator basis

SMEFT
An effective theory with the same field content as the SM — a field H

that transforms as 21/2.

L = LD4 + LD=6 + . . .

D = 5 only has |�L| = 2 terms.

Electroweak symmetry is broken by minimizing V , and expanding
about the non-trivial vacuum.

6 classes of operators B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek
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L = LD4 + ciOi + . . . [ci ] =
1

mass2 ci !
ci

⇤2

⇤ is determined from experiment after you see deviations from the SM.

53 CP-even and 23 CP-odd operators for one generation (total 76)
1350 CP-even and 1149 CP-odd operators for three generations
(total 2499)
59 operators in the original table — some are real and some
complex.

SMEFT gives a model independent way of testing for deviations from
the SM.

Aneesh Manohar 15.04.2019 12 / 23

Λ is determined from experiment 
a5er you see devia9ons from the SM 

• 53 CP-even and 23 CP-odd operators for one genera9on (total 76) 
• 1350 CP-even and 1149 CP-odd operators for three genera9ons (total 2499) 
• 59 operators in the original table — some are real and some complex. 
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Physics below EW scale 

SM → LEFT : expansion in p/MW 

SMEFT → LEFT : expansion in p/Λ , v /Λ , p/ MW 

HEFT → LEFT : expansion in p/Λ , p/MW 

SMEFT puts constraints on LEFT parameters from SU(2) × U(1) invariance. 

With EFT                  scales are separated ! v                   mq,l

It simplifies loop calculaMons through renormalizaMon-group equaMons (RGEs). 

SystemaMc re-summaMon of  large logarithms in a leading-log expansions  known as RG-improved perturbaMon theory 
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Dipole operators

Dipole operators in LEFT are dimension five
(Note that no dimension five ∆B = ∆L = 0 operators in SMEFT) 

Dipole Operators
Dipole operators in LEFT are dimension five — no dimension five
�B = �L = 0 operators in SMEFT.

Oe� = ēLp�
µ⌫

eRr Fµ⌫ and quark analogs

ēL�
µ⌫

eR Fµ⌫ , µ̄L�
µ⌫µR Fµ⌫ , ēL�

µ⌫µR Fµ⌫ , s̄L�
µ⌫

bR Fµ⌫

Active experimental program
Electron g � 2
Muon g � 2
Electron EDM
µ ! e�

NEDM (from quark operators)
b ! s�
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Electron g − 2 
Muon g − 2
Electron EDM
μ → eγ
NEDM (from quark operators) b → sγ 

Experimental studies



For SU(2)L ⊗ U(1)Y invariance Higgs field must enter effec=ve operators 

Dipole Operators

In SMEFT, need H field for SU(2)⇥ U(1) invariance

(̄lp�
µ⌫

er )⌧
I
HW

I
µ⌫ , (̄lp�

µ⌫
er )HBµ⌫ ! v ēL�
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SMEFT dipole effects are v/⇤ suppressed in LEFT, and act like
dimension six,

1
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Enhaced dipole effects would indicate HEFT 6= SMEFT.
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Dimension 6 operators

This means that SMEFT dipole effects are v/Λ suppressed in LEFT 

Remember: The effect on low-energy observables depends on the ini=al condi=ons of the high-energy 
Wilson coefficients at the scale Λ. 



In muon anomalous moment and Higgs decay to μ+μ-

We further explore the role of four fermion operators by matching SMEFT to an explicit
UV NP model. Suitable scenarios include models of LeptoQuarks [19–21] as well as models
with multiple Higgs fields. Indeed, we explore two of such examples: first we study a
flavor specific Two-Higgs Doublet Model (2HDM) [22–24], where the chiral enhancement is
obtained only at the two-loop level by the s.c. Barr-Zee mechanism. Secondly, we study
two scalar LeptoQuarks, namely S1 and R2 [25], that can generate the desired operators
already at tree level. In both cases we compare the RGE improved SMEFT results to the
explicit (unresummed) model calculations and discuss the validity of the approximations
taken in each approach.

The paper is organized as follows. In Section 2 we present the dimension six operators
relevant for the EFT analysis and describe their interplay due to the RGE. Section 3
is devoted to matching the SMEFT operators to observables below the EW scale. The
phenomenological aspects of the latter are discussed in Section 4 for the three charged
lepton flavors. In Section 5 we compare the SMEFT results to explicit calculations within
a flavor specific 2HDM, while in Section 6 we do the same for the scalar LeptoQuarks case.
We then summarize our conclusions in Section 7. Finally, Appendix A gives details on
the RG equations for the chosen operators, Appendix B gives details of our calculation
of the one-loop SMEFT matching when integrating out the top quark, while Appendix C
describes the leading logarithm expansion of two-loop diagrams in the 2HDM.

2 SMEFT Operator Basis

We start by building the SMEFT at scales above the EW symmetry breaking (EWSB)
scale, v = 246GeV by extending the SM Lagrangian with a series of operators of increasing
canonical dimension (d): L = L

SM
+
P

d
L
(d). The most relevant dimension-six Lagrangian

can be written as
L
(6)

=

X

i

ĈiOi + h.c. , with Ĉi =
Ci

⇤2
, (2.1)

where the index i runs over all the SM gauge invariant operators in a given basis. In the
following we work with the s.c. “Warsaw” basis of operators [26]. For simplicity, since we
are concerned with phenomenology of CP-even observables, we limit our discussion to CP
conserving NP dynamics. In practice, i.e. for the operators we consider, this means taking
all Ĉi as real.

The set of operators relevant for the analysis of charged lepton anomalous magnetic
moments and leptonic Higgs decays is actually quite small, including the three operators

O1,pr =

⇣
'
†
'

⌘ �
¯̀
per'

�
, (2.2a)

O2,pr =
�
¯̀
p�

µ⌫
er

�
⌧
a
'W

a

µ⌫ , (2.2b)
O3,pr =

�
¯̀
p�

µ⌫
er

�
'Bµ⌫ . (2.2c)

Here ' is the Higgs doublet, ` is the left-handed lepton doublet, e is the right-handed lepton
singlet and p, r are the lepton generation indices. W and B are the SU(2)L and U(1)Y

gauge field strength tensors respectively, while ⌧
a are the SU(2)L generators.
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As the relevant scales for the evaluation of g � 2 and Higgs decays are below the EW
and especially NP scales (where we assume v ⌧ ⇤), the RG evolution and matching of
operators from the NP scale to low energies needs to be taken into account. The complete
system of one-loop SMEFT RG equations is presented in Refs. [27–29]. The important
observation is that, setting all the fermion Yukawa couplings except for the top quark to
zero, operators in Eqs. (2.2a - 2.2c) can form a closed set under RGE provided we include
two additional four-fermion operators

O4,prst =
�
¯̀j
per

�
✏jk

⇣
q̄
k

sut

⌘
, O5,prst =

�
¯̀j
p�µ⌫er

�
✏jk

⇣
q̄
k

s�
µ⌫
ut

⌘
, (2.3)

where q and u are the quark LH doublet and up-quark RH singlet respectively, with genera-
tion indices r, t. The indices j, k are SU(2)L gauge indices, contracted by the antisymmetric
Levi-Civita tensor ✏jk. In the following, we will consider only operators including the top-
quark and conserving lepton flavor, thus we suppress the s = t indices for quarks and
p = r = e, µ, ⌧ indices for leptons. Finally, to form a closed set of RG equations, we need
to take into account the RG evolution of gauge and Yukawa couplings. The complete set
of RG equations we use is collected in Appendix A.

In the approximations described before, the gauge couplings, the Higgs mass and the
top quark Yukawa evolve according to the SM equations, which we take from Refs. [30] and
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• the gauge couplings, the Higgs mass and the top quark Yukawa evolve according to the SM equa;ons
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in the literature for one- and two-loop diagrams contributing to the anomalous magnetic
moment and compare these with the SMEFT matching and running procedure. We find
that the latter (which only involves tree-level calculations in the UV model) can reproduce
the full theory two-loop calculations to remarkable accuracy for mH & 1TeV. In the process
we have clarified the role of higher order contributions to the matching of UV models to
SMEFT. Keeping the heavy Higgs couplings to top quarks and muons below O(1), we
also show how a heavy Higgs with mH . 10TeV can solve the current discrepancy, with
possibly the only observable effect at the (HL-)LHC appearing in h ! µ

+
µ
�. Secondly,

we introduce the scalar LeptoQuarks S1 and R2, which possess the right chiral structure
to generate at tree-level the operators in Eq. (2.3). The SMEFT tree-level matching and
one-loop RGE running for this model is straightforward and again reproduces well results
obtained in the full theory, (see Fig. 8). The analysis shows how both LQ considered can
solve the discrepancy in aµ for masses mLQ . 50 TeV and perturbative couplings. The
associated effect in the Higgs decays to muons is then expected to be close to the projected
sensitivity of the FCC. To summarize, the two UV model examples showcase the power of
employing SMEFT in phenomenological analyses of explicit NP models. The procedure of
matching and running is in principle doable with any other UV model and an appropriate
set of SMEFT operators, and allows to conveniently capture the dominant effects of higher
order contributions of heavy NP on low energy phenomenology.
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A RGE

Here we collect the one-loop RG equations from Refs. [27–29] describing the evolution and
mixing of the operator basis in Eqs. (2.2a)-(2.2c) and (2.3). We assume that all Yukawa
couplings are zero, except for the top-quark Yukawa. We define
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where µ in this case is the running renormalization scale. The equations read
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Here Yi are the hypercharges of the fermions, Nc = 3 is the number of colors and ng = 3 the
number of active generations. We also used the definitions cF,2 = 3/4, b0,1 = �1/6�20ng/9

and b0,2 = 43/6� 4ng/3.
To form a closed set of equations under RG, we must include the running of the muon

Yukawa, the Higgs mass and quartic coupling. The equations are [30, 31]
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⌘
, (A.7)

�̇ = 2

⇣
12�

2
+ 2Ncy

2
t ��Ncy

4
t +m

2
h
y`Ĉ1,`
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ṁh = mh

✓
6�+Ncy

2
t �

9

4
g
2
2 �

3

4
g
2
1

◆
. (A.9)

B Details on one-loop diagram calculations in SMEFT

Here we present the details on the calculation of one-loop diagrams needed to perform
the matching of SMEFT to the low energy observables below the weak scale in Eqs. (3.7)
and (3.11) as well as the full one-loop contribution to Higgs decay to two leptons in the
2HDM in Eq. (5.11). The Feynman Rules for the EFT vertices have been obtained indepen-
dently by following Ref. [52] and using FeynRules [53]. As we use dimensional regularization
in these calculations, we treat the terms including a �5 considering the scheme convention
in Ref. [32].

B.1 One-Loop Matching of O4,` to Q1,`

The operator Q1,` can be generated by O4,` by attaching one Higgs to the top loop, as
shown in Fig. 9 center. The external legs are leptons, with momenta p1 (incoming) and
p2 (outgoing), so the Higgs momentum is ph = p1 � p2. In the loop we only consider top
quarks, as only the chirality flipping term will survive and will give a term proportional to
the quark mass. The loop momenta are l and l

0
= l � ph.
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Figure 9. One-loop diagrams appearing in the EW matching of O5,` to Q2,` (left, Section B.2), in
the matching O4,` to Q1,` (center, Section B.1) and in the 2HDM matching to O1,` (right, in the
full theory, the operator insertion should be replaced by a heavy Higgs propagator, see Section B.3
for details).

The Feynamn rule for the effective vertex is

FR4 = iĈ4,`�c3,c4P1,2P3,4 . (B.1)

In our case, 1, 2 are the two muons and 3, 4 are the two tops, both with Pi,j = PR =

(1 + �5)/2. The indices c3, c4 run over the top colors. We can now use this simple
expression in the fermion loop trace.

The amplitude reads
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We further simplify this expression by taking mh ⌧ mt, or equivalently zero external
momenta. Thus p2

h
= 0 and � = m

2
t . The integral in dx is now trivial and the d-dimensional
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Expanding d ! 4� 2" for " ! 0 and taking care of the pole, we have
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The overall factor of 3 in the latter equation (and in the tree level matching) is absorbed
by renormalizing the lepton mass, giving the result eq. (3.7).

B.2 One-Loop Matching of O5,` to Q2,`

The four fermion operator O5,` generates at one loop the dipole operator Q2,`. The diagram
is represented in Fig. 9 left, where a photon attaches to the quark in the loop. We use
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for details).
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We further simplify this expression by taking mh ⌧ mt, or equivalently zero external
momenta. Thus p2

h
= 0 and � = m

2
t . The integral in dx is now trivial and the d-dimensional

integral gives

M =

p
2ytNcĈ4,`
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The overall factor of 3 in the latter equation (and in the tree level matching) is absorbed
by renormalizing the lepton mass, giving the result eq. (3.7).
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The overall factor of 3 in the latter equation (and in the tree level matching) is absorbed
by renormalizing the lepton mass, giving the result eq. (3.7).

B.2 One-Loop Matching of O5,` to Q2,`

The four fermion operator O5,` generates at one loop the dipole operator Q2,`. The diagram
is represented in Fig. 9 left, where a photon attaches to the quark in the loop. We use

– 22 –

` `

t t

�

` `

t t

h

` `

t t

h

hh
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the matching O4,` to Q1,` (center, Section B.1) and in the 2HDM matching to O1,` (right, in the
full theory, the operator insertion should be replaced by a heavy Higgs propagator, see Section B.3
for details).
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The overall factor of 3 in the latter equation (and in the tree level matching) is absorbed
by renormalizing the lepton mass, giving the result eq. (3.7).
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Figure 9. One-loop diagrams appearing in the EW matching of O5,` to Q2,` (left, Section B.2), in
the matching O4,` to Q1,` (center, Section B.1) and in the 2HDM matching to O1,` (right, in the
full theory, the operator insertion should be replaced by a heavy Higgs propagator, see Section B.3
for details).
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The overall factor of 3 in the latter equation (and in the tree level matching) is absorbed
by renormalizing the lepton mass, giving the result eq. (3.7).
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Figure 9. One-loop diagrams appearing in the EW matching of O5,` to Q2,` (left, Section B.2), in
the matching O4,` to Q1,` (center, Section B.1) and in the 2HDM matching to O1,` (right, in the
full theory, the operator insertion should be replaced by a heavy Higgs propagator, see Section B.3
for details).
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The overall factor of 3 in the latter equation (and in the tree level matching) is absorbed
by renormalizing the lepton mass, giving the result eq. (3.7).
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Figure 9. One-loop diagrams appearing in the EW matching of O5,` to Q2,` (left, Section B.2), in
the matching O4,` to Q1,` (center, Section B.1) and in the 2HDM matching to O1,` (right, in the
full theory, the operator insertion should be replaced by a heavy Higgs propagator, see Section B.3
for details).
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The overall factor of 3 in the latter equation (and in the tree level matching) is absorbed
by renormalizing the lepton mass, giving the result eq. (3.7).
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Figure 9. One-loop diagrams appearing in the EW matching of O5,` to Q2,` (left, Section B.2), in
the matching O4,` to Q1,` (center, Section B.1) and in the 2HDM matching to O1,` (right, in the
full theory, the operator insertion should be replaced by a heavy Higgs propagator, see Section B.3
for details).
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The overall factor of 3 in the latter equation (and in the tree level matching) is absorbed
by renormalizing the lepton mass, giving the result eq. (3.7).
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The four fermion operator O5,` generates at one loop the dipole operator Q2,`. The diagram
is represented in Fig. 9 left, where a photon attaches to the quark in the loop. We use
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The Feynamn rule for the effec=ve vertex is
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the same momentum convention as before, with the replacement q = ph for the photon
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where the indices are the same convention as in eq. (B.1). However, as shown in Ref. [32]
(see their Section 4.2), we need to be careful to drop any linear term in ".
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where we defined ui ⌘ u(pi). Nc = 3 is the number of colors and Qt = 2/3 is the top-quark
electric charge. In the last step we used the decomposition in Feynman parameters and
defined k = l�(1�x)q and � = m
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x(x�1). Given the symmetry of the d-dimensional
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In the previous equation we took the q
2
= 0 condition, so that � = m
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t and the integration

in dx is trivial.
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where we used the commutator and anticommutator of � matrices, the antisymmetry of the
tensor q

µ
✏
⌫ and the product q · ✏(q) = 0 of photon momentum with its polarization vector.
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B.3 2HDM Contribution to h ! `
+
`
� decay

In the 2HDM, shifts to the Higgs decay widths to leptons can be generated at one loop
via mixing of the SM Higgs with the neutral heavy Higgses. The calculation is easier by
considering instead the one-loop matching to SMEFT, see Fig. 9 right, with the matching
condition in eq. (5.10). The pseudo-scalar Higgs contribution vanishes, while the charged
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(4⇡)2
ū2/q/✏u1

✓
1

"̂
� ln

✓
m

2
t

µ2

◆◆
. (B.7)

In the previous equation we took the q
2
= 0 condition, so that � = m

2
t and the integration

in dx is trivial.
The /q/✏ term can be manipulated to get the expression �µ⌫F

µ⌫ . Indeed one can write

/q/✏ = �µ�⌫q
µ
✏
⌫
=

2i�µ⌫ + 2⌘µ⌫

2

q
µ
✏
⌫
� q

⌫
✏
µ

2
= �

1

2
�µ⌫F

µ⌫
! �

m`

2e
Q2,` , (B.8)

where we used the commutator and anticommutator of � matrices, the antisymmetry of the
tensor q

µ
✏
⌫ and the product q · ✏(q) = 0 of photon momentum with its polarization vector.

Also iq
µ
= �@

µ.
The UV pole 1/"̂ can be canceled by an appropriate counterterm, so that the contri-

bution to the matching at the weak scale is

�c2,`(µw)|1�loop =
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where we defined ui ⌘ u(pi). Nc = 3 is the number of colors and Qt = 2/3 is the top-quark
electric charge. In the last step we used the decomposition in Feynman parameters and
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integral, terms with odd powers of k vanish, thus the only piece remaining from the trace
is the one proportional to /q/✏. The integrals can be solved and we get

M =
�4iNcmtQteĈ5,`
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In the previous equation we took the q
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where we used the commutator and anticommutator of � matrices, the antisymmetry of the
tensor q
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⌫ and the product q · ✏(q) = 0 of photon momentum with its polarization vector.

Also iq
µ
= �@

µ.
The UV pole 1/"̂ can be canceled by an appropriate counterterm, so that the contri-

bution to the matching at the weak scale is

�c2,`(µw)|1�loop =
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Note that C1,l does not appear in the RG equaAons for C2,3,4,5,l 

The UV models that only generate O1,l can be probed exclusively via Higgs decays
On the other hand, C2,l and C3,l can induce a sizeble C1,l through their RG evoluAon .
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where now l` denotes the `-flavored charged lepton, Fµ⌫ stands for the photon field strength
and e =

p
4⇡↵ is the QED gauge coupling. The first operator induces Higgs decay to two

leptons, while the second generates the lepton anomalous dipole moment.
When matching the low energy operators to the SMEFT basis, it is important to

consider and reduce the matching scale (µw) dependence of the physical results, by matching
to sufficiently high loop order. To parametrize the relative importance of matching scale
and loop corrections, we define the ratio
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where the label j = T, L refers to matching to SMEFT at tree level only (T) or including 1-
loop terms (L). Fixing the SMEFT NP scale to ⇤ = 10

4 GeV and varying the matching scale
µW between the W mass and the EW vev v, the ratios for the two low energy operators
are plotted in Fig. 2. We discuss the details of this matching and its implications for
phenomenology associated with each operator separately below.
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Figure 2. Ratios of matching conditions as function of the matching scale below EWSB µW for
fixed ⇤ = 10

4 GeV and C4,`(⇤) = 1 as the initial condition for the RGE.

The importance of including the one-loop contribution can be understood from comparing
R1,T/L(µw) (orange lines) plotted in Fig. 2. We observe that the tree-level matched result
has a sizable µw dependence: starting with a fixed value of C4,` at the high scale of ⇤ =

10
4 GeV, c1` can change by almost a factor of 1.5 when varying µw 2 [mW , v] around the

top mass . Including the one-loop correction, the scale dependence is greatly reduced to
around 5% .

Collider experiments measure the signal strenght of leptonic Higgs decays in various
Higgs production modes. These can in turn be related to the so-called  formalism, where
the relevant quantity is defined as


2
`
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)
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, (3.8)

where we can now identify
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where we evaluate �c1,` at the Higgs mass (µw = mh).

3.2 Anomalous magnetic moment

Measurements of a` are generally performed at the lepton mass scale, at which also the Higgs
boson can be integrated out safely.3 At tree level the operators O2,` and O3,` contribute to

3
The case of a⌧ is slightly different but still consistent with this assumption, see the discussion in Sec. 4.3.
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where we evaluate δc1,l at the Higgs mass (μw = mh ) 

Higgs decay to two leptons 

The operators entering the low energy effective Lagrangian (L 3
P

i
Qi) relevant for our

phenomenological analysis (assuming CP invariance) below the EWSB scale only respect
EM (and QCD) gauge invariance
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where now l` denotes the `-flavored charged lepton, Fµ⌫ stands for the photon field strength
and e =

p
4⇡↵ is the QED gauge coupling. The first operator induces Higgs decay to two

leptons, while the second generates the lepton anomalous dipole moment.
When matching the low energy operators to the SMEFT basis, it is important to

consider and reduce the matching scale (µw) dependence of the physical results, by matching
to sufficiently high loop order. To parametrize the relative importance of matching scale
and loop corrections, we define the ratio

Ri,j(µw) =
ci,`(µw)|j

ci,`(mt)|L
, i = 1, 2 , (3.3)

where the label j = T, L refers to matching to SMEFT at tree level only (T) or including 1-
loop terms (L). Fixing the SMEFT NP scale to ⇤ = 10

4 GeV and varying the matching scale
µW between the W mass and the EW vev v, the ratios for the two low energy operators
are plotted in Fig. 2. We discuss the details of this matching and its implications for
phenomenology associated with each operator separately below.

3.1 Higgs decay to two leptons

In the SM the Higgs boson interacts with leptons through the Yukawa terms in the La-
grangian
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where we wrote the explicit form of the neutral component of the Higgs doublet below the
EWSB scale. The Yukawa couplings in the SM are y

SM

`
= m`

p
2/v.

The effect of the renormalizable operator Q1,` can be included in a straightforward way
as

L �

⇣
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+ �c1,`

⌘
hl̄`l` . (3.5)

At the matching scale (µw) below EWSB, (real) C1,` matches at tree level into c1,` as

�c1,`(µw)|tree = Ĉ1,`(µw)
v
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p
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. (3.6)

Further threshold corrections from top quark loops, induced by O4,`, appear at next
to leading order. The details of the calculation are given in Appendix B.1. The resulting
matching correction is of the form

�c1,`(µw)|loop =
Ncm

3
t

8⇡2v
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where now l` denotes the `-flavored charged lepton, Fµ⌫ stands for the photon field strength
and e =

p
4⇡↵ is the QED gauge coupling. The first operator induces Higgs decay to two

leptons, while the second generates the lepton anomalous dipole moment.
When matching the low energy operators to the SMEFT basis, it is important to

consider and reduce the matching scale (µw) dependence of the physical results, by matching
to sufficiently high loop order. To parametrize the relative importance of matching scale
and loop corrections, we define the ratio
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, i = 1, 2 , (3.3)

where the label j = T, L refers to matching to SMEFT at tree level only (T) or including 1-
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4 GeV and varying the matching scale
µW between the W mass and the EW vev v, the ratios for the two low energy operators
are plotted in Fig. 2. We discuss the details of this matching and its implications for
phenomenology associated with each operator separately below.
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h+ v
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◆
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where we wrote the explicit form of the neutral component of the Higgs doublet below the
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SM

`
= m`

p
2/v.
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⇣
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p
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Further threshold corrections from top quark loops, induced by O4,`, appear at next
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Anomalous magne,c moment 
the dipole operator Q2,` by projecting out the photon field, while the Higgs acquires a vev.
The matching condition (for real C2,3) then reads

�c2,`(µw)|tree =
vm`
p
2e

⇣
cwĈ3,`(µw)� swĈ2,`(µw)

⌘
, (3.10)

where cw and sw are the cosine and sine of the weak mixing angle respectively.
At the next to leading order, the threshold corrections come from two different dia-

grams. On one hand, we have O5,` matching into Q2,`, again through a top quark loop.
This numerically dominant contribution is evaluated explicitly in Appendix B.2. On the
other hand, additional corrections arise when we integrate out the W , Z and the Higgs.
The complete matching condition with the low energy operator was recently computed in
Ref. [32] and includes EW renormalization of C2,` and C3,` as well as of the EW vev, the
lepton mass and e. The end result is

�c2,`(µw)|1�loop = �
NcQtĈ5,`(µw)mtm`

2⇡2
ln

✓
µw

mt

◆
+O(↵) , (3.11)

where Qt = 2/3 the top-quark electric charge. To abbreviate the expression, the O(↵) term
stands for all the one-loop contributions from O2,` and O3,`, which we take into account in
our analysis but are numerically sub-dominant (they include both finite threshold effects as
well as logarithmic scale dependent terms). Again we highlight the importance of including
the one-loop matching contributions in Fig. 2, where we plot R2,T/L(µw) (purple lines). We
observe that even more than in the case of c1` the tree-level matched result has a pronounced
µw dependence: starting with a fixed value of C4,` at the high scale of ⇤ = 10

4 GeV, c2`
can change by almost a factor of two when varying µw 2 [mW , v] around the top mass .
Including the one-loop correction, the scale dependence is greatly reduced to below 10% .

The subsequent running from the weak scale to the lepton mass scale is driven by
QED interactions only. The are expected to induce a shift in c2` of at most a few percent,
and so in light of the residual matching scale variance can be safely neglected. In our
phenomenological analysis we thus take �c2,`(mt) ' �c2,`(m`), such that the matching is
numerically dominated by the tree-level contributions. The shift of the lepton anomalous
magnetic moment will then simply be

�a` = 4�c2,`(m`) . (3.12)

4 Phenomenology

In the section we explore the phenomenological implications of NP parametrized by the
operators in Eq. (3.2). Given the initial conditions for the Wilson coefficients Ci,` at a high
scale ⇤, we use the set of RG equations in Appendix A to evolve these coefficients down to
the weak scale µw ⇠ mt. We then use the matching conditions in Eq. (3.11) and (3.7) to
get the low energy coefficients, which can be directly used to compare with experimental
results. Note that with the assumption of massless leptons (above EWSB) and no running
below the weak scale, the RG evolution itself is lepton flavor-independent given the same
initial conditions.
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The subsequent running from the weak scale to the lepton mass scale is driven by QED interac,ons only. 
They induce a shi@ in c2l of at most a few percent, and so in light of the residual matching scale variance 
can be safely neglected. In our phenomenological analysis

This term stands for all the one-loop 
contribu,ons from O2,` and O3,`, 
but are numerically sub-dominant 
(they include both finite threshold effects 
and logarithmic scale dependent terms) 
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channel. As reported in Ref. [35], for example, FCC-ee (high energy circular electron-
positron collider) would be able to probe e at the 10% level. These present and projected
bounds are shown in the right plot of Fig. 3.

As expected, both LHC and HL-LHC are not able to exclude NP scales above a TeV.
Even projections from FCC-hh are only able to exclude NP below few TeV in h ! ee

induced at tree-level by C1,e. Furthermore, C1,e cannot be probed by measurements of ae,
thus making such NP effects very challenging to probe. Conversely, out of all considered
scenarios addressing the present ae discrepancy, only the C4,e(⇤) = 1, ⇤ = few⇥10

4 GeV
case has the potential to be tested through h ! e

+
e
� decay measurements at the FCC-ee.

4.2 Muon

The muon anomalous magnetic moment exhibits a long standing tension between its mea-
sured and predicted value. Currently it is estimated at ⇠ 3.3� or numerically [36]

�aµ = a
exp
µ � a

SM
µ = (261± 79)⇥ 10

�11
, (4.2)

where the error represents the combined theoretical and experimental uncertainties. Note
that the recent BMWc Lattice result [9] updates the value of the leading order hadron vac-
uum polarization (LO-HVP) contribution. When combined with the other terms described
in Ref. [36], we get

�aµ = (113± 68)⇥ 10
�11

, (4.3)

which corresponds to a ⇠ 1.7� deviation. Left plot in Fig. 4 shows the shift in aµ induced by
the dipole operator Q2,µ compared to the discrepancy in Eqs. (4.2) (gray region) and (4.3)
(purple region), when different initial conditions at the high-energy scale ⇤ are taken. Again
notice that models that only generate O4,µ in the UV can account for the discrepancy in
Eq. (4.2) only at a relatively low scale interval, 3 . ⇤ . 7 TeV, while other scenarios point
to much larger NP scales above 100 TeV. One would instead require scales of 10 . ⇤ . 20

TeV in order for O4,µ to account for the discrepancy in Eq. (4.3).
Recently, di-muon Higgs decay was directly observed for the first time at LHC. ATLAS

and CMS reported the values [37]

ATLAS : 
2
µ = 1.2± 0.6 , CMS : 

2
µ = 1.19± 0.55 , (4.4)

for the signal strength. The precision of these measurements is expected to be improved
significantly at the HL-LHC [38] and especially FCC [39]. Converting these projections to
our notation, the reported values imply

HL� LHC : |
2
µ � 1| < 0.053 , FCC : |

2
µ � 1| < 4.2⇥ 10

�3
. (4.5)

The results are shown in the right plot in Fig. 4. We observe that compared to the NP
sensitivity of aµ, the current LHC Higgs decay measurements are not yet competitive in
any of the considered scenarios. However, already the HL-LHC upgrade could potentially
probe the current aµ discrepancy in the C4,µ(⇤) = 1 scenario. Sensitivity to other scenarios
would unfortunately be marginal even at the FCC. Better direct sensitivity could possibly
be achieved at a dedicated muon collider [40–42].
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Scalar Leptoquarks and SMEFT

6 Scalar LeptoQuarks

Here we briefly discuss a different UV completion via the introduction of LeptoQuarks (LQ).
These particles can turn quarks into leptons (and viceversa) and can then provide a simple
but compelling model. In particular, scalar LQ can generate four-fermion scalar and tensor
operators already at tree level and contribute to the muon anomalous moment and Higgs
decay to two muons.
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Ĉ4,µ = ⌥4Ĉ5,µ = �
4GF
p
2
g
LL

=
v
2
GF

p
2m

2
LQ

Y , (6.5)

– 17 –

6 Scalar LeptoQuarks

Here we briefly discuss a different UV completion via the introduction of LeptoQuarks (LQ).
These particles can turn quarks into leptons (and viceversa) and can then provide a simple
but compelling model. In particular, scalar LQ can generate four-fermion scalar and tensor
operators already at tree level and contribute to the muon anomalous moment and Higgs
decay to two muons.

A comprehensive analysis of all possible allowed LQ models can be found in Ref. [25],
which we follow in the rest of this Section. There is a total of 12 different LQ realizations
under the SM gauge group GSM = SU(3)C ⇥ SU(2)L ⇥ U(1)Y . We focus on the scalars
S1 = (3̄,1, 1/3) and R2 = (3,2, 7/6) as the chirality structure of their interactions to
fermions will lead to the operators in Eq. (2.3).

The interaction Lagrangians are respectively

LS1 � y
LL

1,ij q̄
C,ia

S1✏
ab
`
j,b

+ y
RR

1,ij ū
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C,i

S1✏
ab
e
j
+ h.c. , (6.1)

LR2 � �y
RL

2,ij ū
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“The capability of a foreseen Muon Collider to probe the muon g-2 is systema;cally 
inves;gated. We demonstrate that a Muon Collider, running at center-of-mass energies 
of several TeV, can provide the first model-independent high-energy test of new physics 
in the muon g-2, being sensi;ve to devia;ons of few × 10-9  .This achievement would be 
of the utmost importance to shed light on the long-standing muon g-2 anomaly” 

Buttazzo& Patradizi 2012.02769.
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FIG. 1. Upper row: Feynman diagrams contributing to the
leptonic g-2 up to one-loop order in the Standard Model EFT.
Lower row: Feynman diagrams of the corresponding high-
energy scattering processes. Dimension-6 e↵ective interaction
vertices are denoted by a square.

The paper is organised as follows. Assuming a NP scale
⇤ well above the electroweak scale, in section II we intro-
duce the most general e↵ective field theory (EFT), con-
taining operators up to dimension-6, that contributes to
a`. After performing a one-loop calculation of a` in such
EFT, in section III we study the relevant high-energy pro-
cesses at a MC which are sensitive to the same NP e↵ects
entering a`, with the final goal being to test the muon g-
2 anomaly in a direct and model-independent way. In
section IV we comment on the possibility of measuring
very rare Higgs decays related to the lepton g-2.

II. The muon g-2 in the Standard Model EFT. New
interactions emerging at a scale ⇤ larger than the elec-
troweak scale can be described at energies E ⌧ ⇤ by
an e↵ective Lagrangian containing non-renormalizable
SU(3)c ⌦ SU(2)L ⌦ U(1)Y invariant operators. Focus-
ing on the leptonic g-2, the relevant e↵ective Lagrangian
contributing to them, up to one-loop order, reads [7]
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C`
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⇤2

�
¯̀
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�
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+
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⇤2
(`
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L�µ⌫eR)"ab(Q
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L�

µ⌫uR) + h.c. (2)

where it is assumed that the NP scale ⇤ & 1 TeV. The
Feynman diagrams relevant for the leptonic g-2 are dis-
played in figure 1. They lead to the following result
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where sW , cW are the sine and cosine of the weak mixing
angle, Ce� = cWCeB � sWCeW and CeZ = �sWCeB �

cWCeW . Additional loop contributions from the opera-
tors H†HW I

µ⌫W
Iµ⌫ , H†HBµ⌫Bµ⌫ , and H†⌧ IHW I

µ⌫B
µ⌫

are suppressed by the lepton Yukawa couplings and can
be neglected. Moreover, in eq. (3), we assumed for sim-
plicity that CeB , CeW and CT are real. Since only the
first two operators of eq. (2) generate electromagnetic
dipoles at tree-level, we include their one-loop renormal-
ization e↵ects to C`

e�
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In order to see where we stand, let us determine the NP
scale probed by �a`. From eq. (3) we find that

�aµ
3⇥10�9
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◆2�
Cµ

e��0.2Cµt
T �0.001Cµc

T �0.05Cµ
eZ

�
.

Few comments are in order:

• The �aµ discrepancy can be solved for a NP scale
up to ⇤ ⇡ 250 TeV. This requires a strongly
coupled NP sector where Cµ

e� and/or Cµt
T ⇠

g2NP/16⇡
2
⇠ 1 and a violation of the naive scal-

ing �aµ / m2
µ by the chiral enhancement factor

v/mµ [8]. For such large values of ⇤ direct NP par-
ticle production is beyond the reach of any foreseen
collider. However, as we shall see, the physics re-
sponsible for �aµ can still be tested through high-
energy processes such as µ+µ�

! h� or µ+µ�
! qq̄.

• If the underlying NP sector is weakly coupled,
gNP . 1, then Cµ

e� and Cµt
T . 1/16⇡2, implying

⇤ . 20 TeV to solve the �aµ anomaly. In this
case, a MC could still be able to directly produce
NP particles [6]. Yet, the study of the processes
µ+µ�

! h� and µ+µ�
! qq̄ could be crucial to

reconstruct the e↵ective dipole vertex µ+µ��.

• If the NP sector is both weakly coupled and does
respect the naive scaling, then �aµ ⇠ m2

µ/16⇡
2⇤2.

Here, the experimental value of �aµ can be accom-
modated only provided that ⇤ . 1 TeV. For such a
low NP scale the EFT description breaks down at
the typical multi-TeV MC energies, and new reso-
nances cannot escape from direct production.

III. High-energy probes of the muon g-2. The main
contribution to �aµ comes from the dipole operator
Oe� =

�
¯̀
L�µ⌫eR

�
HFµ⌫ when after electroweak symme-

try breaking H ! v/
p
2. The same operator also induces

a contribution to the process µ+µ�
! h� that grows

with energy (see figure 1), and thus can become dom-
inant over the SM cross-section at a very high-energy
collider. Assuming that mh ⌧

p
s, which is an excellent

approximation at a MC, we find the following di↵erential
cross-section

d�µµ!h�

d cos ✓
=

|Cµ
e�(⇤)|

2

⇤4

s

64⇡
(1� cos2 ✓) (5)

the collider center-of-mass energy 

(g-2)µ and muon collider



Summary 

• Current devia/on of the muon anomalous magne/c moment can be approached by new physics;

• Minimal solu/on for (g-2)µ scalar leptoquark(s), new scalar weak doublet, addi/onal Z’ gauge boson;

• All solu/ons are strongly constrained by the low-energy physics as well as LHC physics;

• Instead of par/cular model SMEFT can be used.
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EFT and light particles.
Actually, EFTs can be used even if there are very weakly coupled light
particles (e.g. axions).
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EFT is  valid unless one is doing very 
Only in specialized experiments with high precision EFT should not be used.. 










