Data Input to HLbL

International Physics School on Muon Dipole Moments and Hadronic Effects

2021-09-02

Christoph Florian Redmer

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

JG|U

Anomalous Magnetic Moment of µ

Contribution	in units of 10 ¹¹			
QED	116584718.931	± 0.104		
Elektroweak	153.6	± 1.0		
HVP	6845	± 40		
HLbL	92	± 18		

2021-09-02

Hadronic Light-by-Light Scattering

C.F. Redmer - Data Input to HLbL

Comparison of two frequently used compilations for HLbL in units of 10^{-11} from 2009 and a recent update with our estimate. Legend: PdRV = Prades, de Rafael, Vainshtein ("Glasgow consensus"); N/IN = Nyffeler / Jegerlehner, Nyffeler; J = Jegerlehner.

Contribution	PdRV(09) [475]	N/JN(09) [476,596]	J(17) [27]	Our estimate
π^0, η, η' -poles	114(13)	99(16)	95.45(12.40)	93.8(4.0)
π , K-loops/boxes	-19(19)	-19(13)	-20(5)	-16.4(2)
S-wave $\pi\pi$ rescattering	-7(7)	-7(2)	-5.98(1.20)	-8(1)
subtotal	88(24)	73(21)	69.5(13.4)	69.4(4.1)
scalars	-	-	-	$\int_{-1(3)}$
tensors	-	_	1.1(1)	$\int - I(3)$
axial vectors	15(10)	22(5)	7.55(2.71)	6(6)
u, d, s-loops / short-distance	-	21(3)	20(4)	15(10)
<i>c</i> -loop	2.3	-	2.3(2)	3(1)
total	105(26)	116(39)	100.4(28.2)	92(19)

2021-09-02

Improvement using data driven approaches

What to measure?

C.F. Redmer - Data Input to HLbL

Largest contribution: Pseudoscalar poles

- Lightest mesons contribute most
- Transition Form Factor (TFF)

- Coupling of mesons and two real/virtual photons
- Function of photon virtualities $F(q_1^2, q_2^2)$
- Contains structural information

Transition Form Factors

VMD TFF

0.6

0.8

[GeV²]

2

-0.2 -0.4

- Real photons: Radiative width of meson $\Gamma_{P \to \gamma\gamma} = \frac{\pi \alpha^2 m_P^3}{4} |F_P(0,0)|^2$
- Popular model: VMD $F(q_1^2, q_2^2) \sim \frac{M_V^2}{q_1^2 - M_V^2} \frac{M_V^2}{q_2^2 - M_V^2}$
- -0.4 -0.2 0 0.2 0.4 q₁² [GeV²] Pion distribution amplitude Related to meson distribution amplitudes $\Phi_{\pi}(x)$ ASY $F_{\pi^{0}}(-Q_{1}^{2},-Q_{2}^{2}) = \frac{2f_{\pi}}{6} \int_{0}^{\bullet} \phi(x)T_{H}(x,Q_{1}^{2},Q_{2}^{2})dx$ 1.5 0.5 Hard scattering kernel Distribution Amplitude (non-perturbative) 0.2 0.4 0.6 $\gamma\gamma \to q\bar{q}$ ASY: Asymptotic DA * Function of guark's fraction CZ: Chernvak-Zhitnitsky DA of the meson momentum BMS: Bakulev-Mikhailov-Stefanis DA C.F. Redmer - Data Input to HLbL 2021-09-02

Brodsky-Lepage Limit

Phys.Rev D22 (1980) 2157 Phys.Rev D24 (1981) 1808

6 JG U

$$F_{\pi^{0}}(-Q_{1}^{2},-Q_{2}^{2}) = \frac{2f_{\pi}}{6} \int_{0}^{1} \phi(x)T_{H}(x,Q_{1}^{2},Q_{2}^{2})dx$$
$$T_{H}^{LO}(x,Q_{1}^{2},Q_{2}^{2}) = \frac{2}{Q_{1}^{2}+Q_{2}^{2}} \left[\frac{1}{1-\omega(2x-1)} + \frac{1}{1+\omega(2x-1)}\right], \qquad \omega = \frac{Q_{1}^{2}-Q_{2}^{2}}{Q_{1}^{2}+Q_{2}^{2}}$$

Here: Asymptotic DA $\phi(x) = 6x(1-x)$

2021-09-02

Special case: Singly-virtual TFF $Q_2^2 \rightarrow 0$

1

$$\omega = 1 \quad \longrightarrow \quad T_H^{LO}(x, Q_1^2, 0) = \frac{1}{Q_1^2} \left[\frac{1}{(1-x)} + \frac{1}{x} \right]$$

$$F_{\pi^{0}}(-Q_{1}^{2},0) = \frac{2f_{\pi}}{6} \int_{0}^{1} \phi_{ASY}(x) T_{H}(x,Q_{1}^{2},0) dx = \frac{2f_{\pi}}{6} \int_{0}^{1} 6x(1-x) \frac{1}{Q_{1}^{2}} \left[\frac{1}{1-x} + \frac{1}{x}\right] dx$$
$$= \frac{2f_{\pi}}{Q_{1}^{2}} \int_{0}^{1} x + 1 - x dx \qquad = \frac{2f_{\pi}}{Q_{1}^{2}} \qquad \text{pQCD predicts } \frac{1}{Q^{2}} \text{ behavior for singly virtual TFF}$$

Where to measure?

3D integral representation for PS-pole contribution:

$$a_{\mu}^{HLbL;\pi^{0}} = \left(\frac{\alpha}{\pi}\right)^{3} \left[a_{\mu}^{HLbL;\pi^{0(1)}} + a_{\mu}^{HLbL;\pi^{0(2)}}\right]$$

$$a_{\mu}^{HLbL;\pi^{0(1)}} = \int_{0}^{\infty} dQ_{1} \int_{0}^{\infty} dQ_{2} \int_{-1}^{1} d\tau \ w_{1}(Q_{1},Q_{2},\tau) \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{1}^{2},-(Q_{1}+Q_{2})^{2}) \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{2}^{2},0) \mathcal{F}_{\pi^{0}\gamma^{*}}(-Q_{2}^{2},0) \mathcal{F}_{\pi^{$$

$$a_{\mu}^{HLbL;\pi^{0(2)}} = \int_{0}^{\infty} dQ_{1} \int_{0}^{\infty} dQ_{2} \int_{-1}^{1} d\tau \ w_{2}(Q_{1},Q_{2},\tau) \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{1}^{2},-Q_{2}^{2}) \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-(Q_{1}+Q_{2})^{2},0)$$

 $\begin{array}{ll} q_i^2 = -Q_i^2 & \mbox{photon virtualities} \\ \tau = \cos \theta_{Q_1,Q_2} & \mbox{angle between virtualities} \\ \mathcal{F}_{\pi^0 \gamma^* \gamma^*}(q_1^2,q_2^2) & \mbox{transition form factor} \\ w_i(Q_1,Q_2,\tau) & \mbox{weighting functions} \end{array}$

2021-09-02

Phys.Rev.D94,053006, 2016

How to measure?

C.F. Redmer - Data Input to HLbL

Obviously: Processes involving a meson and two photons

Real photons?

Virtual photons?

Spacelike?

Timelike?

2021-09-02

8

Primakoff Effect

2021-09-02

"production in the collision of a photon with an external, approximately static electric field; e.g. the Coulomb field of a nucleus"

Phys. Rev. 81 (1951) 899

$$\frac{d\sigma_{Pr}}{d\Omega} = \Gamma_{\gamma\gamma} \frac{8\alpha Z^2}{m_\pi^3} \frac{\beta_\pi^2 E_\gamma^4}{Q^4} |F_{em}(Q)|^2 \sin^2 \theta_\pi$$

Best observed with

- High photon energies
- Heavy targets (large Z)
- small production angles

PrimEX

- Most recent measurement by PrimEx at JLab
- Tagged photon beam in Hall B
- C and Si targets
- Disentangle Primakoff amplitude
- Combined result:

2021-09-02

 $\Gamma(\pi^0 \to \gamma \gamma) = 7.806 \pm 0.052_{\text{stat}} \pm 0.105_{\text{syst}} \,\text{eV}$

Science 368 (2020) 506

- Rare decay to photon and lepton pair
 - Best results from "meson factories"
- Mass of lepton pair defines virtuality
- Constraints: $m_{ll}^2 < q^2 < m_P^2$
- TFF from decay rate:

$$\frac{d\Gamma_{P\gamma\gamma^*}}{dq^2\Gamma_{\gamma\gamma}} = \left[QED\right] \left|\frac{F_{P\gamma\gamma^*}(q^2)}{F_{P\gamma\gamma}(0)}\right|^2$$

Slope parameter

$$\Lambda^{-2} = \frac{dF_{P\gamma\gamma^*}(q^2)}{dq^2}\Big|_{q^2=0}$$

Doubly-virtual process:

2021-0<u>9-02</u>

Decay to four leptons (Double Dalitz Decay)

Meson Factories

• NA62: $K^{\pm} \to \pi^{\pm} \pi^{0}$ $\Lambda_{\pi^{0}} = (0.495 \pm 0.076) \, \text{GeV}^{2}$

2021-09-02

Radiative corrections considered

• NA60: Heavy ion experiment $\Lambda_{\eta} = (0.517 \pm 0.022) \, \mathrm{GeV}^2$

• BESIII: $J/\psi \to \gamma \eta'$ $\Lambda_{\eta'} = (0.625 \pm 0.073) \,\mathrm{GeV}^2$

13

Good agreement between experiment and theory

Photon Conversion

- Pair production in material
- Affects normalization channel
- Vertexing of lepton pairs

2021-09-02

Example: BESIII Dalitz decay analysis

Phys.Rev. D92 (2015) 012001

C.F. Redmer - Data Input to HLbL

Dalitz decays at NA60

- Magnetic di-muon spectrometer
 - In-In collision Phys. Lett. B677 (2009) 260
 - Phys.Lett. B757 (2016) 437
- Measurement of inclusive di-muon mass spectrum
- Fit efficiency corrected spectrum for M < 0.65 GeV²
 - Normalizations (ρ , η , ω) and slope parameters floated
 - ρ contribution subtracted
 - η and ω contributions disentangled according to fit result

Vector Meson Dalitz Decays

Radiative Production

C.F. Redmer - Data Input to HLbL

Radiative Production

VEPP-2000: 0.35 - 2.0 GeV, @ 10^{32} cm⁻²s⁻¹

2021-09-02

18 JG

- Studies of light vector resonances
- At high q²: Tests of pQCD
 - BaBar: q²=112 GeV²
 - CLEO: q²=14 GeV²

Vector Meson Production

- Access to excited vector meson states
- Also input to HVP
- Measurements in

2021-09-02

- Energy scan
- ISR technique

•
$$\sigma(e^+e^- \to VP) = \frac{4\pi^2 \alpha^3}{3s^{3/2}} |F_{VP}(q_1^2)|^2 P_f(s)$$

- Closely related to doubly-virtual timelike TFF
 - $F_{VP}(q_1^2) \sim F_{P\gamma^*\gamma^*}(q_1^2, m_V^2)$

Two-Photon Collisions

C.F. Redmer - Data Input to HLbL

Experimental Constraints

Untagged

- Both leptons unmeasured
- $Q_1^2 \approx Q_2^2 \approx 0$

2021-09-02

Largest cross section

Single-tag

Only one lepton measured

• $Q_2^2 \approx 0$

- $F(Q_1^2, 0)$
- Reduced cross section

C.F. Redmer - Data Input to HLbL

Double-tag

- All particles measured
- Full information
- $F(Q_1^2, Q_2^2)$
- Smallest cross section

21

Two-Photon Cross Section

Relation for unpolarized lepton beams:

2021-09-02

$$d\sigma_{ee} = \frac{\alpha^2}{16\pi^4 q_1^2 q_2^2} \sqrt{\frac{(q_1 \cdot q_2)^2 - q_1^2 q_2^2}{(p_1 \cdot p_2)^2 - m_e^4}} \left[4\rho_1^{++} \rho_2^{++} \sigma_{TT} + 2|\rho_1^{+-} \rho_2^{+-}| \tau_{TT} \cos 2\tilde{\phi} + 2\rho_1^{++} \rho_2^{00} \sigma_{TL} + 2\rho_1^{00} \rho_2^{++} \sigma_{LT} + \rho_1^{00} \rho_2^{00} \sigma_{LL} - 8|\rho_1^{+0} \rho_2^{+0}| \tau_{TL} \cos \tilde{\phi} \right] \frac{d^3 p_1' d^3 p_1'}{E_1' E_2'}$$

C.F. Redmer - Data Input to HLbL

 $p_i, p'_i, q_i = (p_i - p'_i)$ Momenta of incoming and outgoing leptons and photons $\sigma_{TT}, \sigma_{TL}, \sigma_{LT}, \sigma_{LL}$ Two-photon cross sections for Transversely and Longitudinally polarized photons τ_{TT}, τ_{TL} Two-photon cross sections correlation terms ρ_i^{ab} Elements of photon density matrix for helicities a,b=+,-,0; functions of q_i $\tilde{\phi}$ Angle between planes of incoming and outgoing leptons in two-photon c.m.s

Two-Photon Cross Section

For pseudoscalar mesons:

2021-09-02

Only transversely polarized photons contribute!

$$d\sigma_{ee} = \frac{\alpha^2}{16\pi^4 q_1^2 q_2^2} \sqrt{\frac{(q_1 \cdot q_2)^2 - q_1^2 q_2^2}{(p_1 \cdot p_2)^2 - m_e^4}} \left[4\rho_1^{++} \rho_2^{++} \sigma_{TT} + 2|\rho_1^{+-} \rho_2^{+-}| \tau_{TT} \cos 2\tilde{\phi} + 2\rho_1^{++} \rho_2^{00} \sigma_{TL} + 2\rho_1^{00} \rho_2^{++} \sigma_{LT} + \rho_1^{00} \rho_2^{00} \sigma_{LL} - 8|\rho_1^{+0} \rho_2^{+0}| \tau_{TL} \cos \tilde{\phi} \right] \frac{d^3 p_1' d^3 p_1'}{E_1' E_2'}$$

C.F. Redmer - Data Input to HLbL

After integration over $\tilde{\phi}$ only one cross section left!

$$d\sigma_{ee} = \frac{\alpha^2}{16\pi^4 q_1^2 q_2^2} \sqrt{\frac{(q_1 \cdot q_2)^2 - q_1^2 q_2^2}{(p_1 \cdot p_2)^2 - m_e^4}} 4\rho_1^{++} \rho_2^{++} \sigma_{TT} \frac{d^3 p_1' d^3 p_1'}{E_1' E_2'}$$

Two-photon luminosity function

Both photons are quasi-real

Luminosity function simplifies

2021-09-02

- Equivalent Photon Approximation:
 - $\sigma_{ee} = \int dz \frac{\mathcal{L}_{\gamma\gamma}}{dz} \sigma_{\gamma\gamma \to P}(z)$ • $z = \frac{W}{2E}, \quad W^2 = (q_1 + q_2)^2$ • $\frac{d\mathcal{L}_{\gamma\gamma}}{dz} = \left(\frac{2\alpha^2}{\pi}\right)^2 \left(\ln\frac{E}{m_e}\right)^2 f(z)$

Phys. Rev. D4 (1971) 1532 Nucl. Phys. B54 (1973) 573 Phys. Rept. 15 (1975) 181

C.F. Redmer - Data Input to HLbL

- Narrow spin-0 resonances: $\sigma_{\gamma\gamma\to P} = \frac{8\pi^2}{m_P} \Gamma_{P\to\gamma\gamma} \delta(W^2 m_P^2)$
- Consider $q_i^2 \neq 0$ with TFF: $\sigma_{\gamma\gamma\to P} = \frac{8\pi^2}{m_P} \Gamma_{P\to\gamma\gamma} \delta((q_1+q_2)^2 m_P^2) |F(q_1^2, q_2^2)|^2$

Access to radiative width $\Gamma_{X \to \gamma \gamma}$ in untagged measurements

Radiative Width

JHEP 01 (2013) 119

C.F. Redmer - Data Input to HLbL

KLOE: η meson

- Off-peak data to reduce background
- $\qquad \eta \to \pi^0 \pi^0 \pi^0, \eta \to \pi^+ \pi^- \pi^0$
- Combined fit to missing mass and momentum components

Combined (both decay modes) cross section

$$\sigma(e^+e^- \to e^+e^-\eta) = (32.7 \pm 1.3_{stat} \pm 0.7_{syst}) \,\mathrm{pb}$$

Using VMD TFF:

$$\Gamma_{\eta \to \gamma \gamma} = (520 \pm 20_{stat} \pm 13_{syst}) \,\mathrm{eV}$$

C.F. Redmer - Data Input to HLbL

- Detect one lepton
- Detect produced meson(s)
- Unmeasured lepton from energy/momentum conservation

Example: π^0 TFF at BESIII

2.9fb⁻¹ at 3.773 GeV

- Require one lepton and two photons
- Require scattering angle of missing lepton to be small
 - Small virtuality of exchanged photon

TFF measurement at BESIII

Helicity angle of photons

- Angle between photon in pion rest frame and pion momentum in lab frame
- Directly related to energy asymmetry of photons in lab frame
- Pion decays isotropically

2021-09-02

Useful to reject radiative Bhabha scattering

TFF measurement at BESIII

Radiative effects

- ISR leads to mistake in Q² calculation
 - Assumption: $-Q^2 = (p p')^2$
 - ISR: $\tilde{p} = p p_{\gamma} \Rightarrow -Q^2 = (\tilde{p} p')^2$

Belle

2021-09<u>-02</u>

- Small deviation from expected energy of hadrons
- Add photons close to tagged electron

BaBar, BESIII

- Calculate energy of potential ISR photon
- Reject fraction too large

$$\mathsf{R}_{\gamma} = \frac{\sqrt{\mathsf{s}} - \mathsf{E}_{\mathsf{e}^{\pm}\pi^0}^{\mathsf{CMS}} - \mathsf{p}_{\mathsf{e}^{\pm}\pi^0}^{\mathsf{CMS}}}{\sqrt{\mathsf{s}}}$$

Generators for TFF Measurements

C.F. Redmer - Data Input to HLbL

TREPS

- Using Equivalent Photon Approximation and taking into account virtual photons
- Calculates luminosity function
- Continuously adapted to Belle program
- Radiative corrections to tagged leptons

GGResRC

- Using exact equations for matrix elements
- Focused on tagged kinematics for pseudoscalars
- Radiative corrections to tagged leptons

Ekhara 3

2021-09-02

- Using exact equations for matrix elements
- Full phase space for pseudoscalars, pion pairs, χ_{cJ}
- Full QED terms for radiative corrections

Comput.Phys.Commun. 185 (2014) 236

arXiv 1310.0157

Comput.Phys.Commun. 234 (2019) 245

TFF measurement at BESIII

2021-09-02

C.F. Redmer - Data Input to HLbL

- Subtract background by "counting" pions
- Convert event yield to differential cross section
- Calculate TFF using MC

$$F(Q^2)_{\rm exp} = \frac{\left. \frac{d\sigma}{dQ^2} \right|_{\rm exp}}{\left. \frac{d\sigma}{dQ^2} \right|_{\rm MC}} F(Q^2)_{\rm MC}$$

30

TFF measurement at BESIII

• $0.3 \le Q^2 [\text{GeV}^2] \le 3.1$

2021-09-02

• Unprecedented accuracy for $Q^2 \le 1.5 \,\mathrm{GeV}^2$

Measurement confirms

C.F. Redmer - Data Input to HLbL

Dispersive construction of TFF

31

Lattice determination of TFF

Comparison to other measurements

C.F. Redmer - Data Input to HLbL

32

World data dominated by B-factories

2021-09-02

Possible conflict with pQCD limit (BaBar-Belle puzzle)

η Transition Form Factor

C.F. Redmer - Data Input to HLbL

33

World data dominated by B-factories

2021-09-02

Space- and timelike TFF in agreement with pQCD limit

η' Transition Form Factor

C.F. Redmer - Data Input to HLbL

34

- World data dominated by B-factories
- Space- and timelike TFF in agreement with pQCD limit
- Smallest Q² range measured a LEP

Different Q² Ranges

C.F. Redmer - Data Input to HLbL

- BESIII, CLEO, BaBar, Belle only use main detector
 - Acceptance limited by kinematics
- CELLO at PETRA $(\sqrt{s} = 35 \,\mathrm{GeV})$
 - small angle calorimeters (40-400 mrad)
- L3 at LEP $(\sqrt{s} = 91 \,\mathrm{GeV})$
 - Small angle calorimeters (30-60 mrad)
 - Relation between p_T and largest Q^2 from simulation

2021-09-02

35

Tagging Detectors

Install extra detectors to enhance acceptance

Example: KLOE-2

Low Energy Tagger

- 2 x 40 LYSO Crystals
- 1.5 m from the IP
- $150 < E_{e^{\pm}}[MeV] < 350$
- σ(E)/E < 10%

2021-09-02

High Energy Tagger

- Scintillator hodoscope
- 11m from the IP
- DAΦNE dipoles as spectrometer

C.F. Redmer - Data Input to HLbL

- $420 < E_{e^{\pm}}[MeV] < 495$
- Both leptons in HET → untagged configuration
 - Q² < 10⁻³ GeV
- Leptons in KLOE and HET \rightarrow single-tag configuration
 - Q² < 0.1 GeV²

KLOE-2 data taking ended recently first results expected soon

 \mathbb{Z}

Double-Tagged

- First double-tagged measurement by Babar: $e^+e^- \rightarrow e^+e^-\eta'$
- 468.6 fb⁻¹ at Y(4S)
- $\eta' \to \eta \pi^+ \pi^-, \ \eta \to \gamma \gamma$
- Conditions on

- total momentum and energy
- Correlation of lepton energies
- Approx. 46 signal events
- five bins in (Q_1^2, Q_2^2)

Beyond Pseudoscalar Mesons

Required:

2021-09-02

Partial waves of $\gamma^* \gamma^* \to \pi \pi, \gamma^* \gamma^* \to KK, \gamma^* \gamma^* \to \pi \eta, ...$ at arbitrary virtualities

C.F. Redmer - Data Input to HLbL

38

Two Pions

C.F. Redmer - Data Input to HLbL

- Access to scalar and tensor resonance
 - Spectroscopy
 - Resonance parameters
- Polarizabilities

- "stiffness" of pions
- $\gamma \gamma \rightarrow \pi \pi$ related to $\gamma \pi \rightarrow \gamma \pi$
- Information from mass threshold needed
- Rescattering effects

	GeV	cosθ* <	fb⁻¹	reference	year
$\gamma J/\psi$	3.2 - 3.8		32.6	PLB540, 33	2002
π*π-	2.4 - 4.1	0.6	88	PLB15, 39	2005
	0.8 -1.5	0.6	86	PRD75, 051101	2007
				JPhySocJpn76, 074102	2007
K⁺K⁻	1.4 - 2.4	0.6	67	EPJC32, 323	2003
	2.4 - 4.1	0.6	88	PLB15, 39	2005
ppbar	2.0 - 4.0	0.6	89	PLB621, 41	2005
4 mesons	2.75 - 3.75		395	EPJC53, 1	2006
KcKc	2.4 - 4.0	0.6	398	PLB651, 15	2007
NSNS	1.05 - 4.0	0.8	972	PTEP2013, 123C01	2013
H 0 H 0	0.6 - 4.0	0.8	95	PRD78, 052004	2008
110110	0.6 - 4.1	0.8	223	PRD79, 052009	2009
ηπ ⁰	0.84 - 4.0	0.8	223	PRD80, 032001	2009
ղղ	1.096 - 3.8	1.0	393	PRD82, 114031	2010
ωJ/ψ	3.9 - 4.2		694	PRL104, 092001	2010
φJ/w	4.2 - 5.0		825	PRL104, 112004	2010
ωω,ωφ,φφ	thr - 4.0		870	PRL108, 232001	2012
<u>η'π⁺π⁻</u>	1.4 - 3.4		673	PRD86, 052002	2012
πο	Q ² ∈[4,40]GeV ²		759	PRD86, 092007	2012
π ⁰ π ⁰	Q ² <30GeV ²		759	PRD93, 032003	2016
ppbarK⁺K⁻	3.2 - 5.6		980	PRD93, 112017	2016

40 JG U

Nakazawa, PhiPsi17

2021-09-02

C.F. Redmer - Data Input to HLbL

Detect two pions

2021-09-02

- Require balanced p_T of pions
- Sum of measured energies/momenta $\leq \frac{\sqrt{s}}{2}$

$$\frac{d^2}{dWd\cos\theta^*}(\gamma\gamma\to\pi\pi) \begin{cases} \pi^0\pi^0: |\cos\theta^*|<0.8\\ \pi^+\pi^-: |\cos\theta^*|<0.6 \end{cases}$$

• Partial wave analysis to obtain resonance parameters $\frac{d\sigma}{d\Omega}(\gamma\gamma \to \pi^+\pi^-) = |S_0Y_0^0 + D_0Y_0^2|^2 + |D_2Y_2^2|^2$

4

Comparison to dispersive analyses

Information including virtual photons needed!

C.F. Redmer - Data Input to HLbL

42

Two-photon cross Section

Longitudinal polarization contributes to cross section in a single-tagged measurement!

$$d\sigma_{ee} = \frac{\alpha^2}{16\pi^4 q_1^2 q_2^2} \sqrt{\frac{(q_1 \cdot q_2)^2 - q_1^2 q_2^2}{(p_1 \cdot p_2)^2 - m_e^4}} \left[4\rho_1^{++} \rho_2^{++} \sigma_{TT} + 2\rho_1^{++} \rho_2^{00} \sigma_{TL} + 2\rho_1^{00} \rho_2^{++} \sigma_{LT} \right] \frac{d^3 p_1' d^3 p_1'}{E_1' E_2'}$$
$$\frac{d^2 \sigma_{ee}}{dQ^2 dW} = \frac{d\mathcal{L}_{\gamma\gamma}}{dQ^2 dW} \left(\sigma_{TT}(Q^2, 0, W) + \varepsilon \sigma_{TL}(Q^2, 0, W) \right)$$

Using: Phys. Rept. 15 (1975) 181 Nucl.Phys. B54 (1973) 573

2021-09-02

- First measurement performed at Belle $\pi^0 \pi^0 (K_s K_s)$
- Cross section studied depending on $W, Q^2, \cos \theta^*, \phi^*$
 - $3 < Q^2 [\text{GeV}^2] < 30$
 - e^- -tag from 3.5 GeV
 - e^+ -tag from 5.5 GeV
 - $0.5 \le W[\text{GeV}] \le 2$
 - $|\cos\theta^*| \le 1$

2021-09-02

Partial wave analysis to obtain TFFs

W (GeV)

C.F. Redmer - Data Input to HLbL

 $\frac{d\sigma(\gamma\gamma \to \pi^0\pi^0)}{4\pi d|\cos\theta^*|} = |S_0Y_0^0 + D_0Y_0^2|^2 + 2\varepsilon |D_1Y_1|^2 + |D_2Y_2^2|^2$

Phys.Rev. D93 (2016) 032003 Phys.Rev. D97 (2018) 052003

1.15 GeV

1.45 GeV

0.5

 $\cos \theta^*$

45

C.F. Redmer - Data Input to HLbL

First measurement of scalar and tensor TFFs

All helicities measured

- Significant helicity-0 contribution
- Non-zero helicity-1 contribution
- Good agreement with theories for helicity-2

Comparison to dispersive analysis

Agreement within uncertainties

C.F. Redmer - Data Input to HLbL

46 JG

Tagged charged

C.F. Redmer - Data Input to HLbL

Ongoing analysis at BESIII

- Event selection analoguosly to π TFF
- Reducible background $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$
 - Dominating process

- Reliable simulations of all amplitudes exist
- Use machine learning for improved pion-muon separation
- Subtract remaining contributions

Tagged charged

C.F. Redmer - Data Input to HLbL

Ongoing analysis at BESIII

- Event selection analoguosly to π TFF
- Reducible background $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$
- Irreducible background $e^+e^- \rightarrow e^+e^-\pi^+\pi^-$
 - Radiative Bhabha scattering coupling to ρ mesons
 - Potential interferences

2021-09-02

Study with optimized MC generators

Tagged charged

2021-09-02 C.F. Redmer - Data Input to HLbL 49 JG

Axial Mesons

C.F. Redmer - Data Input to HLbL

Landau-Yang Theorem

- Two photons couple only to J=0,2
- Not valid for virtual photons!

Axial mesons accessible in single-tagged measurements!

Coupling at small Q² defined by TL-polarized photons

$$\tilde{\Gamma} = \lim_{Q^2 \to 0} \frac{M^2}{Q^2} \Gamma^{TL}_{\gamma\gamma*}$$

2021-09-02

Contribution of TT-polarized photons at large Q²

Dokl. Akad. Nauk Ser. Fiz. 60 (1948) 207 Phys. Rev. 77 (1950) 242

Cross Section

- In general three TFFs in cross section
- Single-tagged:

$$d\sigma_{ee} = \frac{\alpha^2}{16\pi^4 q_1^2 q_2^2} \sqrt{\frac{(q_1 \cdot q_2)^2 - q_1^2 q_2^2}{(p_1 \cdot p_2)^2 - m_e^4}} \left[4\rho_1^{++} \rho_2^{++} \sigma_{TT} + 2\rho_1^{++} \rho_2^{00} \sigma_{TL} + 2\rho_1^{00} \rho_2^{++} \sigma_{LT} \right] \frac{d^3 p_1' d^3 p_1'}{E_1' E_2'}$$

- Q² dependence unknown models needed
- Use effective TFF:

~ . 0

2021-09-02

$$\begin{split} |\tilde{F}|^2 &= \lim_{Q_2^2 \to 0} \kappa (f_{TT} + \varepsilon f_{TL}) \\ \tilde{F} &= \frac{M^2}{M^2 + Q^2} \sqrt{2\varepsilon} \frac{Q}{M} \quad \text{for small } \mathbf{Q}^2 \\ \sigma(\gamma \gamma \ast \to R) &= \frac{24\pi \Gamma_{\gamma \gamma} \Gamma}{(W^2 - M^2)^2 + \Gamma^2 M^2} \left(1 + \frac{Q^2}{M^2}\right) \left[\frac{Q^2}{M^2} \left(1 + \frac{Q^2}{2M^2}\right) \frac{2}{(1 + \frac{Q^2}{\Lambda^2})^4}\right] \end{split}$$

Phys.Lett. B526 (2002) 269

Nucl. Phys. B 523 (1998) 423

Phys.Rev. D 96 (2017) 076004 Phys.Lett.B 800 (2020) 135117

51

JHEP 05 (2020) 159 JHEP 07 (2021) 106

More complete VMD based TFF descriptions developed recently:

f₁(1285)

Lastest measurement from L3

 $f_1(1285) \to \pi^+ \pi^- \eta$

2021-09-02

- Dominated by intermediate $a_0(980)$
- Q² dependence from p_T
- Lepton-based cross section
 - fitted with different models

$$\begin{split} \Lambda &= 1.04 \pm 0.06 \pm 0.05 \, \mathrm{GeV} \\ \tilde{\Gamma} &= 3.5 \pm 0.6 \pm 0.5 \, \mathrm{keV} \end{split}$$

Phys.Lett. B526 (2002) 269

52

C.F. Redmer

f₁(1285)

Studies in preparation at BaBar and BESIII

- Complementary Q² ranges
- $f_1(1285) \to \pi^+ \pi^- \eta$
- Make use of intermediate state $a_0(980)$
- GGResRC generator to simulate individual helicity contributions
- Separate TT and TL contributions using helicity angle

Simulations from feasibility study at BESIII

A Different Approach to f₁(1285)

C.F. Redmer - Data Input to HLbL

- Direct production in "two-photon annihilation"
 - $e^+e^- \to f_1(1285)$

- Essential to constrain TFFs
- Suppressed compared to normal annihilation processes
- Choice of final state essential

- SND measurement of $f_1(1285) \rightarrow \eta \pi^0 \pi^0$
 - 15 pb⁻¹ in 12 scan points from 1200 1400 MeV
 - 3.5 pb⁻¹ at 1282±0.63 MeV

A Different Approach to f₁(1285)

Phys.Lett. B800 (2020) 135074

- Background from $e^+e^- \rightarrow \omega \pi^0, \omega \pi^0 \pi^0$ with $\omega \rightarrow \pi^0 \gamma$, and $e^+e^- \rightarrow \eta \gamma$
- Rejected by
 - General conditions on energy/momentum conservation
 - Kinematic fits to signal and background hyotheses
 - ω veto

2021-09-02

- 2 event candidates at peak energy
 - $\epsilon = (0.79 \pm 0.08)\%$
 - $\sigma(e^+e^- \to f_1(1285)) = 45^{+33}_{-24} \,\mathrm{pb}$
 - $\mathcal{B}(f_1(1285) \to e^+e^-) = 5.1^{+3.7}_{-2.7} \cdot 10^{-9}$
 - Consistent with prediction $\sigma(e^+e^- \rightarrow f_1(1285)) = 31 \pm 16 \,\mathrm{pb}$

Phys.Rev. D96 (2017) 076004 Phys.Lett. B800 (2020) 135117

A Theoretician's Whish List

issue	experimental input [I] or cross-checks [C]		
axials, tensors, higher pseudoscalars	$\gamma^{(*)}\gamma^* \rightarrow 3\pi, 4\pi, K\bar{K}\pi, \eta\pi\pi, \eta'\pi\pi$ [I]		
dispersive analysis of $\eta^{(\prime)}$ TFFs	$e^+e^- \rightarrow \eta \pi^+\pi^-$ [I]	$\gamma \gamma \rightarrow \text{fiduitions at 1-3 GeV [1]}$ $\chi^+\pi^-$ [1]	
	$\eta' \to \pi^+ \pi^- \pi^+ \pi^- [I]$ $\eta' \to \pi^+ \pi^- e^+ e^- [I]$	2020)	
dispersive analysis of -0 TEE	$\gamma \pi^- \rightarrow \pi^- \eta \ [C]$. 887 (
dispersive analysis of n TFF	$\gamma \pi \rightarrow \pi \pi$ [I] high accuracy Dalitz plot $\omega \rightarrow \pi^+ \pi^- \pi^0$ [C]	's.Rept	
	$e^+e^- \rightarrow \pi^+\pi^-\pi^0$ [C] $\omega, \phi \rightarrow \pi^0 l^+ l^-$ [C]	Phy	
pseudoscalar TFF	$\gamma^{(*)}\gamma^* \rightarrow \pi^0, \eta, \eta'$ at arbitrary virtualities [I,C]		
pion, kaon, $\pi \eta$ loops (including scalars and tensors)	$\gamma^{(*)}\gamma^* \rightarrow \pi\pi, KK, \pi\eta$ at arbitrary virtualities, partial waves [I,C]		

C.F. Redmer - Data Input to HLbL

56

Priorities for new experimental input and cross-checks.

Summary

- Data driven approaches require input
- World wide efforts to provide relevant data

